CS345 Data Mining

Recommendation Systems
Netflix Challenge
Course Projects

From scarcity to abundance
- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters, ...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller

The Long Tail

Recommendation Types
- Editorial
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model
- $C =$ set of Customers
- $S =$ set of Items
- Utility function $u: C \times S \rightarrow R$
 - $R =$ set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in $[0,1]$
Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>King Kong</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Nacho Libre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

Key Problems

- Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

- Explicit
 - Ask people to rate items
 - Doesn't work well in practice – people can't be bothered
- Implicit
 - Learn ratings from user actions
 - e.g., purchase implies high rating
 - What about low ratings?

Extrapolating Utilities

- Key problem: matrix U is sparse
 - most people have not rated most items
- Three approaches
 - Content-based
 - Collaborative
 - Hybrid

Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - recommend other sites with "similar" content

Plan of action

- Item profiles
 - Red Circles
 - Triangles
- User profile
 - match
 - build
- likes
- recommend
Item Profiles

- For each item, create an item profile
- Profile is a set of features
 - movies: author, title, actor, director, ...
 - text: set of "important" words in document
- How to pick important words?
 - Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

\[f_{ij} = \text{frequency of term } t_i \text{ in document } d_j \]

\[TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \]

\[n_i = \text{number of docs that mention term } i \]
\[N = \text{total number of docs} \]

\[IDF_i = \log \frac{N}{n_i} \]

TF.IDF score \(w_{ij} = TF_{ij} \times IDF_i \)
Doc profile = set of words with highest TF.IDF scores, together with their scores

User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...
- Prediction heuristic
 - Given user profile \(c \) and item profile \(s \),
 estimate \(u(c,s) = \cos(c,s) = c.s/(||c|| ||s||) \)
 - Need efficient method to find items with high utility: later

Model-based approaches

- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - e.g., Bayesian, regression, SVM
- Apply classifier to each item to find recommendation candidates
- Problem: scalability
 - Won't investigate further in this class

Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?

Collaborative Filtering

- Consider user \(c \)
- Find set \(D \) of other users whose ratings are "similar" to \(c \)'s ratings
- Estimate user's ratings based on ratings of users in \(D \)
Similar users
- Let \(r_x \) be the vector of user \(x \)'s ratings
- Cosine similarity measure
 \[\text{sim}(x,y) = \cos(r_x, r_y) \]
- Pearson correlation coefficient
 \[S_{xy} = \text{items rated by both users } x \text{ and } y \]
 \[\text{sim}(x,y) = \frac{\sum_{s \in C_{xy}} (r_{xs} - \bar{r}_x)(r_{ys} - \bar{r}_y)}{\sqrt{\sum_{s \in C_{xy}} (r_{xs} - \bar{r}_x)^2 (r_{ys} - \bar{r}_y)^2}} \]

Rating predictions
- Let \(D \) be the set of \(k \) users most similar to \(c \) who have rated item \(s \)
- Possibilities for prediction function (item \(s \)):
 \[r_{cs} = \frac{1}{k} \sum_{d \in D} r_{ds} \]
 \[r_{cs} = \frac{\sum_{d \in D} \text{sim}(c,d) \times r_{ds}}{\sum_{d \in D} \text{sim}(c,d)} \]
- Other options?
- Many tricks possible...

Complexity
- Expensive step is finding \(k \) most similar customers
 \(O(|U|) \)
- Too expensive to do at runtime
 - Need to pre-compute
- Naive precomputation takes time \(O(N|U|) \)
 - Simple trick gives some speedup
- Can use clustering, partitioning as alternatives, but quality degrades

Pros and cons of collaborative filtering
- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?

Item-Item Collaborative Filtering
- So far: User-user collaborative filtering
- Another view
 - For item \(s \), find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than user-user

Hybrid Methods
- Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem
- Filterbots
Evaluating Predictions
- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Measures
- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions

Finding similar vectors
- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high cosine-similarity
- Compare to min-hashing approach for finding near-neighbors for Jaccard similarity

Similarity-Preserving Hash Functions
- Suppose we can create a family \mathcal{F} of hash functions, such that for any $h \in \mathcal{F}$, given vectors x and y:
 - $Pr[h(x) = h(y)] = \operatorname{sim}(x, y) = \cos(x, y)$
 - We could then use $E_{h\in\mathcal{F}}[h(x) = h(y)]$ as an estimate of $\operatorname{sim}(x, y)$
 - Can get close to $E_{h\in\mathcal{F}}[h(x) = h(y)]$ by using several hash functions

Similarity metric
- Let θ be the angle between vectors x and y
- $\cos(\theta) = \frac{x \cdot y}{||x|| ||y||}$
- It turns out to be convenient to use $\operatorname{sim}(x, y) = 1 - \theta/\pi$
 - instead of $\operatorname{sim}(x, y) = \cos(\theta)$
 - Can compute $\cos(\theta)$ once we estimate θ

Random hyperplanes
- Vectors u, v subtend angle θ
- Random hyperplane through origin (normal r)
 - $h_r(u) = 1$ if $r \cdot u \geq 0$
 - 0 if $r \cdot u < 0$
Random hyperplanes

\[h_r(u) = 1 \text{ if } r.u \geq 0 \]
\[0 \text{ if } r.u < 0 \]

\[Pr[h_r(u) = h_r(v)] = 1 - \theta/\pi \]

Vector sketch

- For vector \(u \), we can construct a \(k \)-bit sketch by concatenating the values of \(k \) different hash functions
 - \(\text{sketch}(u) = [h_1(u) \ h_2(u) \ldots h_k(u)] \)
- Can estimate \(\theta \) to arbitrary degree of accuracy by comparing sketches of increasing lengths
- Big advantage: each hash is a single bit
 - So can represent 256 hashes using 32 bytes

Picking hyperplanes

- Picking a random hyperplane in \(M \)-dimensions requires \(M \) random numbers
- In practice, can randomly pick each dimension to be +1 or -1
 - So we need only \(M \) random bits

Finding all similar pairs

- Compute sketches for each vector
 - Easy if we can fit random bits for each dimension in memory
 - For \(k \)-bit sketch, we need \(M k \) bits of memory
 - Might need to use ideas similar to page rank computation (e.g., block algorithm)
- Can use DCM or LSH to find all similar pairs

Project Ideas...

- Compare algos for near-duplicates
- Netflix
- Extracting relations, list-building
- Discovering synonyms, spelling variants
- Spam detection
- Identifying website boundaries
- and many, many others...