Random walk interpretation

- At time 0, pick a page on the web uniformly at random to start the walk
- Suppose at time t, we are at page j
- At time t+1
 - With probability β, pick a page uniformly at random from O(j) and walk to it
 - With probability $1-\beta$, pick a page on the web uniformly at random and teleport into it
- Page rank of page p = \text{"steady state"} probability that at any given time, the random walker is at page p

Many random walkers

- Alternative, equivalent model
- Imagine a large number M of independent, identical random walkers ($M \gg N$)
- At any point in time, let $M(p)$ be the number of random walkers at page p
- The page rank of p is the fraction of random walkers that are expected to be at page p i.e., $E[M(p)]/M$

Speeding up convergence

- Exploit locality of links
 - Pages tend to link most often to other pages within the same host or domain
- Partition pages into clusters
 - host, domain, ...
- Compute local page rank for each cluster
 - can be done in parallel
- Compute page rank on graph of clusters
- Initial rank of a page is the product of its local rank and the rank of its cluster
 - Use as starting vector for normal page rank computation
 - 2-3x speedup

In Pictures

- Local ranks
- Intercluster weights
- Ranks of clusters
- Initial eigenvector
Other tricks
- Adaptive methods
- Extrapolation
- Typically, small speedups
 - ~20-30%

Problems with page rank
- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Ambiguous queries e.g., jaguar
 - This lecture
- Uses a single measure of importance
 - Other models e.g., hubs-and-authorities
 - Next lecture
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Next lecture

Topic-Specific Page Rank
- Instead of generic popularity, can we measure popularity within a topic?
 - E.g., computer science, health
- Bias the random walk
 - When the random walker teleports, he picks a page from a set \(S \) of web pages
 - \(S \) contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic (www.dmoz.org)
- For each teleport set \(S \), we get a different rank vector \(r_S \)

Matrix formulation
- \(A_{ij} = \beta M_{ij} + (1-\beta)/|S| \) if \(i \in S \)
- \(A_{ij} = \beta M_{ij} \) otherwise
- Show that \(A \) is stochastic
- We have weighted all pages in the teleport set \(S \) equally
 - Could also assign different weights to them

Example
- Suppose \(S = \{1\} \), \(\beta = 0.8 \)

<table>
<thead>
<tr>
<th>Node</th>
<th>Iteration</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1.0</td>
<td>0.2</td>
<td>0.52</td>
<td>0.294</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>0.4</td>
<td>0.08</td>
<td>0.118</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>0.4</td>
<td>0.08</td>
<td>0.327</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.32</td>
<td>0.261</td>
</tr>
</tbody>
</table>

Note how we initialize the page rank vector differently from the unbiased page rank case.

How well does TSPR work?
- Experimental results [Haveliwala 2000]
- Picked 16 topics
 - Teleport sets determined using DMOZ
 - E.g., arts, business, sports,...
- “Blind study” using volunteers
 - 35 test queries
 - Results ranked using Page Rank and TSPR of most closely related topic
 - E.g., bicycling using Sports ranking
 - In most cases volunteers preferred TSPR ranking
Which topic ranking to use?
- User can pick from a menu
- Use Bayesian classification schemes to classify query into a topic
- Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "jordan"
- User context e.g., user’s My Yahoo settings, bookmarks, ...

Evaporation model
- Alternative, equivalent interpretation of page rank
 - Instead of random teleport
- Assume random surfers “evaporate” from each page at rate \((1-\beta)\) per time step
 - Those surfers vanish from the system
- New random surfers enter the system at the teleport set pages
 - Total of \((1-\beta)M\) at each step
- System reaches stable state
 - Evaporation at each time step = number of new surfers at each time step

Evaporation-based computation

<table>
<thead>
<tr>
<th>Node</th>
<th>Iteration</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.264</td>
<td>0.294</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.08</td>
<td>0.08</td>
<td>0.118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.08</td>
<td>0.08</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.08</td>
<td>0.064</td>
<td>0.261</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note how we initialize the page rank vector differently in this model.

Scaling with topics and users
- Suppose we wanted to cover 1000’s of topics
 - Need to compute 1000’s of different rank vectors
 - Need to store and retrieve them efficiently at query time
 - For good performance vectors must fit in memory
- Even harder when we consider personalization
 - Each user has their own teleport vector
 - One page rank vector per user!

Tricks
- Determine a set of basis vectors so that any rank vector is a linear combination of basis vectors
- Encode basis vectors compactly as partial vectors and a hubs skeleton
- At runtime perform a small amount of computation to derive desired rank vector elements

Linearity Theorem
- Let \(S\) be a teleport set and \(r_S\) be the corresponding rank vector
- For page \(i \in S\), let \(r_i\) be the rank vector corresponding to the teleport set \{i\}
 - \(r_i\) is a vector with \(N\) entries
- \(r_S = (1/|S|) \sum_{i \in S} r_i\)
- Why is linearity important?
 - Instead of \(2^N\) biased page rank vectors we need to store \(N\) vectors
Let us compute \(r_{(1,2)} \) for \(\beta = 0.8 \)

<table>
<thead>
<tr>
<th>Node</th>
<th>Iteration</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.164</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.14</td>
<td>0.172</td>
<td>0.323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
<td>0.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.04</td>
<td>0.056</td>
<td>0.130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.04</td>
<td>0.056</td>
<td>0.130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intuition behind proof

