IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 1

Generating Queries with Cardinality Constraints fo
DBMS Testing

Nicolas Bruno Surajit Chaudhuri Dilys Thomas
Microsoft Research Microsoft Research Stanford Universit
ni col asb@ri crosoft.com surajitc@r crosoft.com dilys@s. stanford.edu

Abstract— Good testing coverage of novel database techniques,even fixing the join order, there is no easy way to control
such as multidimensional histograms or changes in the exetton the sizes of intermediate joins. In this situation, randoml
engine, is a complex problem. In this work, we argue that thisask generating queries over the given database as described abo

requires generating query instances, not randomly, but basd on Id . t v tof ti A th
a given set of constraints. Specifically, obtaining query istances would require an extremely large amount of ime 1o cover the

that satisfy cardinality constraints on their sub-expres#ons is an desired test scenarios. Alternatively, we could use a phinf
important challenge. We show that this problem is inherenty trial-and-error procedure to generate queries with caititin
hard, and develop heuristics that effectively find approxinate constraints.

solutions. An alternative approach that we explore in this work con-
Index Terms— Query Generation, Database Testing, Cardinal- sists of automatically generating queries based on specific
ity Constraints. semantic constraints. In this manner, we separate theqmobl

of obtaining test queries in two stages. First, we declara-

tively specify semantic properties that the resulting épser

should satisfy. Second, we find query instances that satisfy
Valuating the performance and quality of novel databasiee constraints. While the first step depends on the componen
technology, such as a new multidimensional histogram being evaluated and therefore requires manual interveritie

changes in the database execution engine, is not an easy taskond step can be fully automated (though, as we will see,

A common methodology to validate the relative improvementsis is not trivial).

of a new technique is to choose a comprehensive set of dataMotivated by the example above, in this work we focus on

bases and queries and compare the behavior of the dataltheeproblem of automatically generating queries with cardi

system before and after the new component is incorporatedlity constraints on its sub-expressions (Section Il faliyn

While data generation is a relatively well-studied problemefines the problem). We show in Sections Ill and IV that this

(e.g., [1], [2]), query generation has been given littleation. problem is inherently hard, and then in Section V we develop

Consider for instance a newly designed memory managkeuristics that effectively find approximate solutionsndtly

and suppose that we want to evaluate its impact on multi-wase report some preliminary results in Section VI.

hash-join queries (i.e., how the per-operator memory ation

strategy influences the performance of the resulting ei@tut [I. QUERY SPECIFICATION

plans). For a given test database, a reasonable testing plawe next show how to formally state the problem of gener-

consists of trying different query scenarios and measwe# thating queries with cardinality constraints as in Figure) 1\ge

performance when the new memory manager is availabtestrict this work to parametric conjunctive queries antapa

This evaluation would be meaningful only if input queriesneters to range predicates in tWelERE clause. Specifically,

are carefully chosen to exhibit a wide range of patterns amgé consider two types of parametric predicat@sgle-sided

characteristics. To that end, we could use tools like RAGS [Bredicates (e.gp; < R.a or R.a < p3), and double-sided

or QGen [4], which can stochastically generate a large numiggedicates (e.g.,p; < R.a < ps). Additionally, we focus on

of valid SQL statements in a short amount of time. Ideallgonstraints that restrict the cardinality of intermediegsults

our testing strategy should consider join queries with vargf the input query. We now state the query generation problem

ing memory requirements at each intermediate operator. The Query generation problem: Given a database

memory requirement of a hash join is determined by the size D a conjunctive queryQ with parametric range

I. INTRODUCTION

of its inputs (i.e., the sizes of the intermediate resultshia predicates, and cardinality constraftever sub-
query execution plan). Figure 1(a) shows a sample test query expressions of), find parameter values that make
(with parameterg; to p,) that joins a large table?y with the resulting query satisfy the constraints oy&r

table R; to obtain a small intermediate result. When this
small intermediate result is joined witRs, we get a very LAlternatively, we can specify selectivity constraints teoi rewriting

