“Association Rules”

Market Baskets
Frequent Itemsets
A-priori Algorithm
The Market-Basket Model

- A large set of *items*, e.g., things sold in a supermarket.
- A large set of *baskets*, each of which is a small set of the items, e.g., the things one customer buys on one day.
Support

- Simplest question: find sets of items that appear “frequently” in the baskets.
- **Support** for itemset $I = \text{the number of baskets containing all items in } I$.
- Given a support *threshold* s, sets of items that appear in $\geq s$ baskets are called *frequent itemsets*.
Example

- **Items**={milk, coke, pepsi, beer, juice}.
- **Support** = 3 baskets.

\[B_1 = \{m, c, b\} \]
\[B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \]
\[B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \]
\[B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \]
\[B_8 = \{b, c\} \]

- **Frequent itemsets**: \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{c, b\}, \{j, c\}.

Applications --- (1)

◆ **Real market baskets**: chain stores keep terabytes of information about what customers buy together.
 - Tells how typical customers navigate stores, lets them position tempting items.
 - Suggests tie-in “tricks,” e.g., run sale on diapers and raise the price of beer.

◆ High support needed, or no $$’s.”
Applications --- (2)

◆ “Baskets” = documents; “items” = words in those documents.
 ✤ Lets us find words that appear together unusually frequently, i.e., linked concepts.

◆ “Baskets” = sentences, “items” = documents containing those sentences.
 ✤ Items that appear together too often could represent plagiarism.
Applications --- (3)

◆“Baskets” = Web pages; “items” = linked pages.
 - Pairs of pages with many common references may be about the same topic.

◆“Baskets” = Web pages p; “items” = pages that link to p.
 - Pages with many of the same links may be mirrors or about the same topic.
“Market Baskets” is an abstraction that models any many-many relationship between two concepts: “items” and “baskets.”

- Items need not be “contained” in baskets.

The only difference is that we count co-occurrences of items related to a basket, not vice-versa.
Scale of Problem

◆ WalMart sells 100,000 items and can store billions of baskets.
◆ The Web has over 100,000,000 words and billions of pages.
Association Rules

- If-then rules about the contents of baskets.
- \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is likely to contain \(j \).”
- **Confidence** of this association rule is the probability of \(j \) given \(i_1, \ldots, i_k \).
Example

+ $B_1 = \{m, c, b\}$
- $B_3 = \{m, b\}$
- $B_5 = \{m, p, b\}$
 $B_7 = \{c, b, j\}$

$B_2 = \{m, p, j\}$
$B_4 = \{c, j\}$
$B_6 = \{m, c, b, j\}$
$B_8 = \{b, c\}$

An association rule: $\{m, b\} \rightarrow c$.

Confidence = $2/4 = 50\%$.
Interest

◆ The *interest* of an association rule $X \rightarrow Y$ is the absolute value of the amount by which the confidence differs from the probability of Y.
Example

\[B_1 = \{m, c, b\} \]
\[B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \]
\[B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \]
\[B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \]
\[B_8 = \{b, c\} \]

For association rule \(\{m, b\} \rightarrow c \), item \(c \) appears in 5/8 of the baskets.

Interest = \(|2/4 - 5/8| = 1/8 \) --- not very interesting.
Relationships Among Measures

◆ Rules with high support and confidence may be useful even if they are not “interesting.”
 ◆ We don’t care if buying bread causes people to buy milk, or whether simply a lot of people buy both bread and milk.
◆ But high interest suggests a cause that might be worth investigating.
Finding Association Rules

◆ A typical question: “find all association rules with support ≥ s and confidence ≥ c.”
 ▶ Note: “support” of an association rule is the support of the set of items it mentions.

