
Max Algorithms in Crowdsourcing Environments

Petros Venetis1 Hector Garcia-Molina1

Kerui Huang2 Neoklis Polyzotis2

1Stanford University

2UC Santa Cruz

April 20, 2012

1 / 21

Crowdsourcing: Getting Tasks done by People

Why?

Humans are better than computers in certain tasks

Human opinions are desired (product and ad design)

Positioning

Worker motivation

: payment

Skills required

: no qualifications

Time for tasks

: microtasks/seconds

2 / 21

Crowdsourcing: Getting Tasks done by People

Why?

Humans are better than computers in certain tasks

Human opinions are desired (product and ad design)

Positioning

Worker motivation

: payment

Skills required

: no qualifications

Time for tasks

: microtasks/seconds

2 / 21

Crowdsourcing: Getting Tasks done by People

Why?

Humans are better than computers in certain tasks

Human opinions are desired (product and ad design)

Positioning

Worker motivation: payment

Skills required: no qualifications

Time for tasks: microtasks/seconds

2 / 21

Crowdsourcing

Issues Mahine LearningSystems Quality ControlUser Interfaes
Spammer DetetionAlgorithms

3 / 21

Max Item Problem: Example

Finding Peak Hours

4 / 21

Max Item Problem: Example

Finding Peak Hours

4 / 21

Max Item Problem: Example

Finding Peak Hours

4 / 21

Crowdsourcing Marketplaces

Example: Amazon’s Mechanical Turk Marketplace

Requester

5 / 21

Crowdsourcing Marketplaces

Example: Amazon’s Mechanical Turk Marketplace

Requester HITs

5 / 21

Crowdsourcing Marketplaces

Example: Amazon’s Mechanical Turk Marketplace

Requester HITs Workers

5 / 21

Crowdsourcing Marketplaces

Example: Amazon’s Mechanical Turk Marketplace

Requester HITs Workers

5 / 21

Crowdsourcing Marketplaces

Example: Amazon’s Mechanical Turk Marketplace

Requester HITs Workers

5 / 21

Crowdsourcing Algorithms

Notion of steps HITs

Step 2
Step 3

Step 1

6 / 21

Max Algorithms

Model

e1
e2

e3
en

E

. . .

Items have inherent quality values

Max item e∗ ∈ E :

e ≤ e∗ ∀e ∈ E \ {e∗}

7 / 21

Max Algorithms

Model

e1
e2

e3
en

E

. . .
Items have inherent quality values

Max item e∗ ∈ E :

e ≤ e∗ ∀e ∈ E \ {e∗}

7 / 21

Max Algorithms

Model

e1
e2

e3
en

E

. . .
Items have inherent quality values

Max item e∗ ∈ E :

e ≤ e∗ ∀e ∈ E \ {e∗}

7 / 21

Worker Tasks

HITs Used: Comparisons

s = 4

r = 3

HIT

8 / 21

Worker Tasks

HITs Used: Comparisons

s = 4

r = 3

HIT 2

1

8 / 21

Crowdsourced Max Algorithms

Structured Algorithms

How to break up the problem to retrieve max item:

Bubble

Tournament

Unstructured Algorithms (not here)

e3

e1 e2

e4

e5

2
4

1 21 1

Which comparison to perform next?

Which item is the max?

9 / 21

Crowdsourced Max Algorithms

Structured Algorithms

How to break up the problem to retrieve max item:

Bubble

Tournament

Unstructured Algorithms (not here)

e3

e1 e2

e4

e5

2
4

1 21 1
Which comparison to perform next?

Which item is the max?

9 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

10 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

s1 = 3

r1 = 5

10 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

s1 = 3

r1 = 5

e1

10 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

s1 = 3

r1 = 5

e1

s2 = 2

r2 = 5

10 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

s1 = 3

r1 = 5

e1

s2 = 2

r2 = 5

e1

10 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

s1 = 3

r1 = 5

e1

s2 = 2

r2 = 5

e1
s3 = 3

r3 = 1

10 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

s1 = 3

r1 = 5

e1

s2 = 2

r2 = 5

e1
s3 = 3

r3 = 1

e1

10 / 21

Max Algorithms: Bubble

Example

e6

e1

e2

e3

e4

e5

s1 = 3

r1 = 5

e1

s2 = 2

r2 = 5

e1
s3 = 3

r3 = 1

e1

Steps = 3Questions = 5 + 5 + 1 = 11

10 / 21

Max Algorithms: Tournament

Example

e1

e2

e3

e4

e5

e6

11 / 21

Max Algorithms: Tournament

Example

e1

e2

e3

e4

e5

e6

s1 = 2

r1 = 5

11 / 21

Max Algorithms: Tournament

Example

e1

e2

e3

e4

e5

e6

s1 = 2

r1 = 5

e1

e4

e6

11 / 21

Max Algorithms: Tournament

Example

e1

e2

e3

e4

e5

e6

s1 = 2

r1 = 5

e1

e4

e6

s2 = 3

r2 = 3

11 / 21

Max Algorithms: Tournament

Example

e1

e2

e3

e4

e5

e6

s1 = 2

r1 = 5

e1

e4

e6

s2 = 3

r2 = 3

e1

11 / 21

Max Algorithms: Tournament

Example

e1

e2

e3

e4

e5

e6

s1 = 2

r1 = 5

e1

e4

e6

s2 = 3

r2 = 3

e1

Steps = 2Questions = 3 · 5 + 1 · 3 = 18

11 / 21

How to select {ri} and {si}

Problem Statement

maximize
A=A({ri},{si})

