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Crowdsourcing: Getting Tasks done by People

Why?

Humans are better than computers in certain tasks

Human opinions are desired (product and ad design)

Our work

Worker motivation

: payment

Skills required

: no qualifications

Time for tasks

: microtasks/seconds
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Crowdsourcing

Issues

Ma
hine Learning

Systems

Quality Control

User Interfa
es

Spammer Dete
tion

Algorithms

Applications

Max item retrieval (example next)

Sorting (get restaurants sorted by rating)

Top-k (retrieve 10 best LinkedIn profiles for a job)
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Example: Tournament Max Algorithm

Tournament Algorithm
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Example: Tournament Max Algorithm (cont’d)

Example: Finding Peak Hours
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Example: Tournament Max Algorithm (cont’d)

Example: Finding Peak Hours
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Example: Tournament Max Algorithm (cont’d)

Comparisons

r = 3

HIT
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Quality Control for Comparison Microtasks

Issues

Ma
hine Learning

Systems

Quality Control

User Interfa
es

Spammer Dete
tion

Algorithms

Setting: Experimental

Amazon’s Mechanical Turk

Comparisons of various difficulties

Dataset with ground truth
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Quality Control Techniques

Many!

Masking: Asking multiple workers to perform each task

Detection: Ignore bad worker answers

Evicting bad workers

Retaining good workers

Different pay rates according to worker quality

Train before tasks

. . .
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Dataset

Which image has more dots?

q(e1) = 90 q(e2) = 100
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Experiments

Find image with most dots

1, 2, . . . , 1000 dots per image

$0.01 per HIT

4 comparisons per HIT

4 images per comparison

Statistics

∼28,500 distinct comparisons

r ∈ {1, 2, 3, 4, 5}
∼54,000 worker responses

∼1,100 distinct worker IDs

For good coverage: No more than 50 HITs per hour
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Comparison Difficulty

Definition

When comparing items in S = {e1, e2, . . . , es}, difficulty is

diff(S) =
q2(S)

q1(S)

Characteristics

Values in [0, 1]

Takes into account only top-2 values
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Comparison Difficulty Effectiveness

Very effective Metric
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Why is Difficulty important?

Tournament Algorithms

e1

e2

e3

e4

e5

e6

r1 = 5

e1

e4

e6

r2 = 3

e1

Difficulty in Tournament Algorithms

Step

1 2 3

1

0.5

0

D

i

f

f

i




u

l

t

y

Easier comparisons
initially

Harder towards the end

We need to take into
account various difficulty
values
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Masking: Choosing the Plurality Vote

Effect on Comparison Accuracy
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Accuracy increases as we ask
more workers

It reaches a plateau after a
while

It is higher for easy
comparisons
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Can we do better than Masking?

Detection

Worker {e1, e2} {e3, e4} {e5, e6}
A e1 e3 e5
B e1 e4
C e1 e5
D e4 e6

Plurality e1 e4 e5
Max e1 e3 e5

Scores Considered

Gold Standard sGS(A) = 1

Plurality Agreement sP(A) = 2
3

Work time sT
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How good are these Scores?

Very!

s
A

0.5 0.75 1

0.25

s G
S

0.5

1

0.75

0.25

For worker with at least 10
comparisons done

Actual score = fraction of
correct answers

Very high correlation!
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Is Detection helpful?

It increases Accuracy for each Assignment
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Is Detection helpful? (cont’d)

It increases Accuracy for each Comparison
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But at what cost?

Cost per benefit study

For a set of comparisons:

Benefit = # correct plurality responses after detection

Cost = # questions posted

Answer: High
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Conclusions

Summary

Microtask difficulty has to be considered in crowdsourced algorithms

We can assess a worker’s quality accurately

After detecting bad workers, we can improve comparison accuracy

The cost/benefit is minimum without detection.

Current Work

Building worker models that will match experimental data

Dynamic adjustments to account for comparison difficulty in
crowdsourced algorithms

Contact
venetis@cs.stanford.edu
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