. [. specifications if the sizes of the database tables changeseTapproaches
small final result. While it is not difficult to force a dataleas are equivalent, and we can easily transform one into ther atbpending on

engine to evaluate a given query using specific operators,ti@r application.
0000-0000/00$00.0() 2002 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 2

"_,_1_‘_§‘ize =20

Rome=Ro.ar Sub- expr essi on Card
size=300,_.,., \ size=6000 1. SELECT » FROM R1 VWHERE P1 S Rl.al S D2 5000
X 2. SELECT * FROM R, WHERE Rs.a2 < p3 80000
‘ O pi<Rsay 3. SELECT * FROM R3 WHERE p4 < R3.as 6000
Ri1.a;=Rz.a5 | 4. SELECT » FROM Ri, R WHERE R;.as=Rs.as
size=5000 . size=80000 R AND p1 < Ri.ap < p2 AND Rp.a2 < ps3 300
: ® 5. SELECT * FROM Ri, Rs2, R3 WHERE R;.a4=R>.as
G <R, < i lGR _ AND Rs.ag=Rs.a7 AND p; < Ri.a1 < p2
P1= 1|-31:P2 2|-52:P3 AND Rs.as < p3 AND ps < R3.a3 20
R, Rz
(a) Graphical representation. (b) Formal specification.

Fig. 1. A parametric query with cardinality constraints.

Query Generation < C2rdinaliy values | Evaluation Layer Using the array notation described above, we can see each
ry ©oe o (exact or Database
Algorithm Parametervaiues ™| approximated) lookup to matrix A as representing an invocation to the
evaluation layer. We now analyze the complexity of query

Fig. 2. Evaluation model. generation algorithms by counting the number of lookups to
the corresponding matrices.

_ A_s an example, Figure 1(a) can be formally speC|_f|ed 3 One Par ric Predicate
finding values of parametens, p2, ps3, andp, that satisfy) _ _ _ _
the constraints in Figure 1(b). Parameters cannot be share§onsider a query that contains a single parametric presicat

amongdifferent predicates. However, a parametric predicate SELECT * FROM R WHERE a < p_ (Card =¢)
might occur in multiple sub-expressions (e.z.as < ps In this situation, the matrix associated with the query con-
above is shared in queri€s 4 and5 in Figure 1(b)). straint is a single-dimensional vector with increasingueal

We can then use binary search on this vector and determine
whether some value gf satisfies the cardinality constraint.
Thus, an upper (and lower) bound for this problenoig(n)

For a given assignment of values to the parametric pre@nery evaluations, where is the number of distinct values of
cates in a constraint, we can use the DBMS to evaluate th&ibuteq.

instantiated query and verify whether the constraint isad.

In this section, we first use a simple evaluation model in , \

which the only mechanism to obtain information from th&- TWo Parametric Predicates

given database is through @waluation layer (see Figure 2) We next show that there is an exponential jump in complex-
that returns the cardinality of a constrained sub-expoessiity as we move from one to two parametric predicates ([5], pp.
for a given assignment of parameters (to evaluate multipléd3). Consider a query that contains two parametric présica
cardinality constraints, we need to invoke the evaluatayet and a cardinality constrair@ard = c:

repeatedly, once per sub-expression). The evaluatiom &are SELECT * FROM R WHERE a; < p; AND a; < po

either process queries in the database or use approximatioriTheorem 3.1: [Lower Bound] A lower bound on the num-
to estimate cardinality values, but we consider it as a blabler of query evaluations for a single constraint with two
box. We then study lower and upper bounds for the numbgsrametric predicates; < p; andas < p2 and cardinality

of invocations of such evaluation module by algorithms thatis Q(1,,:,), Wheren,,,;,, is the minimum number of distinct
solve the query generation problem. In the remainder of thialues ina; andas.

section, we address the simpler case of single-sided @tedic Proof. Consider the following family of tables with columns

IIl. SPECIAL COMPLEXITY RESULTS

and a single cardinality constraint. Later, in Section IV we; andas, where the domain of botta; andas is {1,...,n}.
generalize the results to multiple cardinality constimiabhd For a given vectofvs, ..., v,) with 1 < v; < n, we generate
both single- and double-sided predicates. a table that contains; tuples with value(n — i + 1,4) (for

