Max Algorithms in Crowdsourcing Environments

Petros Venetis! Hector Garcia-Molinal
Kerui Huang? Neoklis Polyzotis?

1Stanford University

2UC Santa Cruz

April 20, 2012

Crowdsourcing: Getting Tasks done by People

Why?

@ Humans are better than computers in certain tasks

@ Human opinions are desired (product and ad design)

Crowdsourcing: Getting Tasks done by People

Why?

@ Humans are better than computers in certain tasks

@ Human opinions are desired (product and ad design)

Positioning

@ Worker motivation
@ Skills required

@ Time for tasks

Crowdsourcing: Getting Tasks done by People

Why?

@ Humans are better than computers in certain tasks

@ Human opinions are desired (product and ad design)

Positioning
@ Worker motivation: payment

@ Skills required: no qualifications

@ Time for tasks: microtasks/seconds

Crowdsourcing

SYES

User Interfaces

Machine Learning

Quality Control
Systems

Spammer Detection

Max Item Problem: Example

e - ~ ~
== 4

Finding Peak Hours

Max Item Problem: Example

Finding Peak Hours

Max Item Problem: Example

Finding Peak Hours

Crowdsourcing Marketplaces

Example: Amazon's Mechanical Turk Marketplace

Requester

X

Crowdsourcing Marketplaces

Example: Amazon's Mechanical Turk Marketplace

HITs

Requester

T

Crowdsourcing Marketplaces

Example: Amazon's Mechanical Turk Marketplace

HITs Workers

Requester

1B |
334

Crowdsourcing Marketplaces

Example: Amazon's Mechanical Turk Marketplace

HITs Workers

Requester

T

TEAT
o |
O

Crowdsourcing Marketplaces

Example: Amazon's Mechanical Turk Marketplace

HITs Workers

Requester

o et

e
e

Crowdsourcing Algorithms

Notion of steps

HITs

Step 1

S5

Step 2

Step 3

Max Algorithms

g

®

Max Algorithms

g

@ ltems have inherent quality values

®

Max Algorithms

g

@ ltems have inherent quality values
@ o Max item e* € &:

e<e*Vec&\{e*}

HITs Used: Comparisons

HITs Used: Comparisons

HIT

Crowdsourced Max Algorithms

Structured Algorithms

How to break up the problem to retrieve max item:
@ Bubble

@ Tournament

Crowdsourced Max Algorithms

Structured Algorithms

How to break up the problem to retrieve max item:
@ Bubble

@ Tournament

Unstructured Algorithms (not here)
4

@ Which comparison to perform next?

@ Which item is the max?

Max Algorithms: Bubble

©)

® ® ® ©® O

10/21

Max Algorithms: Bubble

[

&

I
w

® @

® @ @

10/21

Max Algorithms: Bubble

[

&

I
w

v

® @ @
®

10/21

Max Algorithms: Bubble

[

&

I
w

® &
VY
v

®
®

® @

10/21

Max Algorithms: Bubble

[

&

I
w

® &
VY
v

®
®

=2
=5
:ll

® @

10/21

Max Algorithms: Bubble

[

&

I
w

DNOIS® O

@@
B

U

®
i

10/21

Max Algorithms: Bubble

[

&

I
w

DNOIS® O

@@
B

U

®
i

10/21

Max Algorithms: Bubble

s1=3 Steps = 3
n=>5 Questions =5 +5 4+ 1 =11

©)

DNOI® O
OIS,
2V

®
i

10/21

Max Algorithms: Tournament

®

® ®© © ©

®

11/21

Max Algorithms: Tournament

iy
[

=
o

®

® OO

®

®

11/21

Max Algorithms: Tournament

iy
[

=
o

®

—> ©
—> @
> @

® OO

®

®

11/21

Max Algorithms: Tournament

iy
[

=
o
N
|
w

5
I
w

=
—> |@

® OO

®

J

11/21

Max Algorithms: Tournament

iy
[

=
o
N
|
w

5
I
w

=
= @)

® OO

®

J

11/21

Max Algorithms: Tournament

s1=2
n=>5 =3
n=3 Steps = 2
@ Questions =3 -5+ 1.3 =18
®

> ®

J

®

J

11/21

How to select {r;} and {s;}

Problem Statement

maximize Pr[A returns max item from &]
A=A({ri}{si})

subject to Cost(A,€) < B
Steps(A,€) < T

12 /21

How to select {r;} and {s;}

Problem Statement

maximize Pr[A returns max item from &]
A=A({ri}{si})

subject to Cost(A,€) < B
Steps(A,€) < T

Tuning Strategies (based on hill climbing)
@ Constant r;, s;

e Varying r;, constant s;

o Varying rj, s;

