Association Rules

Market Baskets
Frequent Itemsets
A-priori Algorithm
The Market-Basket Model

◆ A large set of *items*, e.g., things sold in a supermarket.

◆ A large set of *baskets*, each of which is a small set of the items, e.g., the things one customer buys on one day.
Support

- Simplest question: find sets of items that appear “frequently” in the baskets.
- $Support$ for itemset $I = \text{the number of baskets containing all items in } I$.
- Given a support threshold s, sets of items that appear in $\geq s$ baskets are called $frequent$ $itemsets$.
Example: Frequent Itemsets

- **Items** = {milk, coke, pepsi, beer, juice}.
- **Support** = 3 baskets.

\[
\begin{align*}
B_1 &= \{m, c, b\} & B_2 &= \{m, p, j\} \\
B_3 &= \{m, b\} & B_4 &= \{c, j\} \\
B_5 &= \{m, p, b\} & B_6 &= \{m, c, b, j\} \\
B_7 &= \{c, b, j\} & B_8 &= \{b, c\}
\end{align*}
\]

- **Frequent itemsets**: \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{b, c\}, \{c, j\}.
Applications – (1)

- **Real market baskets**: chain stores keep terabytes of information about what customers buy together.
 - Tells how typical customers navigate stores, lets them position tempting items.
 - Suggests tie-in “tricks,” e.g., run sale on diapers and raise the price of beer.
- **High support needed, or no $$’s.**
Applications – (2)

◆ **Baskets** = sentences; **items** = words in those sentences.
 ✷ Lets us find words that appear together unusually frequently, i.e., linked concepts.

◆ **Baskets** = sentences, **items** = documents containing those sentences.
 ✷ Items that appear together too often could represent plagiarism.
Applications – (3)

- **Baskets** = people; **items** = genes or blood-chemistry factors.
 - Has been used to detect combinations of genes that result in diabetes, e.g.
 - But requires extension: absence of an item needs to be observed as well as presence.
Many-Many Relationships

“Market Baskets” is an abstraction that models any many-many relationship between two concepts: “items” and “baskets.”

- Items need not be “contained” in baskets.

The only distinction is that we count co-occurrences of items, not baskets.
Scale of Problem

- WalMart sells 100,000 items and can store billions of baskets.
- The Web has over 100,000,000 words and billions of pages.
Association Rules

◆ If-then rules about the contents of baskets.
◆ \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is likely to contain \(j \).”
◆ Confidence of this association rule is the probability of \(j \) given \(i_1, \ldots, i_k \).
Example: Confidence

\[
\begin{align*}
 \text{B}_1 &= \{m, c, b\} \\
 \text{B}_2 &= \{m, p, j\} \\
 \text{B}_3 &= \{m, b\} \\
 \text{B}_4 &= \{c, j\} \\
 \text{B}_5 &= \{m, p, b\} \\
 \text{B}_6 &= \{m, c, b, j\} \\
 \text{B}_7 &= \{c, b, j\} \\
 \text{B}_8 &= \{b, c\}
\end{align*}
\]

An association rule: \(\{m, b\} \rightarrow c \).

- Confidence = \(\frac{2}{4} = 50\% \).
Interest

- The *interest* of an association rule $X \rightarrow Y$ is the absolute value of the amount by which the confidence differs from the probability of Y being in a given basket.
Example: Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

\[\text{For association rule} \ \{m, b\} \rightarrow c, \text{ item } c \]
\[\text{appears in } 5/8 \text{ of the baskets.} \]

\[\text{Interest} = |2/4 - 5/8| = 1/8 \quad \text{--- not very interesting.} \]
Relationships Among Measures

🔹 Rules with high support and confidence may be useful even if they are not “interesting.”
 - We don’t care if buying bread *causes* people to buy milk, or whether simply a lot of people buy both bread and milk.
🔹 But high interest suggests a cause that might be worth investigating.
Finding Association Rules

◆ A typical question: "find all association rules with support \(\geq s \) and confidence \(\geq c \)."

 ♦ Note: “support” of an association rule is the support of the set of items it mentions.

◆ Hard part: finding the high-support (frequent) itemsets.