To simplify the presentation, we use the followimgray 1 <1 < n), and(2¢79-""1n — «, ;) tuples with value(i, j),
notation to model the evaluation layer. Consider a querwherel <i<n,1<j<n,i+j>n+1, anda,; is the
constraint withk single-sided predicates < p; A...Aa, < number of tuplegi’, ;') such that’ <1, 5/ < j, and(i,j) #

pr, Wherea; are attributes angh; are parameters. Assume(i’, j’). This is to ensure that the diagonal(ig, vo, . . ., v,,)

that n; is the number of distinct values for attribute. We and the non-diagonal elements are constants independent o
model the evaluation layer askadimensionaln; x ... x ng (v1,v,...,v,). The evaluation layer for this table is modeled
matrix A. The value of A[vy,...,v] for 1 < v; < n; is by the matrix in Figure 3(a) (we show an example of such a

precisely the cardinality of the query constraint wherehgac matrix in Figure 3(b)).

is instantiated with the;-th smallest distinct value of attribute Now, suppose that there is an algorithm that always returns
a;. Therefore A satisfies the following monotonicity property:the correct answer using fewer tharevaluations, and set all
Alvy, ..., o] < Alws, ..., wi] whenv; < w; for all 4. v; # c. In such a case, such an algorithm would return no

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 3

0 0 0 ... v Algorithm Walk (A: n; x n, matrix, c:integer)
1 11=1; i2=Ng
0 0 w3 ... 2"73n 2 while i1 <mn; AND i3 > 1
0 v 2n on—2, 3 if (A[i]iz] =¢) return true
on 4An ... 9n—1 4 el se-if (Afi]lis] <¢) i1 =i1+1
vrosmn " 5 el se-if (Afi]lia] >) i2=1i2—1
(a) General matrix 6 return fal se
o 0 0 0 4
O 0 0 2 10 Fig. 4. Solving one constraint with two parameters.
0o 0 3 10 20
0 5 10 20 40 _ S
1 10 20 40 80 predicates. For simplicity, we assume that the number of
(b) Sample matrix fom = 5 andv = (1, 5,3, 2, 4). distinct values for each of the attributes is equal ta.

Lower Bound: Consider the integer solutions< p; < n
inpy +p2+...+px =n+k— 1. The number of solutions
is ("I*?) (i.e., the number of ways we can plage— 1
delimiters among a sequence of+ k£ — 2 objects). As in

matches after examining fewer tharelements, and therefore Theorem 3.1, we construct a family of tables that take any

would miss at least one element in the diagonal (say, tMglue inA[py,...,pi] for each(p,,...,px) that is a solution

element at positior{i*,i*)). Using an adversarial argument,Of the above equation. Vﬁ t?en use an adversarial argument
. n - H
We now generate a new instance table wherevalare the t© geta lower bound o™) evaluations.

same as before, except = c. This algorithm would not be ~ UPper Bound: Consider thek-dimensional matrixA that
able to distinguish the difference between the two tables aforresponds to the given query. If we fix all but the last two

_ en the . o . .
would report that no match is found, which is incorrect. Thuddices of A, we conceptually obtaim ? two-dimensional
as desired, at least probes are required. O Mmatrices of sizex xn. We then use the algorithm of Figure 4 on

Theorem 3.2: [Upper Bound] An upper bound on the each of these matrices. Singe each execution of the algorith
number of query evaluations for a single constraint with tw{$Auires at mose - n matrix lookups, the overall search
parametric predicates, < p, andas < p» and cardinality algorithm requires at most*~2-2-n = O(2-n*~!) evaluations
iS O(Rmaz), Wheren g, is the maximum number of distinct for & > 1.
values ina; andas.

