Comparison of MapReduce with Bulk-Synchronous Systems

Review of Bulk-Synchronous Communication Costs
Problem of Semijoin

Jeffrey D. Ullman
Stanford University
The Graph Model

- Views all computation as a recursion on some graph.
- Graph nodes send messages to one another.
 - Messages bunched into supersteps, where each graph node processes all data received.
 - Sending individual messages would result in far too much overhead.
- Checkpoint all compute nodes after some fixed number of supersteps.
- On failure, rolls all tasks back to previous checkpoint.
I found a path from node M to you of length L

I found a path from node M to you of length L+3

I found a path from node M to you of length L+5

I found a path from node M to you of length L+6

Is this the shortest path from M I know about? If so ...

Table of shortest paths to N
Some Systems

- **Pregel**: the original, from Google.
- **Giraph**: open-source (Apache) Pregel.
 - Built on Hadoop.
- **GraphX**: a similar front end for Spark.
- **GraphLab**: similar system that deals more effectively with nodes of high degree.
 - Will split the work for such a graph node among several compute nodes.
The Tyranny of Communication

- All these systems move data between tasks.
 - It is rare that (say) a Map task feeds a Reduce task at the same compute node.
 - And even so, you probably need to do disk I/O.
- Gigabit communication seems like a lot, but it is often the bottleneck.
Two Approaches

- There is a subtle difference regarding how one avoids moving big data in MapReduce and Bulk-Synchronous systems.

 Example: join of R(A,B) and S(B,C), where:
 - A is a really large field – a video.
 - B is the video ID.
 - S(B,C) is a small number of streaming requests, where C is the destination.

- If we join R and S, most R-tuples move to the reducer for the B-value needlessly.
The Semijoin

- Might want to *semijoin* first: find all the values of B in S, and filter those (a,b) in R that are *dangling* (will not join with anything in S).
- Then Map need not move dangling tuples to any reducer.
- But the obvious approach to semijoin also requires that every R-tuple be sent by its mapper to some reducer.
Semijoin – (2)

To semijoin $R(A,B)$ with $S(B,C)$, use B as the key for both relations.

- From $R(a,b)$ create key-value pair $(b, (R,a))$.
- From $S(b,c)$ create key-value pair (b,S).
 - Almost like join, but you don’t need the C-value.
Recent implementations of MapReduce allow distribution of “small” amounts of data to every compute node.

Project S onto B to form set S’ and distribute S’ everywhere.

Then, run the standard MapReduce join, but have the Map function check that \((a,b)\) has \(b\) in S’ before emitting it as a key-value pair.

- If most tuples in R are dangling, it saves substantial communication.
Semijoin in the Mappers

Table with all B-values from S

Is b there?

R(a,b) → Mapper
Semijoin in the Mappers – “Yes”

Table with all B-values from S

Yes

R(a, b) → Mapper → (b, (R, a))
Semijoin in the Mappers – “No”

Table with all B-values from S

No

R(a,b) Mapper (nothing)
Create a graph node for every tuple, and also for every B-value.

All tuples (b,c) from S send a message to the node for B-value b.

All tuples (a,b) from R send a message with their node name to the node for B-value b.

The node for b sends messages to all (a,b) in R, provided it has received at least one message from a tuple in S.

Now, we can mimic the MapReduce join without considering dangling tuples.
Bulk-Synchronous Semijoin
You are needed.
Bulk-Synchronous Join Phase

Node for \(R(a_1, b_1) \)

Node for \(R(a_2, b_2) \)

Node for \((b_1, (R, a_1)) \)

Node for \((b_1, (S, c_1)) \)

Node for \(S(b_1, c_1) \)

Node for \(S(b_1, c_2) \)

Node for \((b_1, (S, c_2)) \)

Node for \(b_1 \)

OK