12 /21

Models Considered

e Comparison Input = {e1, e,..., 65}
0 6<...<e<e
@ p;: probability e; is returned by worker

13/21

Models Considered

e Comparison Input = {e1, e,..., 65}
2 & <...<e<Ke

@ p;: probability e; is returned by worker

Worker Error Models

Constant pL=p, P2=p3=...

Linear p1 decreases on s

Order-based pL>p2> ... > ps

Distance-based | p;'s depend on value differences of items

13/21

Models Considered

e Comparison Input = {e1, e,..., 65}
2 & <...<e<Ke

@ p;: probability €; is returned by worker

Worker Error Models

Constant pL=p, P2=p3=...

Linear p1 decreases on s

Order-based pL>p2> ... > ps

Distance-based | p;'s depend on value differences of items

Worker Compensation Models

Constant | ¢
Linear cC+AXs

13/21

Experiments

Why Not Analysis?
@ Analysis only for simple models and still is expensive

14 /21

Experiments

Why Not Analysis?

@ Analysis only for simple models and still is expensive

Single HIT Accuracy(s, r; p) =

Z ZZ > (nl)l sz [1 A

n=1LeL 0<k;<n—1,ieL zel wel
E,eLk-i-/n r

14 /21

Why Not Analysis?

@ Analysis only for simple models and still is expensive

Single HIT Accuracy(s, r; p) =

Z ZZ > (nl)/ sz [1 A

n=1LeL o<k;<n—1,icL zel wel
E,eLk-i-/n r

v
Simulations

@ Used linear error and compensation model

@ 100,000 simulations per data point

14 /21

It pays off to vary r;, s;

Tournament
g 0-75_-] | = Varying r;, s
.r;u 0.5 4 | == Varying r;
%0_25_] | == Constant r;, s;
D_ | I | 1 | L B
25 50 75 100
Budget (B)

15/21

Tournament is better

— FT
E 0.75 |- Tournamen
= 0.50
=l
& 025
25 50 75 100
Budget (B)

16 /21

It pays off to have more responses towards the end

Tournament
o0k = 1500
- = 4000
' IH — 5500
0 =11
1 2 3 4
Step

17/21

MTurk Experiment

80 and 100 dots

18/21

MTurk Experiment

80 and 100 dots

@ Learned distance-based model @ B enough for 105 comparisons
(si=4) @ 200 runs
o Images with 5, 10, ..., 320 dots ¢ §0.01 per comparison

@ Tournaments

18/21

MTurk Experiment (cont'd)

19/21

MTurk Experiment (cont'd)

en=n=mn=>5 en=3
Predicted Pr[max item]: 0.67 °orn=>5
e r3 =37

Predicted Pr[max item]: 0.84

19/21

MTurk Experiment (cont'd)

Varying r;

en=n=mn=>5 en=3

Predicted Pr[max item]: 0.67 °orn=>5
Measured Pr[max item]: 0.69 o r3=237

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80

19/21

MTurk Experiment (cont'd)

Varying r;

en=n=mn=>5 en=3

Predicted Pr[max item]: 0.67 °orn=>5
Measured Pr[max item]: 0.69 o r3=237

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80

Observations

@ Experiments match predictions

@ Varying repetitions (r;) improves results significantly

19/21

Experimental

o Algorithms are robust
@ Repetitive algorithms not helpful
@ Relaxing step bound increases accuracy

@ Finding the top-1 item is usually hard, but top-k% is easy

@ How to analyze tournament and bubble algorithms (for some models)

20/21

Conclusions

It pays off to vary the size of a task (s;)

It pays off to optimize the number of repetitions (r;)

Tournament performs significantly better than bubble

Tuning tournaments improves results in practice

21/21

Conclusions

o It pays off to vary the size of a task (s;)

@ It pays off to optimize the number of repetitions (r;)
@ Tournament performs significantly better than bubble

@ Tuning tournaments improves results in practice

v

@ Spammer detection and appropriate actions

@ Dynamic adjustments to account for comparison difficulty

21/21