Proof. Consider then; x n, matrix A associated with the IV. GENERAL COMPLEXITY RESULTS
given query constraint as defined earlier, whereand n. So far we assumed that a database invocation was the only
are the number of distinct values in attributesanda,. Let available mechanism to obtain cardinality informationnfro
S(i1,i2) denote{A[j1, j2] : i1 < j1 < mi1,1 < ja < iz} We the database. We might believe, then, that other evaluation
now show that algorithriMalk in Figure 4 correctly determines mechanisms could improve the worst case complexity of the
whether any parameter values for andp, satisfy the query problem. In this section we show that unl&ssNP, we cannot
constraint. For that purpose, we define the following irsatti obtain better results independently of the evaluation rhode
S(i1,12) contains the un-probed elements_ 4fthat may still being used.
containc. We show that the invariant holds by induction on Theorem 4.1: Given a databas® and a single constraint
the number of iterations in the algorithm. The invariant ig’ for a parametric conjunctive quer®, finding parameter
true initially: wheni; = 1 andiy = ng, S(i1,i2) includes values that make) satisfy C' on D is NP-hard.
all elements ofA. If Afi1,i2] < ¢, due to the monotonicity ~ Proof. We provide a reduction from thgubset-sum prob-
property ofA, Afiy, jo] < Ali1,i2] < cforl < jo <iy. These lem [5], which takes as input an integeand a set of integers
Aliy, jo] are precisely the elements dropped fréifi, io) by S={s;,s2,...5,,} (let us assume that ali; < 2" for some
the updatei; = 4; + 1 in line 4. Similarly if Afi1,432] > ¢, n), and outputs whether there exists a subSetC S such
by monotonicity A[ji,i2] > Aliy,i2] > c for iy < ji < that%,,css; = s. Consider tableR, shown to the right of
ni, and these elements are dropped fréffi,,i2) by the Figure 5 (we explain below how to obtain this table). Table
updateiz = iz — 1 in line 5. If Afiy,io] = c the algorithm R hasm + 1 columns andl’ = 3" s; rows. The rows inR
returns correctly. Otherwise, each iteration removes efém are clustered inn groups, where thé-th group hass; tuples
that cannot be equal ta maintaining the invariant. At eachwith id = i, anda; = 1 if i = j or a; = 0 otherwise. We ask
iteration, either the row index, is increased or the columnfor the following query:

Fig. 3. Evaluation layer for two parametric predicates.

index i» is decreased. Sincg andi. can only take values SELECT * FROM R (Card =5)
from 1 to n = max(ni,n2), the algorithm iterates at most WHERE p11 < a1 < pr2 AND
2 -n times, and its complexity i®(n). O pag < a2 <pz2 AND ... AND

Pm,1 <am < Pm,2
. .) Suppose now that we obtain a solution for this problem (i.e.,
C. Multiple (>2) Par ric Predicates parameters for the query that make it evaluates tieesults).
We now sketch how the theorems in the previous sectitie note that since all predicates are over columnshen the
can be generalized for a single constraint witlparametric result of any query that contains some tuple with= & must

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 4

Ri R Rene Radd R ida ayas am
1 1 :II ; 11100 . 0 s 11100 .. 0
2 2 1 4 2|1010.. 0
5 3 3001 .. 0 11100 .. 0
3 3 2 3 2/010... 0
2 4 S
3 m|{000 .. 1 2 - :
n 3 1 2|010 0
n 3 3
n 3| 4
n 3|7
m(f00O0 .. 1
m| 4 Sm
m(f00O0 .. 1

Fig. 5. Reducingsubset-sum to the query generation problem.