- Let’s use the many-random-walkers model with \(M \) random walkers
- Let us color a random walker with color \(i \) if his most recent teleport was to page \(i \)
- At time \(t \), we expect \(M/|S| \) of the random walkers to be colored \(i \)
- At any page \(j \), we would therefore expect to find \((M/|S|)r_i(j)\) random walkers colored \(i \)
- So total number of random walkers at page \(j \) = \((M/|S|)\sum_{i \in [S]} r_i(j)\)

Basis Vectors

- Suppose \(T = \) union of all teleport sets of interest
 - Call it the teleport universe
- We can compute the rank vector corresponding to any teleport set \(S \subseteq T \) as a linear combination of the vectors \(r_i \), for \(i \in T \)
- We call these vectors the **basis vectors** for \(T \)
- We can also compute rank vectors where we assign different weights to teleport pages

Decomposition

- Still too many basis vectors
 - E.g., \(|T|\) might be in the thousands
 - \(N|T| \) values
- Decompose basis vectors into partial vectors and hubs skeleton

Tours

- Consider a random walker with teleport set \(\{i\} \)
 - Suppose walker is currently at node \(j \)
- The random walker’s **tour** is the sequence of nodes on the walker’s path since the last teleport
 - E.g., \(i, a, b, c, a, j \)
 - Nodes can repeat in tours – why?
- **Interior nodes** of the tour = \(\{a, b, c\} \)
- **Start node** = \(\{i\} \), **end node** = \(\{j\} \)
 - A page can be both start node and interior node, etc
Tour splitting

- Consider random walker with teleport set \(\{i\} \), biased rank vector \(r_i \).
- \(r_i(j) \) = probability random walker reaches \(j \) by following some tour with start node \(i \) and end node \(j \).
- Consider node \(k \):
 - Can have \(k = j \) but not \(k = i \).

\[
\text{Example}
\]

Let us compute \(r_1^{-2} \) for \(\beta = 0.8 \).

\[
\begin{array}{c|c|c|c|c|c}
\text{Node} & 0 & 1 & 2 & \text{stable} & \text{Note that many entries are zeros} \\
\hline
1 & 0.2 & 0.2 & 0.264 & 0.294 & \\
2 & 0.2 & 0.2 & 0.264 & 0.294 & \\
3 & 0.08 & 0.08 & 0.118 & \\
4 & 0.08 & 0.08 & 0.118 & \\
5 & 0.08 & 0.08 & 0.118 & \\
\end{array}
\]

Rank composition

- Notice:
 - \(r_1^2(3) = r_1(3) - r_1^{-2}(3) \)
 - \(0.163 - 0.118 = 0.045 \)
 - \(r_1(2) \cdot r_2^{-2}(3) = 0.239 \cdot 0.038 \)
 - \(= 0.009 \)
 - \(= 0.2 \cdot 0.045 \)
 - \(= (1-\beta) \cdot r_1^2(3) \)
 - \(r_1^2(3) = r_1(2) \cdot r_2^{-2}(3) / (1-\beta) \)
 - Let \(r_i(k) \) be the probability that random surfer reaches page \(k \) through a tour that includes page \(k \) as an interior or end node.
 - Let \(r_i^{-k}(j) \) be the probability that random surfer reaches page \(j \) through a tour that does not include \(k \) as an interior or end node.
 - \(r_i(j) = r_i^k(j) + r_i^{-k}(j) \)

\[
\text{Example}
\]

Let us compute \(r_2^{-2} \) for \(\beta = 0.8 \).

\[
\begin{array}{c|c|c|c|c|c}
\text{Node} & 0 & 1 & 2 & \text{stable} & \text{Note that many entries are zeros} \\
\hline
1 & 0.064 & 0.094 & \\
2 & 0.2 & 0.2 & 0.2 & \\
3 & 0.08 & 0.08 & 0.08 & \\
4 & 0.08 & 0.08 & 0.08 & \\
5 & 0.08 & 0.08 & 0.08 & \\
\end{array}
\]
Hubs

- Instead of a single page \(k \), we can use a set \(H \) of "hub" pages
 - Define \(r_i^{\sim H}(j) \) as set of tours from \(i \) to \(j \) that do not include any node from \(H \) as interior nodes or end node

\[r_i(j) = r_i^{\sim H}(j) + r_i^H(j) \]

\[r_i^H(j) = \sum_{h \in H} w_i(h)r_i^{\sim H}(j)/(1-\beta) \]

\[w_i(h) = r_i(h) \text{ if } i \neq h \]

\[w_i(h) = r_i(h) - (1-\beta) \text{ if } i = h \]

Rank composition with hubs

Hubs example

- Start with \(H = T \), the teleport universe
- Add nodes to \(H \) such that given any pair of nodes \(i \) and \(j \), there is a high probability that \(H \) separates \(i \) and \(j \)
 - i.e., \(r_i^{\sim H}(j) \) is zero for most \(i,j \) pairs
- Observation: high page rank nodes are good separators and hence good hub nodes

Hubs rule example

Hubs skeleton

- To compute \(r_i(j) \) we need:
 - \(r_i^{\sim H}(j) \) for all \(h \in H \)
 - called the partial vector
 - Sparse
 - \(r_i(h) \) for all \(h \in H \)
 - called the hubs skeleton
Storage reduction

- Say \(|T| = 1000, |H|=2000, N = 1\) billion
- Store all basis vectors
 - 1000\(imes\)1 billion = 1 trillion nonzero values
- Use partial vectors and hubs skeleton
 - Suppose each partial vector has \(N/200\) nonzero entries
 - Partial vectors = 2000\(imes\)N/200 = 10 billion nonzero values
 - Hubs skeleton = 2000\(imes\)2000 = 4 million values
 - Total = approx 10 billion nonzero values
- Approximately 100x compression