Dimensionality Reduction

UV Decomposition
Singular-Value Decomposition
CUR Decomposition

Jeffrey D. Ullman
Stanford University
Often, our data can be represented by an \(m \)-by-\(n \) matrix.

And this matrix can be closely approximated by the product of two matrices that share a small common dimension \(r \).
Why Is That Even Possible?

- There are hidden, or *latent* factors that – to a close approximation – explain why the values are as they appear in the matrix.
- Two kinds of data may exhibit this behavior:
 1. Matrices representing a many-many-relationship.
 2. Matrices that are really a relation (as in a relational database).
Our data can be a many-many relationship in the form of a matrix.

- **Example**: people vs. movies; matrix entries are the ratings given to the movies by the people.
- **Example**: students vs. courses; entries are the grades.

![Matrix Diagram]

- Row for Joe
- Column for Star Wars
- Joe really liked Star Wars
- Rating: 5
Often, the relationship can be explained closely by latent factors.

- **Example:** genre of movies or books.
 - I.e., Joe liked Star Wars because Joe likes science-fiction, and Star Wars is a science-fiction movie.

- **Example:** good at math?
Another closely related form of data is a collection of rows (tuples), each representing one entity.

Columns represent attributes of these entities.

Example: Stars can be represented by their mass, brightness in various color bands, diameter, and several other properties.

But it turns out that there are only two independent variables (latent factors): mass and age.
Example: Stars

<table>
<thead>
<tr>
<th>Star</th>
<th>Mass</th>
<th>Luminosity</th>
<th>Color</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>1.0</td>
<td>1.0</td>
<td>Yellow</td>
<td>4.6B</td>
</tr>
<tr>
<td>Alpha Centauri</td>
<td>1.1</td>
<td>1.5</td>
<td>Yellow</td>
<td>5.8B</td>
</tr>
<tr>
<td>Sirius A</td>
<td>2.0</td>
<td>25</td>
<td>White</td>
<td>0.25B</td>
</tr>
</tbody>
</table>

The matrix
D-Dimensional Data Lying Close to a d-Dimensional Subspace

\[D = 2 \]
\[d = 1 \]

\[D = 3 \]
\[d = 2 \]
The axes of the subspace can be chosen by:

- The first dimension is the direction in which the points exhibit the greatest variance.
- The second dimension is the direction, orthogonal to the first, in which points show the greatest variance.
- And so on..., until you have “enough” dimensions.
The simplest form of matrix decomposition is to find a pair of matrixes, the first (U) with few columns and the second (V) with few rows, whose product is close to the given matrix M.
This decomposition works well if \(r \) is the number of “hidden factors” that explain the matrix \(M \).

Example: \(m_{ij} \) is the rating person \(i \) gives to movie \(j \); \(u_{ik} \) measures how much person \(i \) likes genre \(k \); \(v_{kj} \) measures the extent to which movie \(j \) belongs to genre \(k \).
Common way to evaluate how well $P = UV$ approximates M is by $RMSE$ (root-mean-square error).

- Average $(m_{ij} - p_{ij})^2$ over all i and j.
- Take the square root.
 - Square-rooting changes the scale of error, but doesn’t really effect which choice of U and V is best.
Example: RMSE

\[
\begin{align*}
\text{M} & \quad \text{U} & \quad \text{V} & \quad \text{P} \\
1 & 2 & 1 & 2 \\
3 & 4 & 2 & 4 \\
\text{RMSE} & = \sqrt{(0+0+1+0)/4} = \sqrt{0.25} = 0.5 \\
\text{M} & \quad \text{U} & \quad \text{V} & \quad \text{P} \\
1 & 2 & 1 & 2 \\
3 & 4 & 3 & 6 \\
\text{RMSE} & = \sqrt{(0+0+0+4)/4} = \sqrt{1.0} = 1.0
\end{align*}
\]
Pick r, the number of latent factors.

Think of U and V as composed of variables, u_{ik} and v_{kj}.

Express the RMSE as (the square root of)

$$E = \sum_{ij} (m_{ij} - \sum_k u_{ik} v_{kj})^2.$$

Gradient descent: repeatedly find the derivative of E with respect to each variable and move each a small amount in the direction that lowers the value of E.

- Many options – more later in the course.
Expressions like this usually have many minima.
Seeking the nearest minimum from a starting point can trap you in a local minimum, from which no small improvement is possible.

Global minimum

But you can get trapped here
Avoiding Local Minima

- Use many different starting points, chosen at random, in the hope that one will be close enough to the global minimum.

