# Quality Control for Comparison Microtasks 

Petros Venetis Hector Garcia-Molina

Stanford University

August 12, 2012

## Crowdsourcing: Getting Tasks done by People

## Why?

- Humans are better than computers in certain tasks

- Human opinions are desired (product and ad design)


## Crowdsourcing: Getting Tasks done by People

## Why?

- Humans are better than computers in certain tasks

- Human opinions are desired (product and ad design)


## Our work

- Worker motivation
- Skills required
- Time for tasks


## Crowdsourcing: Getting Tasks done by People

## Why?

- Humans are better than computers in certain tasks

- Human opinions are desired (product and ad design)


## Our work

- Worker motivation: payment
- Skills required: no qualifications
- Time for tasks: microtasks/seconds


## Crowdsourcing

Issues
User Interfaces

# Machine Learning 

Algorithms

## Quality Control

Systems
Spammer Detection

## Crowdsourcing

Issues
User Interfaces

# Machine Learning 

Algorithms

## Quality Control

Systems
Spammer Detection

## Crowdsourcing

## Issues

User Interfaces

## Machine Learning

## Algorithms

## Quality Control

Systems

## Spammer Detection

## Applications

- Max item retrieval (example next)
- Sorting (get restaurants sorted by rating)
- Top-k (retrieve 10 best Linkedln profiles for a job)


## Example: Tournament Max Algorithm

## Tournament Algorithm

(1)
(2)
(3)
(24)
(es)
(6)

## Example: Tournament Max Algorithm

## Tournament Algorithm


(3)
(2)
©
(2)

## Example: Tournament Max Algorithm

## Tournament Algorithm


(e3)
(e4)
e5
(e4)
(e6)

## Example: Tournament Max Algorithm

Tournament Algorithm


## Example: Tournament Max Algorithm

## Tournament Algorithm



## Example: Tournament Max Algorithm (cont'd)

## Example: Finding Peak Hours



## Example: Tournament Max Algorithm (cont'd)

## Example: Finding Peak Hours



## Example: Tournament Max Algorithm (cont'd)

## Example: Finding Peak Hours



## Example: Tournament Max Algorithm (cont'd)

## Comparisons



## Example: Tournament Max Algorithm (cont'd)

## Comparisons



## Quality Control for Comparison Microtasks

Issues
User Interfaces

## Machine Learning

Algorithms


Spammer Detection

## Quality Control for Comparison Microtasks

## Issues

User Interfaces

## Machine Learning

Algorithms

## Quality Control

Systems

## Spammer Detection

## Setting: Experimental

- Amazon's Mechanical Turk
- Comparisons of various difficulties
- Dataset with ground truth


## Quality Control Techniques

## Many!

- Masking: Asking multiple workers to perform each task
- Detection: Ignore bad worker answers
- Evicting bad workers
- Retaining good workers
- Different pay rates according to worker quality
- Train before tasks
- ...


## Quality Control Techniques

## Many!

- Masking: Asking multiple workers to perform each task
- Detection: Ignore bad worker answers
- Evicting bad workers
- Retaining good workers
- Different pay rates according to worker quality
- Train before tasks
- ...


## Dataset

Which image has more dots?


## Dataset

Which image has more dots?


## Experiments

Find image with most dots

- $1,2, \ldots, 1000$ dots per image
- \$0.01 per HIT
- 4 comparisons per HIT
- 4 images per comparison


## Experiments

## Find image with most dots

- $1,2, \ldots, 1000$ dots per image
- \$0.01 per HIT
- 4 comparisons per HIT
- 4 images per comparison


## Statistics

- ~28,500 distinct comparisons
- $r \in\{1,2,3,4,5\}$
- $\sim 54,000$ worker responses
- ~1,100 distinct worker IDs
- For good coverage: No more than 50 HITs per hour


## Comparison Difficulty

## Definition

When comparing items in $S=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$, difficulty is

$$
\operatorname{diff}(S)=\frac{q_{2}(S)}{q_{1}(S)}
$$

## Characteristics

- Values in $[0,1]$
- Takes into account only top-2 values


## Comparison Difficulty Effectiveness

## Very effective Metric



- Similar correctness for different $q_{1}(h)$ but the same $\operatorname{diff}(S)$

