Improvements to A-Priori

Park-Chen-Yu Algorithm
Multistage Algorithm
Approximate Algorithms
Compacting Results
PCY Algorithm

- Hash-based improvement to A-Priori.
- During Pass 1 of A-priori, most memory is idle.
- Use that memory to keep counts of buckets into which pairs of items are hashed.
 - Just the count, not the pairs themselves.
- Gives extra condition that candidate pairs must satisfy on Pass 2.
Picture of PCY

Pass 1

- Hash table
- Item counts

Pass 2

- Bitmap
- Counts of candidate pairs
- Frequent items
PCY Algorithm – Before Pass 1
Organize Main Memory

- Space to count each item.
 - One (typically) 4-byte integer per item.
- Use the rest of the space for as many integers, representing buckets, as we can.
PCY Algorithm – Pass 1

FOR (each basket) {
 FOR (each item)
 add 1 to item’s count;
 FOR (each pair of items) {
 hash the pair to a bucket;
 add 1 to the count for that bucket
 }
}
Observations About Buckets

1. If a bucket contains a frequent pair, then the bucket is surely frequent.
 - We cannot use the hash table to eliminate any member of this bucket.

2. Even without any frequent pair, a bucket can be frequent.
 - Again, nothing in the bucket can be eliminated.
Observations – (2)

3. But in the best case, the count for a bucket is less than the support s.
 - Now, all pairs that hash to this bucket can be eliminated as candidates, even if the pair consists of two frequent items.
PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeds the support \(s \) (a frequent bucket); 0 means it did not.
- 4-byte integers are replaced by bits, so the bit-vector requires 1/32 of memory.
- Also, decide which items are frequent and list them for the second pass.
PCY Algorithm – Pass 2

◆ Count all pairs \(\{i, j\} \) that meet the conditions:
 1. Both \(i \) and \(j \) are frequent items.
 2. The pair \(\{i, j\} \), hashes to a bucket number whose bit in the bit vector is 1.

◆ Notice all these conditions are necessary for the pair to have a chance of being frequent.
Memory Details

- Hash table requires buckets of 2-4 bytes.
 - Number of buckets thus almost 1/4-1/2 of the number of bytes of main memory.

- On second pass, a table of (item, item, count) triples is essential.
 - Thus, hash table must eliminate 2/3 of the candidate pairs to beat a-priori.
Multistage Algorithm

Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY.

On middle pass, fewer pairs contribute to buckets, so fewer false positives – frequent buckets with no frequent pair.
Multistage Picture

- Item counts
- Freq. items
- Bitmap 1
- Second hash table
- Freq. items
- Bitmap 1
- Bitmap 2
- Counts of candidate pairs

Pass 1
Pass 2
Pass 3
Count only those pairs \(\{i, j\} \) that satisfy:

1. Both \(i \) and \(j \) are frequent items.
2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1.
3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1.
Important Points

1. The two hash functions have to be independent.
2. We need to check both hashes on the third pass.
 - If not, we would wind up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket.
Multihash

- **Key idea**: use several independent hash tables on the first pass.
- **Risk**: halving the number of buckets doubles the average count. We have to be sure most buckets will still not reach count \(s \).
- **If so**, we can get a benefit like multistage, but in only 2 passes.
Multihash Picture

- Item counts
- First hash table
- Second hash table
- Freq. items
- Bitmap 1
- Bitmap 2
- Counts of candidate pairs

Pass 1

Pass 2
Extensions

- Either multistage or multihash can use more than two hash functions.
- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory.
- For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$.
All (Or Most) Frequent Itemsets In ≤ 2 Passes

- Simple algorithm.
- SON (Savasere, Omiecinski, andNavathe).
- Toivonen.
Simple Algorithm – (1)

- Take a random sample of the market baskets.
- Run a-priori or one of its improvements (for sets of all sizes, not just pairs) in main memory, so you don’t pay for disk I/O each time you increase the size of itemsets.
 - Be sure you leave enough space for counts.
Main-Memory Picture

- Copy of sample baskets
- Space for counts
Use as your support threshold a suitable, scaled-back number.

E.g., if your sample is 1/100 of the baskets, use \(s/100 \) as your support threshold instead of \(s \).
Simple Algorithm – Option

Optionally, verify that your guesses are truly frequent in the entire data set by a second pass.

But you don’t catch sets frequent in the whole but not in the sample.

- Smaller threshold, e.g., \(s/125 \), helps catch more truly frequent itemsets.
 - But requires more space.
SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory and perform the first pass of the simple algorithm on each subset.
- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.
SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.
- Key “monotonicity” idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
SON Algorithm – Distributed Version

- This idea lends itself to distributed data mining.
- If baskets are distributed among many nodes, compute frequent itemsets at each node, then distribute the candidates from each node.
- Finally, accumulate the counts of all candidates.
Toivonen’s Algorithm – (1)

Start as in the simple algorithm, but lower the threshold slightly for the sample.

- **Example**: if the sample is 1% of the baskets, use $s/125$ as the support threshold rather than $s/100$.
- Goal is to avoid missing any itemset that is frequent in the full set of baskets.
Toivonen’s Algorithm – (2)

◆ Add to the itemsets that are frequent in the sample the *negative border* of these itemsets.

◆ An itemset is in the negative border if it is not deemed frequent in the sample, but *all* its immediate subsets are.
Example: Negative Border

\textbf{ABCD} is in the negative border if and only if it is not frequent, but all of ABC, BCD, ACD, and ABD are.
Picture of Negative Border

... tripletons
doubletons
singletons

Negative Border

Frequent Itemsets
Toivonen’s Algorithm – (3)

◆ In a second pass, count all candidate frequent itemsets from the first pass, and also count their negative border.

◆ If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are exactly the frequent itemsets.
Toivonen’s Algorithm – (4)

What if we find that something in the negative border is actually frequent?

We must start over again!

Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.
Theorem:

- If there is an itemset that is frequent in the whole, but not frequent in the sample, then there is a member of the negative border for the sample that is frequent in the whole.
Proof:

- Suppose not; i.e., there is an itemset S frequent in the whole but
 - Not frequent in the sample, and
 - Not present in the sample’s negative border.

- Let T be a smallest subset of S that is not frequent in the sample.

- T is frequent in the whole (S is frequent, monotonicity).

- T is in the negative border (else not “smallest”).
Compacting the Output

1. *Maximal Frequent itemsets* : no immediate superset is frequent.

2. *Closed itemsets* : no immediate superset has the same count (> 0).
 - Stores not only frequent information, but exact counts.
Example: Maximal/Closed

<table>
<thead>
<tr>
<th>Count</th>
<th>Maximal (s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B 5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C 3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB 4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC 2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC 3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC 2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>