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Crowdsourcing: Getting Tasks done by People

Why?

@ Humans are better than computers in certain tasks

@ Human opinions are desired (product and ad design)

Our work
@ Worker motivation: payment

@ Skills required: no qualifications

@ Time for tasks: microtasks/seconds
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Applications
@ Max item retrieval (example next)
@ Sorting (get restaurants sorted by rating)
@ Top-k (retrieve 10 best LinkedIn profiles for a job)
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Example: Tournament Max Algorithm

Tournament Algorithm
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Example: Tournament Max Algorithm (cont’d)

Example: Finding Peak Hours
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Example: Tournament Max Algorithm (cont’d)
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Example: Tournament Max Algorithm (cont’d)
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Example: Tournament Max Algorithm (cont’d)
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Setting: Experimental

@ Amazon’s Mechanical Turk

@ Comparisons of various difficulties

o Dataset with ground truth
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Quality Control Techniques

@ Masking: Asking multiple workers to perform each task

@ Detection: Ignore bad worker answers

Evicting bad workers
Retaining good workers
Different pay rates according to worker quality

[*]
°
@ Train before tasks
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Quality Control Techniques

@ Masking: Asking multiple workers to perform each task

Detection: Ignore bad worker answers
Evicting bad workers

Retaining good workers

Train before tasks

o
o
o
o Different pay rates according to worker quality
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Dataset

Which image has more dots?




Dataset

Which image has more dots?

q(e1) =90 q(ezj = 100




Find image with most dots

e 1,2, ...,1000 dots per image
e $0.01 per HIT
@ 4 comparisons per HIT

@ 4 images per comparison
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Find image with most dots

e 1,2 ...,1000 dots per image
e $0.01 per HIT
@ 4 comparisons per HIT

@ 4 images per comparison

v

Statistics

@ ~28,500 distinct comparisons

re{l,2,3,4,5}

~54,000 worker responses

~1,100 distinct worker IDs

For good coverage: No more than 50 HITs per hour

\
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Comparison Difficulty

Definition
When comparing items in S = {e1, e, ..., &}, difficulty is
, 3(5)
diff(S) =
) q1(5)

Characteristics

@ Values in [0, 1]

@ Takes into account only top-2 values
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Comparison Difficulty Effectiveness

Very effective Metric

w 1 @ Similar correctness for
g different g1(h) but the
% 0.8 | same diff(S)
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7 —— q1(h) = 100

n 0.6r — qi(h) =500 '\ 1

§ L Il L L

0.6 0.8 1
Microtask Difficulty
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Why is Difficulty important?

Tournament Algorithms

r

._.
Il
o1

— e
= 0|

@O &

®

®

Y

13 /20



Why is Difficulty important?

Difficulty in Tournament Algorithms

1 o Easier comparisons
5 initially
3
O @ Harder towards the end
o
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Why is Difficulty important?

Difficulty in Tournament Algorithms

1 o Easier comparisons

initially
@ Harder towards the end

o
o
T

@ We need to take into
account various difficulty
values

Difficulty
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Masking: Choosing the Plurality Vote

Effect on Comparison Accuracy
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Masking: Choosing the Plurality Vote

Effect on Comparison Accuracy

—_ d!ff =0.84 @ Accuracy increases as we ask
— diff = 0.90 more workers
0.95F — [ -
I @ It reaches a plateau after a
& 0.9t while
‘é o 85 i @ It is higher for easy
g e comparisons
0.8
1 2 3 4 B
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Can we do better than Masking?

Worker | {e1, e} | {e3,es} | {es5, 65}
A €1 €3 es
B €1 €4
C €1 €5
D €4 €6
Plurality €1 €4 €5
Max €1 €3 s
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Can we do better than Masking?

Worker | {e1, e} | {e3,es} | {es5, 65}
A €1 €3 €5
B €1 €4
C €1 (S5
D €4 €6
Plurality e e es
Max €1 €3 és

v

Scores Considered

@ Gold Standard sgs(A) =1
o Plurality Agreement sp(A) = %

@ Work time st
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How good are these Scores?

1 — @ For worker with at least 10
0.75L comparisons done
- @ Actual score = fraction of
w0
& 0.5¢ correct answers
0.25 . @ Very high correlation!
' 1 1 1 1 1 1
0.25 0.5 0.75 1
Sa
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Is Detection helpful?

It increases Accuracy for each Assignment
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Is Detection helpful?

It increases Accuracy for each Assignment
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Is Detection helpful? (cont'd)

It increases Accuracy for each Comparison

Worker | {e1,e} | {e3, e} | {es5, 66}
A e 3 3
-_— ?x B e e
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Is Detection helpful? (cont'd)

It increases Accuracy for each Comparison

Worker | {e1,e} | {e3, e} | {es5, 66}
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But at what cost?

Cost per benefit study

For a set of comparisons:

@ Benefit = # correct plurality responses after detection
@ Cost = # questions posted

v
Answer: High
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Conclusions

@ Microtask difficulty has to be considered in crowdsourced algorithms

@ We can assess a worker's quality accurately
o After detecting bad workers, we can improve comparison accuracy

@ The cost/benefit is minimum without detection.
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@ Building worker models that will match experimental data

@ Dynamic adjustments to account for comparison difficulty in
crowdsourced algorithms
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Conclusions

@ Microtask difficulty has to be considered in crowdsourced algorithms

@ We can assess a worker's quality accurately
o After detecting bad workers, we can improve comparison accuracy

@ The cost/benefit is minimum without detection.

Current Work

@ Building worker models that will match experimental data

@ Dynamic adjustments to account for comparison difficulty in
crowdsourced algorithms
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