 ♦ Checking the confidence of association rules involving those sets is relatively easy.
Computation Model

- Typically, data is kept in a flat file rather than a database system.
 - Stored on disk.
 - Stored basket-by-basket.
 - Expand baskets into pairs, triples, etc. as you read baskets.
 - Use k nested loops to generate all sets of size k.
File Organization

Basket 1

Item
Item
Item
Item
Item
Item
Item
Item

Basket 2

Item
Item
Item
Item
Item
Item
Item

Basket 3

Item
Item
Item
Item
Item

Etc.
The true cost of mining disk-resident data is usually the number of disk I/O’s.

In practice, association-rule algorithms read the data in passes – all baskets read in turn.

Thus, we measure the cost by the number of passes an algorithm takes.
Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource.
 - As we read baskets, we need to count something, e.g., occurrences of pairs.
 - The number of different things we can count is limited by main memory.
 - Swapping counts in/out is a disaster.
Finding Frequent Pairs

- The hardest problem often turns out to be finding the **frequent pairs**.
- We’ll concentrate on how to do that, then discuss extensions to finding frequent triples, etc.
Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair.
 - From each basket of n items, generate its $n (n - 1)/2$ pairs by two nested loops.
- Fails if ($\#$ items)2 exceeds main memory.
 - Remember: $\#$ items can be 100K (Wal-Mart) or 10B (Web pages).
Details of Main-Memory Counting

◆ Two approaches:
 1. Count all pairs, using a triangular matrix.
 2. Keep a table of triples \([i, j, c]\) = the count of the pair of items \([i,j]\) is \(c\).

◆ (1) requires only 4 bytes/pair.
 ✷ Note: assume integers are 4 bytes.

◆ (2) requires 12 bytes, but only for those pairs with count > 0.
Method (1) 4 per pair

Method (2) 12 per occurring pair
Triangular-Matrix Approach – (1)

- Number items 1, 2, ...
- Requires table of size $O(n)$.
- Keep pairs in the order $\{1,2\}$, $\{1,3\}$, \ldots, $\{1,n\}$, $\{2,3\}$, $\{2,4\}$, \ldots, $\{2,n\}$, $\{3,4\}$, \ldots, $\{3,n\}$, \ldots $\{n-1,n\}$.
Triangular-Matrix Approach – (2)

- Find pair \(\{i, j\} \) at the position
 \[(i-1)(n-i/2) + j-i. \]
- Total number of pairs \(n(n-1)/2 \); total bytes about \(2n^2 \).
Details of Approach #2

- Total bytes used is about $12p$, where p is the number of pairs that actually occur.
 - Beats triangular matrix if at most $1/3$ of possible pairs actually occur.
- May require extra space for retrieval structure, e.g., a hash table.
A-Priori Algorithm – (1)

◆ A two-pass approach called *a-priori* limits the need for main memory.

◆ Key idea: *monotonicity*: if a set of items appears at least \(s \) times, so does every subset.

 ✷ **Contrapositive for pairs**: if item \(i \) does not appear in \(s \) baskets, then no pair including \(i \) can appear in \(s \) baskets.
A-Priori Algorithm – (2)

Pass 1: Read baskets and count in main memory the occurrences of each item.
- Requires only memory proportional to #items.

Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
- Requires memory proportional to square of frequent items only.
Picture of A-Priori

- **Pass 1**: Item counts
- **Pass 2**: Frequent items, Counts of candidate pairs
You can use the triangular matrix method with $n = \text{number of frequent items}$.

- Saves space compared with storing triples.

Trick: number frequent items 1,2,... and keep a table relating new numbers to original item numbers.
Frequent Triples, Etc.

For each k, we construct two sets of k–tuples:

- $C_k =$ candidate k–tuples = those that might be frequent sets (support $\geq s$) based on information from the pass for $k-1$.
- $L_k =$ the set of truly frequent k–tuples.
Filter

Construct

Filter

Construct

First pass

Second pass

All items

Count the items

All pairs of items from L_1

Count the pairs

To be explained

Count the items

All pairs

of items from L_1
A-Priori for All Frequent Itemsets

- One pass for each k.
- Needs room in main memory to count each candidate k-tuple.
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory.
Frequent Itemsets – (2)

- C_1 = all items
- L_1 = those counted on first pass to be frequent.
- C_2 = pairs, both chosen from L_1.
- In general, $C_k = k$-tuples, each $k-1$ of which is in L_{k-1}.
- L_k = members of C_k with support $\geq s$.