containall tuples withid = k (these are all indistinguishabledo not need an exact solution for a given query specification.
for the query). Therefore, the answer of the resulting queBuppose there is a constraint with cardinality1000 and
hass tuples and contains all the tuples in a subset of value® obtain parameters that make the corresponding query
of id. The groups returned by this query therefore induceraturn ¢’=995 tuples. Our initial goal is to generate query
solution for the original subset-sum problem. instances for coverage testing. It is likely that the query
Conversely, we now show that all subset-sums from tlebaracteristics we were interested on initially are pneser
original S can be obtained by suitable choices of parametefer the slightly different query above (e.g., for the exaepl
ConsiderS’, an arbitrary subset of elements $h If s; € S/, in the introduction, we know that memory requirements for
we instantiate the-th predicate a$) < R.a; < 1. Otherwise, plans with slightly different cardinality values do not cige
we use predicate < R.a; < 0. In this way, the answer of suchdrastically). We relax the original query generation pesbl
query would contain all tuples except those that hBwe, = 1 so that approximate solutions are acceptablde then define
while s; ¢ S’ (i.e., >, cq s: Of them). Therefore, if the the relative error for a constraint agrror=max (%, Ci) (if
algorithm returns no answers, it means that there is noisalutc or ¢’ are zero we arbitrarily replace them with one). We
for the corresponding subset-sum problem. Consequeiotly, bchose relative errors over absolute error as the cardeslbif
problems are equivalent. different constraints may differ in orders of magnitude @s i
Explicitly having tableR, however, is not possible becausd-igure 1. In general, for multiple constraints, we search fo
its size is in the worst case exponential in the size of thgarameters that minimize the average relative error.
subset-sum problem. We next show how we can enddde The search algorithm presented in this section is a hill-
using polynomial space (see Figure 5). For that purpose, wiémbing variant motivated by the techniques introduced in
consider tablesty, . . ., R,, whereR; contains one instance of Section Il. This algorithm can be described awaik on the
all numbers betweeh andi, and two instances of all numbersparameter space. At any point in time, our proposed algarith
betweeni + 1 andn (recall that alls; < 2"). Clearly, by equi- is in astate (i.e., a point in the parameter search space). From
joining all R; tables, we obtain a new table that contalfis' the current state the algorithm tests a fsiaps and chooses
duplicates of valug, for 1 < i < n. Now consider tablé?z,., the one that decreases the error metric the most, stoppiag wh
with two columns, defined as follows. Tahlgz,,. contains» we reach a state that is good enough.
groups of rows, each one encoding valyeas follows. Let Search Space of Parameter Values. We encode the state
s; = bi, by, ... b;, be the binary representation of Thei-th for a single-sided parametric predicate (eB.¢ < p) using
group contains as many rows as digits with value one amogghumbers, with 0 < s < 1. In turn, we encode the state
the bij- Each row has valugin the first column, an(j in the for a double-sided parametric predicate (ezg,< R.a < p2)
second column, for eadh, = 1. For instance, the first groupwith a pair of numbers=(sy, s5), such that < s; < s, < 1.
in Figure 5 encodes valug, = (11);0 = (1011); and the we obtain the actual parameter values from these encoding
second group encodes valsg = (12)10 = (1100)2. Now, if by considerings as quantiles in the parameter domains. For
we join the previousn equi-joined tables with?g,,. on its instance,s = 0.5 for R.a < p encodes to be the median
second column, we duplicate each groupfip,.. exactlys; of the attributeR.a (we use single-column histograms [6] to
times, which corresponds to the first column in the desirgthnsiate quantiles to actual values in the attribute dog)ai
table R. A final join with table Raqq in the figure results The state space for multiple parametric predicates is thsscr
in the original tableR that we used in the proof. Tablesproduct of states for individual predicates. #f, ... s; are
Ry, ..., Rn, Rpne andRaqq are therefore a polynomial-sizedstates for parametric predicaté, ...Ps, then (s, ..., si)
implicit representation (specifically)((m + n) - n)) of R. represents the combined state space forktipeedicates.
We thus replace in the original query the occurrencéidy Initialization: We show how to obtain an initial point
Ry >a... >4 Ry >4 Rpne > Raqa to prove the main resultl ¢or oyr search algorithm that is optimal if the parametric

V. HEURISTIC HILL -CLIMBING APPROACH predicates are independent. st ... p,, be the parametric

As exp-lai.ned in the previous section, the query generationpjernatively, we can relax the original problem by allogimanges of
problem is in general NP-hard. In many cases, however, wadinality constraints, but we do not explore this scenarithe paper.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 5

predicates, and’y, ..., C, be the cardinality constraints. As- initialize p~|’ﬁr am|9t eE)St ate (Section V)
sume thatC; containsk; parametric predicates; ,....p;, . sz =1; maxHal ve=l og(n
C; i P P s> - P, for i=1 to maxHal ve

