Finding Similar Pairs

Divide-Compute-Merge
Locality-Sensitive Hashing
Applications
Finding Similar Pairs

- Suppose we have in main memory data representing a large number of objects.
 - May be the objects themselves (e.g., summaries of faces).
 - May be signatures as in minhashing.
- We want to compare each to each, finding those pairs that are sufficiently similar.
Candidate Generation From Minhash Signatures

◆ Pick a similarity threshold s, a fraction < 1.

◆ A pair of columns c and d is a candidate pair if their signatures agree in at least fraction s of the rows.

 - I.e., $M(i, c) = M(i, d)$ for at least fraction s values of i.
Other Notions of “Sufficiently Similar”

◆ For images, a pair of vectors is a candidate if they differ by at most a small amount t in at least $s\%$ of the components.

◆ For entity records, a pair is a candidate if the sum of similarity scores of corresponding components exceeds a threshold.
Checking All Pairs is Hard

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.

- **Example**: 10^6 columns implies 5×10^{11} comparisons.

- **At 1 microsecond/comparison**: 6 days.
Solutions

1. *Divide-Compute-Merge* (DCM) uses external sorting, merging.

2. *Locality-Sensitive Hashing* (LSH) can be carried out in main memory, but admits some false negatives.
Divide-Compute-Merge

- Designed for “shingles” and docs.
 - Or other problems where data is presented by column.
- At each stage, divide data into batches that fit in main memory.
- Operate on individual batches and write out partial results to disk.
- Merge partial results from disk.
DCM Steps

1. **Invert**
 - `doc1: s11, s12, ..., s1k`
 - `doc2: s21, s22, ..., s2k`
 - `...`

2. **Sort on shingleId**
 - `s11, doc1`
 - `s12, doc1`
 - `...`
 - `s1k, doc1`
 - `s21, doc2`
 - `...`

3. **Invert and pair**
 - `doc11, doc12, 2`
 - `doc11, doc12, 1`
 - `doc11, doc13, 10`
 - `...`

4. **Merge**
 - `doc11, doc12, 1`
 - `doc11, doc13, 1`
 - `...`
 - `...`

5. **Sort on <docId1, docId2>**
 - `doc11, doc12, 1`
 - `doc11, doc13, 1`
 - `...`
 - `doc21, doc22, 1`
 - `...`
DCM Summary

1. Start with the pairs <shingleId, docId>.
2. Sort by shingleId.
3. In a sequential scan, generate triplets <docId1, docId2, 1> for pairs of docs that share a shingle.
4. Sort on <docId1, docId2>.
5. Merge triplets with common docIds to generate triplets of the form <docId1,docId2,count>.
Some Optimizations

◆ “Invert and Pair” is the most expensive step.

◆ Speed it up by eliminating very common shingles.
 ◆ “the”, “404 not found”, “<A HREF”, etc.

◆ Also, eliminate exact-duplicate docs first.
Locality-Sensitive Hashing

- **Big idea**: hash columns of signature matrix M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- Candidate pairs are those that hash at least once to the same bucket.
Partition Into Bands

Matrix M

- b bands
- r rows per band
Partition into Bands – (2)

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
- *Candidate* column pairs are those that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.
Matrix M with r rows and b bands connected to Buckets.
Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
- Hereafter, we assume that “same bucket” means “identical.”
Example

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
- But 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.
Suppose C_1, C_2 are 80\% Similar

- Probability C_1, C_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability C_1, C_2 are \textit{not} similar in any of the 20 bands: $(1-0.328)^{20} = 0.00035$.
 - i.e., we miss about 1/3000th of the 80\%-similar column pairs.
Suppose \(C_1, C_2 \) Only 40% Similar

- Probability \(C_1, C_2 \) identical in any one particular band: \((0.4)^5 = 0.01\).
- Probability \(C_1, C_2 \) identical in \(\geq 1 \) of 20 bands: \(\leq 20 \times 0.01 = 0.2 \).
- But false positives much lower for similarities \(<< 40\% \).
LSH Involves a Tradeoff

- Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/negatives.

