Problem formulation (1998)

- Suppose we are given a collection of documents on some broad topic
 - e.g., stanford, evolution, iraq
 - perhaps obtained through a text search
- Can we organize these documents in some manner?
 - Page rank offers one solution
 - HITS (Hypertext-Induced Topic Selection) is another
 - proposed at approx the same time

HITS Model

- Interesting documents fall into two classes
 1. Authorities are pages containing useful information
 - course home pages
 - home pages of auto manufacturers
 2. Hubs are pages that link to authorities
 - course bulletin
 - list of US auto manufacturers

Idealized view

Mutually recursive definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node
 - Hub score and Authority score
 - Represented as vectors \mathbf{h} and \mathbf{a}

Transition Matrix A

- HITS uses a matrix $A[i, j] = 1$ if page i links to page j, 0 if not
- A^T, the transpose of A, is similar to the PageRank matrix M, but A^T has 1’s where M has fractions
Example

\[A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

Hub and Authority Equations

- The hub score of page P is proportional to the sum of the authority scores of the pages it links to.
 - \(h = \lambda a \)
 - Constant \(\lambda \) is a scale factor
- The authority score of page P is proportional to the sum of the hub scores of the pages it is linked from.
 - \(a = \mu A^T h \)
 - Constant \(\mu \) is a scale factor

Iterative algorithm

- Initialize \(h, a \) to all 1's
- \(h = Aa \)
- Scale \(h \) so that its max entry is 1.0
- \(a = A^T h \)
- Scale \(a \) so that its max entry is 1.0
- Continue until \(h, a \) converge

Example

\[A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \]

- \(a(\text{yahoo}) = 1 \quad 1 \quad 1 \quad \cdots \quad 1 \)
- \(a(\text{amazon}) = 1 \quad 4/5 \quad 0.75 \quad \cdots \quad 0.732 \)
- \(a(\text{m'soft}) = 1 \quad 1 \quad 1 \quad \cdots \quad 1 \)
- \(h(\text{yahoo}) = 1 \quad 1 \quad 1 \quad \cdots \quad 1.000 \)
- \(h(\text{amazon}) = 1 \quad 2/3 \quad 0.71 \quad \cdots \quad 0.732 \)
- \(h(\text{m'soft}) = 1 \quad 1/3 \quad 0.29 \quad \cdots \quad 0.268 \)

Existence and Uniqueness

- \(h = \lambda Aa \)
- \(a = \mu A^T h \)
- \(h = \lambda \mu A^T A \)

Under reasonable assumptions about \(A \), the dual iterative algorithm converges to vectors \(h^* \) and \(a^* \) such that:
- \(h^* \) is the principal eigenvector of the matrix \(AA^T \)
- \(a^* \) is the principal eigenvector of the matrix \(A^TA \)

Bipartite cores

Most densely-connected core (primary core)

Less densely-connected core (secondary core)
Secondary cores

- A single topic can have many bipartite cores
 - corresponding to different meanings, or points of view
 - abortion: pro-choice, pro-life
 - evolution: darwinian, intelligent design
 - jaguar: auto, Mac, NFL team, *panthera onca*
- How to find such secondary cores?

Non-primary eigenvectors

- \(A A^T \) and \(A^T A \) have the same set of eigenvalues
 - An eigenpair is the pair of eigenvectors with the same eigenvalue
 - The primary eigenpair (largest eigenvalue) is what we get from the iterative algorithm
- Non-primary eigenpairs correspond to other bipartite cores
 - The eigenvalue is a measure of the density of links in the core

Finding secondary cores

- Once we find the primary core, we can remove its links from the graph
- Repeat HITS algorithm on residual graph to find the next bipartite core
- Technically, not exactly equivalent to non-primary eigenpair model

Creating the graph for HITS

- We need a well-connected graph of pages for HITS to work well

Page Rank and HITS

- Page Rank and HITS are two solutions to the same problem
 - What is the value of an inlink from \(S \) to \(D \)?
 - In the page rank model, the value of the link depends on the links into \(S \)
 - In the HITS model, it depends on the value of the other links out of \(S \)
- The destinies of Page Rank and HITS post-1998 were very different
 - Why?

Web Spam

- Search has become the default gateway to the web
- Very high premium to appear on the first page of search results
 - e.g., e-commerce sites
 - advertising-driven sites
What is web spam?