For eachp; (1 < i < m) we define a variabld;, which
represents the initial selectivity value for the parancgpried-
icate p; (I; are selectivity values, s6 < [; < 1). Let ¢;
(1 < j < n) be the cardinality of constrainf’; where all
parametric predicates are removed, apdienote the desired Fig. 7. Hill-climbing algorithm with halving search.
cardinality of C; as specified. Then, the joint selectivity of

all parametric predicates fof; is sel; = c¢;/t;. Assuming
independence among predicates, the valuel; is the product
of the selectivities of each parametric predicate. Thuseézh
constraintC; (1 <j <n) we writel;, x1j, x...1; = sel;.
Taking logarithms on both sides we obtain a systemnof
linear equations given blpg(l;,) + log(li,) + ... log(li,,) =
log(sel;) for 1 < i < n. We are interested in values féor
(1 < ¢ < m) that minimize the sum of errors itog(sel;)
(1 < j < n). Additionally, we havem constraints of the form
0 < [; < 1. Rather than using linear programming [7], w
use an approximation by recursive least square estima@prs
that is more efficient. The result of this algorithm is a s

of selectivity values that minimize the relative error oeth dicat ¢ h st t0 hawel - k) st if
input constraintsassuming independence among predicates. precicate, we expect each stage to auel - k) s eps.
the largest number of distinct values on any attribute in a

Once such selectivity valués are obtained, we calculate the
algorithm’s initial state as shown in Figure6(a). parametric predicate is, there will be at mostog(n) stages
per attribute, therefore resulting ®(d- k-log(n)) steps before

while (step decreases error netric)
use step that nost decreases error
sz = sz/ 2.

OO~ WNE

Main Algorithm: The main algorithm is summarized in
Figure 7. We start with step sizez=1. When the algorithm
cannot find a step that decreases the error irdjne is halved
in line 6. This halving is done until the final step size can
distinguish a single distinct value, guaranteeing cornvecg
to a local minima of the error function. Let a single stage of
the algorithm be the execution of lines 4-5 with a constant
sz. In practice we observe that at any stage the number of

teps in a direction made for a single parameter is at most
0. Otherwise, a larger step would have been made in the
revious stage whegz was double its current value. Thus, if
ere arek parametric predicates andl types of steps per

[Predicate | Initialization states | the algorithm converges.
p< Ra s—1_1 Other Optimizations: We additionally use optimizations
p1 < R.a < ps | s=(s1,s1 + 1), wheres;=Random@..1 — [) for efficiency and robustness, such as starting with meltipl
Ra<p s=1 initial points to avoid local minima, pruning some steps at
(a) Initializing parameters for selectivity each iteration depending on the query, and decomposing a
[‘Original state] Resulting states | big query into smaller problems when certain properties are
3 (5 +52), (5 — 52) satisfied.
(s1, 82) (51 + sz,82), (s1,82 + s2),
(51— 52,52), (s1,52 — s2), VI. EXPERIMENTAL EVALUATION
(s1+sz, 82+52), (81 — 82,82 — 82))])
(s1-52, S2+52), (s1 + s2, 52 — $2) We next report an experimental evaluation of our technique
(b) Steps in the state space. of Section V to generate queries with cardinality constsain
We generated a synthetic database that consists of thies,tab
Fig. 6. Details of the hill-climbing-based algorithm. ranging from10% to 10° tuples, joined via (quasi) foreign