- **Example**: if we had fewer than 20 bands, the number of false positives would go down, but the number of false negatives would go up.
Analysis of LSH – What We Want

Probability of sharing a bucket

Similarity s of two columns

No chance if $s < t$

Probability = 1 if $s > t$

20
What One Row Gives You

Probability of sharing a bucket

Remember: probability of equal hash-values = similarity

Similarity s of two columns

t
What b Bands of r Rows Gives You

Probability of sharing a bucket

$1 - (1 - s^r)^b$

Similarity s of two columns

$t \sim (1/b)^{1/r}$

At least one band identical

No bands identical

Some row of a band unequal

All rows of a band are equal
LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- **Optional**: In another pass through data, check that the remaining candidate pairs really are similar *columns*.
LSH for Other Applications

1. Face recognition from 1000 measurements/face.
2. Entity resolution from name-address-phone records.

◆ **General principle**: find many hash functions for elements; *candidate pairs* share a bucket for \(\geq 1 \) hash.
Face-Recognition Hash Functions

1. Pick a set of r of the 1000 measurements.
2. Each bucket corresponds to a range of values for each of the r measurements.
3. Hash a vector to the bucket such that each of its r components is in-range.
4. **Optional**: if near the edge of a range, also hash to an adjacent bucket.
Example: $r = 2$

<table>
<thead>
<tr>
<th></th>
<th>10-16</th>
<th>17-23</th>
<th>24-30</th>
<th>31-37</th>
<th>38-44</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One bucket, for (x,y) if $10 \leq x \leq 16$ and $0 \leq y \leq 4$

(27,9) goes here.

Maybe put a copy here, too.
Many-One Face Lookup

- As for boolean matrices, use many different hash functions.
 - Each based on a different set of the 1000 measurements.
- Each bucket of each hash function points to the images that hash to that bucket.
Face Lookup – (2)

- Given a new image (the *probe*), hash it according to all the hash functions.
- Any member of any one of its buckets is a candidate.
- For each candidate, count the number of components in which the candidate and probe are close.
- Match if #components ≥ threshold.
Hashing the Probe

Look in all these buckets
Many-Many Problem

- Make each pair of images that are in the same bucket according to any hash function be a candidate pair.
- Score each candidate pair as for the many-one problem.
Entity Resolution

- You don’t have the convenient multidimensional view of data that you do for “face-recognition” or “similar-columns.”
- We actually used an LSH-inspired simplification.
Matching Customer Records

I once took a consulting job solving the following problem:

- Company A agreed to solicit customers for Company B, for a fee.
- They then had a parting of the ways, and argued over how many customers.
- Neither recorded exactly which customers were involved.
Customer Records – (2)

- Company B had about 1 million records of all its customers.
- Company A had about 1 million records describing customers, some of which it had signed up for B.
- Records had name, address, and phone, but for various reasons, they could be different for the same person.
Customer Records – (3)

♦ **Step 1:** design a measure of how similar records are:
 - E.g., deduct points for small misspellings (“Jeffrey” vs. “Geoffery”), same phone, different area code.

♦ **Step 2:** score all pairs of records; report very similar records as matches.
Customer Records – (4)

◆ **Problem**: (1 million)2 is too many pairs of records to score.

◆ **Solution**: A simple LSH.

 - Three hash functions: exact values of name, address, phone.
 - Compare iff records are identical in at least one.
 - Misses similar records with a small difference in all three fields.
Customer Records – Aside

- We were able to tell what values of the scoring function were reliable in an interesting way.
 - Identical records had a creation date difference of 10 days.
 - We only looked for records created within 90 days, so bogus matches had a 45-day average.
Aside – (2)

By looking at the pool of matches with a fixed score, we could compute the average time-difference, say \(x \), and deduce that fraction \((45-x)/35\) of them were valid matches.

Alas, the lawyers didn’t think the jury would understand.