◆ Hard part: finding the high-support (frequent) itemsets.
 ▶ Checking the confidence of association rules involving those sets is relatively easy.
Computation Model

Typically, data is kept in a “flat file” rather than a database system.
- Stored on disk.
- Stored basket-by-basket.
- Expand baskets into pairs, triples, etc. as you read baskets.
File Organization

- Basket 1
- Basket 2
- Basket 3

- Item

Etc.
Computation Model --- (2)

- The true cost of mining disk-resident data is usually the **number of disk I/O’s**.
- In practice, association-rule algorithms read the data in **passes** --- all baskets read in turn.
- Thus, we measure the cost by the number of passes an algorithm takes.
Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource.
 - As we read baskets, we need to count something, e.g., occurrences of pairs.
 - The number of different things we can count is limited by main memory.
 - Swapping counts in/out is a disaster.
Finding Frequent Pairs

◆ The hardest problem often turns out to be finding the frequent pairs.

◆ We’ll concentrate on how to do that, then discuss extensions to finding frequent triples, etc.
Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair.
 - Expand each basket of n items into its $n(n-1)/2$ pairs.
- Fails if $(\text{#items})^2$ exceeds main memory.
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages).
Details of Main-Memory Counting

◆ Two approaches:
 1. Count all item pairs, using a triangular matrix.
 2. Keep a table of triples \([i, j, c]\) = the count of the pair of items \(\{i, j\}\) is \(c\).
◆ (1) requires only (say) 4 bytes/pair.
◆ (2) requires 12 bytes, but only for those pairs with count > 0.
Method (1) 4 per pair

Method (2) 12 per occurring pair
Details of Approach #1

- Number items 1, 2, ...
- Keep pairs in the order \{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots, \{3,n\}, \ldots, \{n-1,n\}.
- Find pair \{i, j\} at the position
 \[(i-1)(n-i/2) + j - i.\]
- Total number of pairs \(n(n-1)/2\); total bytes about \(2n^2\).
Details of Approach #2

✿ You need a hash table, with i and j as the key, to locate (i, j, c) triples efficiently.
 ✿ Typically, the cost of the hash structure can be neglected.
✿ Total bytes used is about $12p$, where p is the number of pairs that actually occur.
 ✿ Beats triangular matrix if at most 1/3 of possible pairs actually occur.
A-Priori Algorithm --- (1)

- A two-pass approach called *a-priori* limits the need for main memory.
- Key idea: *monotonicity*: if a set of items appears at least s times, so does every subset.
 - Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets.
A-Priori Algorithm --- (2)

◆ **Pass 1**: Read baskets and count in main memory the occurrences of each item.
 ✷ Requires only memory proportional to \#items.

◆ **Pass 2**: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
 ✷ Requires memory proportional to square of frequent items only.
Picture of A-Priori

Pass 1
Item counts

Pass 2
Frequent items
Counts of candidate pairs
You can use the triangular matrix method with $n = \text{number of frequent items.}$
- Saves space compared with storing triples.

Trick: number frequent items 1, 2, ... and keep a table relating new numbers to original item numbers.
Frequent Triples, Etc.

For each k, we construct two sets of k–tuples:

- $C_k = \text{candidate } k$–tuples = those that might be frequent sets (support $\geq s$) based on information from the pass for k–1.
- $L_k = \text{the set of truly frequent } k$–tuples.
C₁ → \text{Filter} \rightarrow L₁ \rightarrow \text{Construct} \rightarrow C₂ \rightarrow \text{Filter} \rightarrow L₂ \rightarrow \text{Construct} \rightarrow C₃ →

First pass

Second pass
A-Priori for All Frequent Itemsets

- One pass for each k.
- Needs room in main memory to count each candidate k–tuple.
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory.
Frequent Itemsets --- (2)

- $C_1 = \text{all items}$
- $L_1 = \text{those counted on first pass to be frequent.}$
- $C_2 = \text{pairs, both chosen from } L_1.$
- In general, $C_k = k-\text{tuples, each } k-1 \text{ of which is in } L_{k-1}.$
- $L_k = \text{members of } C_k \text{ with support } \geq s.$