keys. Attribute values are generated with different degree

Seps: Following a hill-climbing approach, weanove, of skew and correlation, and joins do not satisfy referéntia
at each iteration, towards the region in the state space thegrity. We then generated query specifications using the
reduces the error metric the most. Specificallystep is a following encoding. For integera,, no, andns, we denote
change in the parameter’s state. Let the step size be dendigd/,, P,,,C,, a specification of a query witln; joins,
by sz (0 < sz <1). From a state in the parameter space, we, parametric predicates, and, cardinality constraints. For
consider two steps for single-sided predicates and eigipsstinstance,/; P, Cs represents a specification of a two-way join
for double-sided predicates as shown in Figure 6(b). (If@ny query with a single parametric predicate and three caritijnal
the final state values fall outside, 1] they are rounded to the constraints.
boundary point, and if the left parameter value become®targ Figure 8 shows the average relative error during the execu-
than the right parameter value in a double-sided preditia¢e, tion of our hill-climbing-based algorithm for different qry
step is discarded.) For multiple parameters, we consi@psst specifications. In most cases the initial average relativer e
along a single parameter at a time (i.e., we do not considsrvery large, sometimes above 10000%. This means that the
diagonal steps). This pruning technique reduces the seargheries we are interested in significantly deviate from inde
time fromd™ to d - m evaluations forl types of steps anth pendence among their parametric predicates. Local minima a
predicates. The rationale for this pruning is that if theoerr not uncommon, and sometimes these solutions have relative
metric were continuous and the current state were not a loeators that are significantly larger than the ones repomed i
minima, at least one partial differential (a step on a singthe figure. Our approach leads to a more robust strategy by
parameter) would show a decrease in the relative error, anging multiple initial points. In all cases, the final avgea
pruning would not compromise quality. relative error is below 1.09 (i.e., 9% of average difference

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 6

100

—e—J1P1C1
—=—J1P2C3
—+—J1P3C7 | _

e

0 10 20 30 40 50
Seconds

(a) Sinale-table aueries.

[y
o
I

Average Relative Error

=

1000

——J2P1C2
——J2P2C4
—a— J2P3C6

Average Relative Error

1 T T T
0 200 400 600
Seconds
(b) Two-way join queries.
10000

——J3P6C1

1000 # -~~~ Japeos |~

—— J3P6C6

100 A

10 4

Average Relative Error

1 " .
0 500 1000
Seconds

(c) Three-way join queries.

VII. CONCLUSIONS ANDFUTURE WORK

In this work we considered the problem of generating
gueries with cardinality constraints. We showed that inggah
the problem is computationally hard, and developed hécsist
that efficiently return approximate results. It is impottam
investigate whether our techniques can be complemented by
specific data generation tools (i.e., generating both datab
and query instances might be a competitive alternative if we
are not constrained to use a specific data source).

REFERENCES

[1] N. Bruno and S. Chaudhuri, “Flexible database genesdtdn Pro-
ceedings of the 31th International Conference on Very Large Databases
(VLDB), 2005.

[2] A. Neufeld, G. Moerkotte, and P. C. Lockemann, “Genemgtconsistent
test data for a variable set of general consistency constraVLDB J.,
vol. 2, no. 2, 1993.

[3] D. R. Slutz, “Massive stochastic testing of SQL,” Rroceedings of the
24th International Conference on Very Large Databases (VLDB), 1998.

[4] M. Poess and J. M. Stephens, “Generating thousand ber&hqueries
in seconds,” inProceedings of the 30th International Conference on Very
Large Databases (VLDB), 2004.

[5] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sténtroduction
to Algorithms (Second Edition). MIT Press, 2001.

[6] V. Poosala, Y. E. loannidis, P. J. Haas, and E. J. Shelitaproved his-
tograms for selectivity estimation of range predicates,Pioceedings of
the ACM International Conference on Management of Data (SGMOD),
1996.

[7] V. Chvatal, Linear Programming. W. H. Freeman, 1983.

[8] S. Haykin, Adaptive Filtering Theory (Chapter 9). Prentice Hall, 2002.

Fig. 8. Average relative error over time for different quespecifications.

between the desired and actual constraints). Not surghsin

the more constraints that are present in the query speaficat

or the more complex the constraints, the longer it takes to
converge because there are fewer states in the search space
that are relatively accurate. If the right indexes are prese

the system, we obtained an efficiency improvement of an order
of magnitude (we omit these results due to space constyaints
While there is room for improvement (our techniques can take
seconds, and sometimes minutes to return query instances),
we believe that in our context this can be tolerated. In fact,
the objective is not to generate large workloads but queries
with specific characteristics to evaluate and pinpoint demp
behavior in a system.

