Recommendations

Search Recommendations

Items

Products, web sites, blogs, news items, …
The Long Tail

Source: Chris Anderson (2004)
From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...

- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance

- More choice necessitates better filters
 - Recommendation engines
 - How *Into Thin Air* made *Touching the Void* a bestseller
Recommendation Types

- Editorial
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...
Formal Model

- $C = \text{set of Customers}$
- $S = \text{set of Items}$
- Utility function $u: C \preceq S \rightarrow R$
 - $R = \text{set of ratings}$
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in $[0,1]$
Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>King Kong</th>
<th>LOTR</th>
<th>Matrix</th>
<th>National Treasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>
Key Problems

- Gathering “known” ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods
Gathering Ratings

☐ Explicit
 ■ Ask people to rate items
 ■ Doesn’t work well in practice – people can’t be bothered

☐ Implicit
 ■ Learn ratings from user actions
 ■ e.g., purchase implies high rating
 ■ What about low ratings?
Extrapolating Utilities

- Key problem: matrix U is sparse
 - most people have not rated most items

- Three approaches
 - Content-based
 - Collaborative
 - Hybrid
Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - recommend other sites with “similar” content
Plan of action

recommend

Item profiles

Red
Circles
Triangles

User profile

match

build

likes
Item Profiles

- For each item, create an item profile
- Profile is a set of features
 - movies: author, title, actor, director, ...
 - text: set of “important” words in document
 - Think of profile as a vector in the feature space
- How to pick important words?
 - Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)
TF.IDF

\[f_{ij} = \text{frequency of term } t_i \text{ in document } d_j \]

\[TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \]

\[n_i = \text{number of docs that mention term } i \]

\[N = \text{total number of docs} \]

\[IDF_i = \log \frac{N}{n_i} \]

TF.IDF score \[w_{ij} = TF_{ij} \cdot IDF_i \]

Doc profile = set of words with highest TF.IDF scores, together with their scores
User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...

- User profile is a vector in the feature space
Prediction heuristic

- User profile and item profile are vectors in the feature space
 - How to predict the rating by a user for an item?
- Given user profile c and item profile s, estimate $u(c,s) = \cos(c,s) = \frac{c.s}{\|c\|\|s\|}$
- Need efficient method to find items with high utility: later
Model-based approaches

- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - e.g., Bayesian, regression, SVM
- Apply classifier to each item to find recommendation candidates
- Problem: scalability
 - Won’t investigate further in this class
Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music

- Overspecialization
 - Never recommends items outside user’s content profile
 - People might have multiple interests

- Recommendations for new users
 - How to build a profile?
Collaborative Filtering

- Consider user c
- Find set D of other users whose ratings are “similar” to c’s ratings
- Estimate user’s ratings based on ratings of users in D
Similar users

- Let \(r_x \) be the vector of user \(x \)'s ratings
- Cosine similarity measure
 - \(\text{sim}(x, y) = \cos(r_x, r_y) \)

- Pearson correlation coefficient
 - \(S_{xy} = \) items rated by both users \(x \) and \(y \)

\[
\text{sim}(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)(r_{ys} - \bar{r}_y)}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)^2 (r_{ys} - \bar{r}_y)^2}}
\]
Rating predictions

- Let D be the set of k users most similar to c who have rated item s

- Possibilities for prediction function (item s):
 - $r_{cs} = \frac{1}{k} \sum_{d \in D} r_{ds}$
 - $r_{cs} = \frac{\left(\sum_{d \in D} \text{sim}(c,d) \cdot r_{ds}\right)}{\left(\sum_{d \in D} \text{sim}(c,d)\right)}$

- Other options?

- Many tricks possible...
 - Harry Potter problem
Complexity

- Expensive step is finding \(k \) most similar customers
 - \(O(|U|) \)
- Too expensive to do at runtime
 - Need to pre-compute
- Naïve precomputation takes time
 - \(O(N|U|) \)
- Can use clustering, partitioning as alternatives, but quality degrades
Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than user-user
Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?
Hybrid Methods

- Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem
Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
- Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives
Problems with Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
Finding similar vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high cosine-similarity
- Compare to min-hashing approach for finding near-neighbors for Jaccard similarity
Similarity-Preserving Hash Functions

- Suppose we can create a family F of hash functions, such that for any $h \in F$, given vectors x and y:
 - $Pr[h(x) = h(y)] = \text{sim}(x,y) = \cos(x,y)$

- We could then use $E_{h \in F}[h(x) = h(y)]$ as an estimate of $\text{sim}(x,y)$
 - Can get close to $E_{h \in F}[h(x) = h(y)]$ by using several hash functions
Similarity metric

- Let θ be the angle between vectors x and y
- $\cos(\theta) = \frac{x \cdot y}{||x|| ||y||}$
- It turns out to be convenient to use $\text{sim}(x,y) = 1 - \frac{\theta}{\pi}$
 - instead of $\text{sim}(x,y) = \cos(\theta)$
 - Can compute $\cos(\theta)$ once we estimate θ
Random hyperplanes

Vectors u, v subtend angle θ

Random hyperplane through origin (normal r)

$h_r(u) = 1$ if $r \cdot u > 0$
0 if $r \cdot u < 0$
Random hyperplanes

\[h_r(u) = \begin{cases}
1 & \text{if } r \cdot u \geq 0 \\
0 & \text{if } r \cdot u < 0
\end{cases} \]

\[\Pr[h_r(u) = h_r(v)] = 1 - \frac{\theta}{\pi} \]
Vector sketch

- For vector u, we can construct a k-bit sketch by concatenating the values of k different hash functions:
 \[\text{sketch}(u) = [h_1(u) \ h_2(u) \ ... \ h_k(u)] \]

- Can estimate θ to arbitrary degree of accuracy by comparing sketches of increasing lengths.

- Big advantage: each hash is a single bit.
 - So can represent 256 hashes using 32 bytes.
Picking hyperplanes

- Picking a random hyperplane in \(M \)-dimensions requires \(M \) random numbers
- In practice, can randomly pick each dimension to be +1 or -1
 - So we need only \(M \) random bits
Finding all similar pairs

- Compute sketches for each vector
 - Easy if we can fit random bits for each dimension in memory
 - For k-bit sketch, we need Mk bits of memory
 - Might need to use ideas similar to page rank computation (e.g., block algorithm)
- Can use DCM or LSH to find all similar pairs