- *Simulated annealing*: occasionally try a leap to someplace further away in the hope of getting out of the local trap.
 - Intuition: the global minimum might have many nearby local minima.
 - As Mt. Everest has most of the world’s tallest mountains in its vicinity.
Application: Recommendations

- UV decomposition can be used even when the entire matrix M is not known.
- **Example**: recommendation systems, where M represents known ratings of movies (e.g.) by people.
- Jure will cover recommendation systems next week.
Singular-Value Decomposition

Rank of a Matrix
Orthonormal Bases
Eigenvalues/Eigenvectors
Computing the Decomposition
Eliminating Dimensions
Why SVD?

- Gives a decomposition of any matrix into a product of three matrices.
- There are strong constraints on the form of each of these matrices.
 - Results in a decomposition that is essentially unique.
- From this decomposition, you can choose any number r of intermediate concepts (latent factors) in a way that minimizes the RMSE error given that value of r.
The **rank** of a matrix is the maximum number of rows (or equivalently columns) that are linearly independent.

- I.e., no nontrivial sum is the all-zero vector.

Example: No two rows dependent.

- One would have to be a multiple of the other.

But any 3 rows are dependent.

- **Example:** First + third – twice the second = [0,0,0].

Similarly, the 3 columns are dependent.

Therefore, rank = 2.
If a matrix has rank r, then it can be decomposed exactly into matrices whose shared dimension is r.

Example, in Sect. 11.3 of MMDS, of a 7-by-5 matrix with rank 2 and an exact decomposition into a 7-by-2 and a 2-by-5 matrix.
Vectors are *orthogonal* if their dot product is 0.

Example: \([1,2,3].[1,-2,1] = 0\), so these two vectors are orthogonal.

A *unit vector* is one whose length is 1.

- *Length* = square root of sum of squares of components.
 - No need to take square root if we are looking for length = 1.

Example: \([0.8, -0.1, 0.5, -0.3, 0.1]\) is a unit vector, since \(0.64 + 0.01 + 0.25 + 0.09 + 0.01 = 1\).

An *orthonormal basis* is a set of unit vectors any two of which are orthogonal.
Example: Columns Are Orthonormal

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3/\sqrt{116}</td>
<td>1/2</td>
<td>7/\sqrt{116}</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>3/\sqrt{116}</td>
<td>-1/2</td>
<td>7/\sqrt{116}</td>
<td>-1/2</td>
<td></td>
</tr>
<tr>
<td>7/\sqrt{116}</td>
<td>1/2</td>
<td>-3/\sqrt{116}</td>
<td>-1/2</td>
<td></td>
</tr>
<tr>
<td>7/\sqrt{116}</td>
<td>-1/2</td>
<td>-3/\sqrt{116}</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>
Form of SVD

Special conditions:
U and V are column-orthonormal (so V^T has orthonormal rows)
Σ is a diagonal matrix
The values of Σ along the diagonal are called the *singular values*.

It is always possible to decompose M *exactly*, if r is the rank of M.

But usually, we want to make r much smaller, and we do so by setting to 0 the smallest singular values.

- Which has the effect of making the corresponding columns of U and V useless, so they may as well not be there.
Linkage Among Components of U, V, Σ

$$A \approx U\Sigma V^T = \sum_i \sigma_i u_i \circ v_i^T$$
Each Singular Value Affects One Column of U and V

\[A \approx U \Sigma V^T = \sum_i \sigma_i u_i \circ v_i^T \]

If we set \(\sigma_2 = 0 \), then the green columns may as well not exist.
The following is Example 11.9 from MMDS.

It modifies the simpler Example 11.8, where a rank-2 matrix can be decomposed exactly into a 7-by-2 U and a 5-by-2 V.
Example: Users-to-Movies

\[A = U \Sigma V^T \] - example: Users to Movies

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Alien</th>
<th>Serenity</th>
<th>Casablanca</th>
<th>Amelie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09 \\
\end{bmatrix}
\]
Example: Users-to-Movies

\[A = U \Sigma V^T \] - example: Users to Movies

<table>
<thead>
<tr>
<th>SciFi</th>
<th>Serenity</th>
<th>Casablanca</th>
<th>Amelie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Alien</td>
<td>SciFi-concept</td>
<td>Romance-concept</td>
</tr>
<tr>
<td>1 1 1 0 0</td>
<td>0.13 0.02 -0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 3 0 0</td>
<td>0.41 0.07 -0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 4 4 0 0</td>
<td>0.55 0.09 -0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 5 5 0 0</td>
<td>0.68 0.11 -0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 0 4 4</td>
<td>0.15 -0.59 0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 5 5</td>
<td>0.07 -0.73 -0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 2 2</td>
<td>0.07 -0.29 0.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{bmatrix}
\]
Example: Users-to-Movies