- **Spamming** = any deliberate action solely in order to boost a web page’s position in search engine results, incommensurate with page’s real value
- **Spam** = web pages that are the result of spamming
- This is a very broad definition
 - SEO industry might disagree!
 - SEO = search engine optimization
- Approximately 10-15% of web pages are spam

Web Spam Taxonomy

- We follow the treatment by Gyongyi and Garcia-Molina [2004]
- **Boosting techniques**
 - Techniques for achieving high relevance/importance for a web page
- **Hiding techniques**
 - Techniques to hide the use of boosting
 - From humans and web crawlers

Boosting techniques

- **Term spamming**
 - Manipulating the text of web pages in order to appear relevant to queries
- **Link spamming**
 - Creating link structures that boost page rank or hubs and authorities scores

Term Spamming

- **Repetition**
 - of one or a few specific terms e.g., free, cheap, viagra
 - Goal is to subvert TF.IDF ranking schemes
- **Dumping**
 - of a large number of unrelated terms
 - e.g., copy entire dictionaries
- **Weaving**
 - Copy legitimate pages and insert spam terms at random positions
- **Phrase Stitching**
 - Glue together sentences and phrases from different sources

Term spam targets

- Body of web page
- Title
- URL
- HTML meta tags
- Anchor text

Link spam

- Three kinds of web pages from a spammer’s point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., web log comments pages
 - spammer can post links to his pages
 - Own pages
 - Completely controlled by spammer
 - May span multiple domain names
Link Farms

- **Spammer’s goal**
 - Maximize the page rank of target page \(t \)
- **Technique**
 - Get as many links from accessible pages as possible to target page \(t \)
 - Construct “link farm” to get page rank multiplier effect

Inaccessible

Inaccessible

Accessible

Own

1

2

M

One of the most common and effective organizations for a link farm

Analysis

Suppose rank contributed by accessible pages = \(x \)
Let page rank of target page = \(y \)
Rank of each “farm” page = \(\beta y / M + (1-\beta) / N \)
\[y = x + \beta \frac{y}{M} + (1-\beta) \frac{1}{N} \]
\[y = x + \beta^2 y + \beta (1-\beta) \frac{M}{N} + \frac{(1-\beta)}{N} \] Very small; ignore
\[y = x/(1-\beta^2) + cM/N \] where \(c = \beta/(1+\beta) \)

Hiding techniques

- **Content hiding**
 - Use same color for text and page background
- **Cloaking**
 - Return different page to crawlers and browsers
- **Redirection**
 - Alternative to cloaking
 - Redirects are followed by browsers but not crawlers

Detecting Spam

- **Term spamming**
 - Analyze text using statistical methods e.g., Naïve Bayes classifiers
 - Similar to email spam filtering
 - Also useful: detecting approximate duplicate pages
- **Link spamming**
 - Open research area
 - One approach: TrustRank
TrustRank idea

- Basic principle: approximate isolation
 - It is rare for a “good” page to point to a “bad” (spam) page
- Sample a set of “seed pages” from the web
- Have an oracle (human) identify the good pages and the spam pages in the seed set
 - Expensive task, so must make seed set as small as possible

Trust Propagation

- Call the subset of seed pages that are identified as “good” the “trusted pages”
- Set trust of each trusted page to 1
- Propagate trust through links
 - Each page gets a trust value between 0 and 1
 - Use a threshold value and mark all pages below the trust threshold as spam

Example

```
1 2 3
4 5 6
```

Good and bad pages

Rules for trust propagation

- Trust attenuation
 - The degree of trust conferred by a trusted page decreases with distance
- Trust splitting
 - The larger the number of outlinks from a page, the less scrutiny the page author gives each outlink
 - Trust is “split” across outlinks

Simple model

- Suppose trust of page p is \(t(p) \)
 - Set of outlinks \(O(p) \)
 - For each \(q \in O(p) \), p confers the trust \(\beta t(p) |O(p)| \) for \(0 < \beta < 1 \)
- Trust is additive
 - Trust of p is the sum of the trust conferred on p by all its inlinked pages
- Note similarity to Topic-Specific Page Rank
 - Within a scaling factor, trust rank = biased page rank with trusted pages as teleport set

Picking the seed set

- Two conflicting considerations
 - Human has to inspect each seed page, so seed set must be as small as possible
 - Must ensure every “good page” gets adequate trust rank, so need make all good pages reachable from seed set by short paths
Approaches to picking seed set

- Suppose we want to pick a seed set of k pages
- PageRank
 - Pick the top k pages by page rank
 - Assume high page rank pages are close to other highly ranked pages
 - We care more about high page rank “good” pages

Inverse page rank

- Pick the pages with the maximum number of outlinks
- Can make it recursive
 - Pick pages that link to pages with many outlinks
- Formalize as “inverse page rank”
 - Construct graph G' by reversing each edge in web graph G
 - Page Rank in G' is inverse page rank in G
- Pick top k pages by inverse page rank

Spam Mass

- In the TrustRank model, we start with good pages and propagate trust
- Complementary view: what fraction of a page’s page rank comes from “spam” pages?
- In practice, we don’t know all the spam pages, so we need to estimate

Spam mass estimation

- $r(p) = \text{page rank of page } p$
- $r^+(p) = \text{page rank of } p \text{ with teleport into “good” pages only}$
- $r^-(p) = r(p) - r^+(p)$
- Spam mass of $p = r^-(p)/r(p)$

Good pages

- For spam mass, we need a large set of “good” pages
 - Need not be as careful about quality of individual pages as with TrustRank
- One reasonable approach
 - .edu sites
 - .gov sites
 - .mil sites

Experimental results

From Gyongyi et al, 2006
Another approach

- Backflow from known spam pages
 - Course project from last year’s edition of this course
- Still an open area of research...