Microtask Difficulty

## Why is Difficulty important?

## Tournament Algorithms



## Why is Difficulty important?

## Difficulty in Tournament Algorithms

- Easier comparisons initially
- Harder towards the end


## Why is Difficulty important?

## Difficulty in Tournament Algorithms



- Easier comparisons initially
- Harder towards the end
- We need to take into account various difficulty values


## Masking: Choosing the Plurality Vote

Effect on Comparison Accuracy


## Masking: Choosing the Plurality Vote

## Effect on Comparison Accuracy



- Accuracy increases as we ask more workers
- It reaches a plateau after a while
- It is higher for easy comparisons


## Can we do better than Masking?

## Detection

| Worker | $\left\{e_{1}, e_{2}\right\}$ | $\left\{e_{3}, e_{4}\right\}$ | $\left\{e_{5}, e_{6}\right\}$ |
| :---: | :---: | :---: | :---: |
| A | $e_{1}$ | $e_{3}$ | $e_{5}$ |
| B | $e_{1}$ | $e_{4}$ |  |
| C | $e_{1}$ |  | $e_{5}$ |
| D |  | $e_{4}$ | $e_{6}$ |
| Plurality | $e_{1}$ | $e_{4}$ | $e_{5}$ |
| Max | $e_{1}$ | $e_{3}$ | $e_{5}$ |

## Can we do better than Masking?

## Detection

| Worker | $\left\{e_{1}, e_{2}\right\}$ | $\left\{e_{3}, e_{4}\right\}$ | $\left\{e_{5}, e_{6}\right\}$ |
| :---: | :---: | :---: | :---: |
| A | $e_{1}$ | $e_{3}$ | $e_{5}$ |
| B | $e_{1}$ | $e_{4}$ |  |
| C | $e_{1}$ |  | $e_{5}$ |
| D |  | $e_{4}$ | $e_{6}$ |
| Plurality | $e_{1}$ | $e_{4}$ | $e_{5}$ |
| Max | $e_{1}$ | $e_{3}$ | $e_{5}$ |

## Scores Considered

- Gold Standard $s_{G S}(A)=1$
- Plurality Agreement $s_{P}(A)=\frac{2}{3}$
- Work time $s_{T}$


## How good are these Scores?

## Very! <br>  <br> - For worker with at least 10 comparisons done <br> - Actual score $=$ fraction of correct answers <br> - Very high correlation!

## Is Detection helpful?

## It increases Accuracy for each Assignment



| Worker | $\left\{e_{1}, e_{2}\right\}$ | $\left\{e_{3}, e_{4}\right\}$ | $\left\{e_{5}, e_{6}\right\}$ |
| :---: | :---: | :---: | :---: |
| A | $e_{1}$ | $e_{3}$ | $e_{5}$ |
| B | $e_{1}$ | $e_{4}$ |  |
| C | $e_{1}$ |  | $e_{5}$ |
| D |  | $e_{4}$ | $e_{6}$ |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

## Is Detection helpful?

## It increases Accuracy for each Assignment



## Is Detection helpful?

## It increases Accuracy for each Assignment



## Is Detection helpful? (cont'd)

## It increases Accuracy for each Comparison



## Is Detection helpful? (cont'd)

## It increases Accuracy for each Comparison



## But at what cost?

## Cost per benefit study

For a set of comparisons:

- Benefit $=\#$ correct plurality responses after detection
- Cost $=\#$ questions posted


## Answer: High



## Conclusions

## Summary

- Microtask difficulty has to be considered in crowdsourced algorithms
- We can assess a worker's quality accurately
- After detecting bad workers, we can improve comparison accuracy
- The cost/benefit is minimum without detection.


## Conclusions

## Summary

- Microtask difficulty has to be considered in crowdsourced algorithms
- We can assess a worker's quality accurately
- After detecting bad workers, we can improve comparison accuracy
- The cost/benefit is minimum without detection.


## Current Work

- Building worker models that will match experimental data
- Dynamic adjustments to account for comparison difficulty in crowdsourced algorithms


## Conclusions

## Summary

- Microtask difficulty has to be considered in crowdsourced algorithms
- We can assess a worker's quality accurately
- After detecting bad workers, we can improve comparison accuracy
- The cost/benefit is minimum without detection.


## Current Work

- Building worker models that will match experimental data
- Dynamic adjustments to account for comparison difficulty in crowdsourced algorithms


## Contact

venetis@cs.stanford.edu