- **A = U Σ V^T** - example:

 U is “user-to-concept” similarity matrix

<table>
<thead>
<tr>
<th></th>
<th>SciFi-concept</th>
<th>Romance-concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alien</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>0.13</td>
<td>0.41</td>
</tr>
<tr>
<td>4</td>
<td>0.41</td>
<td>0.55</td>
</tr>
<tr>
<td>5</td>
<td>0.55</td>
<td>0.68</td>
</tr>
<tr>
<td>0</td>
<td>0.68</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>0.68</td>
</tr>
<tr>
<td>4</td>
<td>0.68</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>0.55</td>
<td>0.68</td>
</tr>
<tr>
<td>5</td>
<td>0.68</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>0.68</td>
</tr>
<tr>
<td>2</td>
<td>0.68</td>
<td>0.55</td>
</tr>
</tbody>
</table>

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{pmatrix}
\begin{pmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{pmatrix}
\begin{pmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{pmatrix}
\begin{pmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{pmatrix}

SciFi

Romance
Example: Users-to-Movies

- \(A = U \Sigma V^T \) - example:

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{bmatrix}
\times
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\times
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{bmatrix}
\]

"strength" of the SciFi-concept
Example: Users-to-Movies

\[A = U \Sigma V^T \] - example:

V is “movie-to-concept” similarity matrix

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Alien</th>
<th>Serenity</th>
<th>Casablanca</th>
<th>Amelie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

\[\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32 \\
\end{bmatrix} \]

\[\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3 \\
\end{bmatrix} \]

\[\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09 \\
\end{bmatrix} \]
Q: How exactly is dimensionality reduction done?
A: Set smallest singular values to zero

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{pmatrix}
\approx
\begin{pmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{pmatrix}
\times
\begin{pmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 3
\end{pmatrix}
\times
\begin{pmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{pmatrix}
Q: How exactly is dimensionality reduction done?
A: Set smallest singular values to zero
Q: How exactly is dimensionality reduction done?
A: Set smallest singular values to zero.
Q: How exactly is dimensionality reduction done?
A: Set smallest singular values to zero

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
\approx
\begin{bmatrix}
0.92 & 0.95 & 0.92 & 0.01 & 0.01 \\
2.91 & 3.01 & 2.91 & -0.01 & -0.01 \\
3.90 & 4.04 & 3.90 & 0.01 & 0.01 \\
4.82 & 5.00 & 4.82 & 0.03 & 0.03 \\
0.70 & 0.53 & 0.70 & 4.11 & 4.11 \\
-0.69 & 1.34 & -0.69 & 4.78 & 4.78 \\
0.32 & 0.23 & 0.32 & 2.01 & 2.01
\end{bmatrix}
\]
Frobenius Norm and Approximation Error

- The *Frobenius norm* of a matrix is the square root of the sum of the squares of its elements.
- The *error* in an approximation of one matrix by another is the Frobenius norm of the difference.
 - Same as the RMSE.
- **Important fact:** The error in the approximation of a matrix by SVD, subject to picking r singular values, is minimized by zeroing all but the largest r singular values.
So what’s a good value for r?

Let the *energy* of a set of singular values be the sum of their squares.

Pick r so the retained singular values have at least 90% of the total energy.

Example: With singular values 12.4, 9.5, and 1.3, total energy $= 245.7$.

If we drop 1.3, whose square is only 1.7, we are left with energy 244, or over 99% of the total.

But also dropping 9.5 leaves us with too little.
We want to describe how the SVD is actually computed.

Essential is a method for finding the principal eigenvalue (the largest one) and the corresponding eigenvector of a symmetric matrix.

- M is symmetric if \(m_{ij} = m_{ji} \) for all \(i \) and \(j \).

Start with any “guess eigenvector” \(x_0 \).

Construct \(x_{k+1} = Mx_k / ||Mx_k|| \) for \(k = 0, 1,... \)

- \(||...|| \) denotes the Frobenius norm.

