

Quality Control for Comparison Microtasks

Petros Venetis Hector Garcia-Molina

Stanford University

August 12, 2012

Crowdsourcing: Getting Tasks done by People

Why?

• Humans are better than computers in certain tasks

• Human opinions are desired (product and ad design)

Crowdsourcing: Getting Tasks done by People

Why?

• Humans are better than computers in certain tasks

• Human opinions are desired (product and ad design)

Our work

- Worker motivation
- Skills required
- Time for tasks

Crowdsourcing: Getting Tasks done by People

Why?

• Humans are better than computers in certain tasks

• Human opinions are desired (product and ad design)

Our work

- Worker motivation: payment
- Skills required: no qualifications
- Time for tasks: microtasks/seconds

Issues

User Interfaces

Machine Learning

Algorithms

Quality Control

Systems

Spammer Detection

Applications

- Max item retrieval (example next)
- Sorting (get restaurants sorted by rating)
- Top-k (retrieve 10 best LinkedIn profiles for a job)

Example: Finding Peak Hours

Example: Finding Peak Hours

Example: Finding Peak Hours

Comparisons

Comparisons

Quality Control for Comparison Microtasks

Quality Control for Comparison Microtasks

- Amazon's Mechanical Turk
- Comparisons of various difficulties
- Dataset with ground truth

Quality Control Techniques

Many!

- Masking: Asking multiple workers to perform each task
- Detection: Ignore bad worker answers
- Evicting bad workers
- Retaining good workers
- Different pay rates according to worker quality
- Train before tasks

• . . .

Quality Control Techniques

Many!

- Masking: Asking multiple workers to perform each task
- Detection: Ignore bad worker answers
- Evicting bad workers
- Retaining good workers
- Different pay rates according to worker quality
- Train before tasks

• . . .

Dataset

Which image has more dots?

Dataset

Which image has more dots?

Find image with most dots

- 1, 2, ..., 1000 dots per image
- \$0.01 per HIT
- 4 comparisons per HIT
- 4 images per comparison

Find image with most dots

- 1, 2, ..., 1000 dots per image
- \$0.01 per HIT
- 4 comparisons per HIT
- 4 images per comparison

Statistics

- ${\sim}28,500$ distinct comparisons
- $r \in \{1, 2, 3, 4, 5\}$
- ${\sim}54,000$ worker responses
- ${\sim}1,100$ distinct worker IDs
- For good coverage: No more than 50 HITs per hour

Comparison Difficulty

Definition

When comparing items in $S = \{e_1, e_2, \dots, e_s\}$, difficulty is

$$\mathsf{diff}(S) = \frac{q_2(S)}{q_1(S)}$$

Characteristics

- \bullet Values in $\left[0,1\right]$
- Takes into account only top-2 values

Comparison Difficulty Effectiveness

Very effective Metric

 Similar correctness for different q₁(h) but the same diff(S)

Why is Difficulty important?

Why is Difficulty important?

Difficulty in Tournament Algorithms

Why is Difficulty important?

Difficulty in Tournament Algorithms

- Easier comparisons initially
- Harder towards the end
- We need to take into account various difficulty values

- Accuracy increases as we ask more workers
- It reaches a plateau after a while
- It is higher for easy comparisons

Can we do better than Masking?

Detection

Worker	$\{e_1, e_2\}$	$\{e_3, e_4\}$	$\{e_5, e_6\}$
А	<i>e</i> ₁	e ₃	<i>e</i> 5
В	e_1	e ₄	
С	e_1		<i>e</i> 5
D		e ₄	<i>e</i> 6
Plurality	e ₁	e ₄	<i>e</i> 5
Max	e ₁	e ₃	<i>e</i> 5

Can we do better than Masking?

Detection

Worker	$\{e_1, e_2\}$	$\{e_3, e_4\}$	$\{e_5, e_6\}$
А	e_1	e ₃	<i>e</i> 5
В	e_1	e ₄	
С	<i>e</i> ₁		<i>e</i> 5
D		e ₄	<i>e</i> 6
Plurality	<i>e</i> ₁	e ₄	<i>e</i> 5
Max	e_1	e ₃	<i>e</i> 5

Scores Considered

- Gold Standard $s_{GS}(A) = 1$
- Plurality Agreement $s_{\rm P}({\rm A}) = \frac{2}{3}$
- Work time *s*_T

How good are these Scores?

- For worker with at least 10 comparisons done
- Actual score = fraction of correct answers
- Very high correlation!

Is Detection helpful?

It increases Accuracy for each Assignment

Is Detection helpful?

It increases Accuracy for each Assignment

Is Detection helpful?

It increases Accuracy for each Assignment

Is Detection helpful? (cont'd)

It increases Accuracy for each Comparison

Is Detection helpful? (cont'd)

It increases Accuracy for each Comparison

But at what cost?

Cost per benefit study

For a set of comparisons:

- Benefit = # correct plurality responses after detection
- Cost = # questions posted

Answer: High

Summary

- Microtask difficulty has to be considered in crowdsourced algorithms
- We can assess a worker's quality accurately
- After detecting bad workers, we can improve comparison accuracy
- The cost/benefit is minimum without detection.

Summary

- Microtask difficulty has to be considered in crowdsourced algorithms
- We can assess a worker's quality accurately
- After detecting bad workers, we can improve comparison accuracy
- The cost/benefit is minimum without detection.

Current Work

- Building worker models that will match experimental data
- Dynamic adjustments to account for comparison difficulty in crowdsourced algorithms

Summary

- Microtask difficulty has to be considered in crowdsourced algorithms
- We can assess a worker's quality accurately
- After detecting bad workers, we can improve comparison accuracy
- The cost/benefit is minimum without detection.

Current Work

- Building worker models that will match experimental data
- Dynamic adjustments to account for comparison difficulty in crowdsourced algorithms

Contact

venetis@cs.stanford.edu