Stop when consecutive \(x_k \)’s show little change.
Example: Iterative Eigenvector

\[
M = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \quad x_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
\frac{Mx_0}{\|Mx_0\|} = \frac{3}{5} \sqrt{34} = \frac{0.51}{0.86} = x_1
\]

\[
\frac{Mx_1}{\|Mx_1\|} = \frac{2.23}{3.60} \sqrt{17.93} = \frac{0.53}{0.85} = x_2
\]
Once you have the principal eigenvector \(\mathbf{x} \), you find its eigenvalue \(\lambda \) by \(\lambda = \mathbf{x}^\top \mathbf{M} \mathbf{x} \).

- In proof: \(\mathbf{x} \lambda = \mathbf{M} \mathbf{x} \) for this \(\lambda \), since \(\mathbf{x} \mathbf{x}^\top \mathbf{M} \mathbf{x} = \mathbf{M} \mathbf{x} \).
 - Why? \(\mathbf{x} \) is a unit vector, so \(\mathbf{x} \mathbf{x}^\top = 1 \).
- Example: If we take \(\mathbf{x}^\top = [0.54, 0.87] \), then \(\lambda =

\[
\begin{bmatrix} 0.53 & 0.85 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} = 4.25
\]
Finding More Eigenpairs

- Eliminate the portion of the matrix M that can be generated by the first eigenpair, λ and x.
- $M^* := M - \lambda x x^T$.
- Recursively find the principal eigenpair for M^*, eliminate the effect of that pair, and so on.
- **Example:**

$$M^* = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} - 4.25 \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} \begin{bmatrix} 0.53 & 0.85 \end{bmatrix} = \begin{bmatrix} -0.19 & 0.09 \\ 0.09 & 0.07 \end{bmatrix}$$
How to Compute the SVD

- Start by supposing $M = U\Sigma V^T$.
- $M^T = (U\Sigma V^T)^T = (V^T)^T\Sigma^T U^T = V\Sigma U^T$.
 - Why? (1) Rule for transpose of a product (2) the transpose of the transpose and the transpose of a diagonal matrix are both the identity function.
- $M^TM = V\Sigma U^TU\Sigma V^T = V\Sigma^2 V^T$.
 - Why? U is orthonormal, so U^TU is an identity matrix.
 - Also note that Σ^2 is a diagonal matrix whose i-th element is the square of the i-th element of Σ.
- $M^TMV = V\Sigma^2 V^TV = V\Sigma^2$.
 - Why? V is also orthonormal.
Starting with \(M^T M V = V \Sigma^2 \), note that therefore the i-th column of \(V \) is an eigenvector of \(M^T M \), and its eigenvalue is the i-th element of \(\Sigma^2 \).

Thus, we can find \(V \) and \(\Sigma \) by finding the eigenpairs for \(M^T M \).

- Once we have the eigenvalues in \(\Sigma^2 \), we can find the singular values by taking the square root of these eigenvalues.

Symmetric argument, starting with \(M M^T \), gives us \(U \).
CUR Decomposition

The Sparsity Issue
Picking Random Rows and Columns
Sparsity

- It is common for the matrix M that we wish to decompose to be very sparse.
- But U and V from a UV or SVD decomposition will not be sparse even so.
- CUR decomposition solves this problem by using only (randomly chosen) rows and columns of M.
Form of CUR Decomposition

\[
\begin{align*}
\text{M} & \approx \text{C} \times \text{U} \times \text{R} \\
\text{r chosen as you like.} \\
\text{C} &= \text{randomly chosen columns of M.} \\
\text{R} &= \text{randomly chosen rows of M} \\
\text{U} &\text{ is tricky – more about this.}
\end{align*}
\]
Construction of U

- U is r-by-r, so it is small, and it is OK if it is dense and complex to compute.
- Start with $W =$ intersection of the r columns chosen for C and the r rows chosen for R.
- Compute the SVD of W to be $X\Sigma Y^T$.
- Compute Σ^+, the *Moore-Penrose inverse* of Σ.
 - Definition, next slide.
- $U = Y(\Sigma^+)^2X^T$.

If Σ is a diagonal matrix, its More-Penrose inverse is another diagonal matrix whose i-th entry is:
- $1/\sigma$ if σ is not 0.
- 0 if σ is 0.

Example:

$$\Sigma = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Sigma^+ = \begin{pmatrix} 0.25 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
To decrease the expected error between M and its decomposition, we must pick rows and columns in a nonuniform manner.

- The *importance* of a row or column of M is the square of its Frobenius norm.
 - That is, the sum of the squares of its elements.

- When picking rows and columns, the probabilities must be proportional to importance.

Example: $[3,4,5]$ has importance 50, and $[3,0,1]$ has importance 10, so pick the first 5 times as often as the second.