Pr[A returns max item from E]

subject to Cost(A, E) ≤ B

Steps(A, E) ≤ T

Tuning Strategies (based on hill climbing)

Constant ri , si

Varying ri , constant si

Varying ri , si

12 / 21

How to select {ri} and {si}

Problem Statement

maximize
A=A({ri},{si})

Pr[A returns max item from E]

subject to Cost(A, E) ≤ B

Steps(A, E) ≤ T

Tuning Strategies (based on hill climbing)

Constant ri , si

Varying ri , constant si

Varying ri , si

12 / 21

Models Considered

Comparison Input = {e1, e2, . . . , es}
es < . . . < e2 < e1

pi : probability ei is returned by worker

Worker Error Models

Constant p1 = p, p2 = p3 = . . .

Linear p1 decreases on s

Order-based p1 > p2 > . . . > ps
Distance-based pi ’s depend on value differences of items

Worker Compensation Models

Constant c

Linear c + λ× s

13 / 21

Models Considered

Comparison Input = {e1, e2, . . . , es}
es < . . . < e2 < e1

pi : probability ei is returned by worker

Worker Error Models

Constant p1 = p, p2 = p3 = . . .

Linear p1 decreases on s

Order-based p1 > p2 > . . . > ps
Distance-based pi ’s depend on value differences of items

Worker Compensation Models

Constant c

Linear c + λ× s

13 / 21

Models Considered

Comparison Input = {e1, e2, . . . , es}
es < . . . < e2 < e1

pi : probability ei is returned by worker

Worker Error Models

Constant p1 = p, p2 = p3 = . . .

Linear p1 decreases on s

Order-based p1 > p2 > . . . > ps
Distance-based pi ’s depend on value differences of items

Worker Compensation Models

Constant c

Linear c + λ× s

13 / 21

Experiments

Why Not Analysis?

Analysis only for simple models and still is expensive

Simulations

Used linear error and compensation model

100,000 simulations per data point

14 / 21

Experiments

Why Not Analysis?

Analysis only for simple models and still is expensive

Single HIT Accuracy(s, r ;~p) =

s∑
l=1

1

l
·

r∑
n=1

∑
L∈L

∑
0≤ki≤n−1,i∈L̄∑

i∈L̄ ki+l ·n=r

 r !

(n!)l ·∏j∈L̄ kj !
·
∏
z∈L

pnz ·
∏
w∈L̄

pkww

Simulations

Used linear error and compensation model

100,000 simulations per data point

14 / 21

Experiments

Why Not Analysis?

Analysis only for simple models and still is expensive

Single HIT Accuracy(s, r ;~p) =

s∑
l=1

1

l
·

r∑
n=1

∑
L∈L

∑
0≤ki≤n−1,i∈L̄∑

i∈L̄ ki+l ·n=r

 r !

(n!)l ·∏j∈L̄ kj !
·
∏
z∈L

pnz ·
∏
w∈L̄

pkww

Simulations

Used linear error and compensation model

100,000 simulations per data point

14 / 21

It pays off to vary ri , si

100

0.50.750.25 5025 75
Tournament Constant ri , siVarying riPr[maxitem℄ Budget (B) Varying ri , si

15 / 21

Tournament is better

0.25

0.50

0.75 75 10025 50Budget (B)Pr[maxitem℄ TournamentBubble
16 / 21

It pays off to have more responses towards the end

0

B = 1500B = 4000B = 5500432Step120 Tournament
r i

17 / 21

MTurk Experiment

Dataset

80 and 100 dots

Setting

Learned distance-based model
(si = 4)

Images with 5, 10, . . . , 320 dots

Tournaments

B enough for 105 comparisons

200 runs

$0.01 per comparison

18 / 21

MTurk Experiment

Dataset

80 and 100 dots

Setting

Learned distance-based model
(si = 4)

Images with 5, 10, . . . , 320 dots

Tournaments

B enough for 105 comparisons

200 runs

$0.01 per comparison

18 / 21

MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Varying ri
r1 = 3

r2 = 5

r3 = 37

Observations

Experiments match predictions

Varying repetitions (ri) improves results significantly

19 / 21

MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Predicted Pr[max item]: 0.67

Varying ri
r1 = 3

r2 = 5

r3 = 37

Predicted Pr[max item]: 0.84

Observations

Experiments match predictions

Varying repetitions (ri) improves results significantly

19 / 21

MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Predicted Pr[max item]: 0.67
Measured Pr[max item]: 0.69

Varying ri
r1 = 3

r2 = 5

r3 = 37

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80

Observations

Experiments match predictions

Varying repetitions (ri) improves results significantly

19 / 21

MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Predicted Pr[max item]: 0.67
Measured Pr[max item]: 0.69

Varying ri
r1 = 3

r2 = 5

r3 = 37

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80

Observations

Experiments match predictions

Varying repetitions (ri) improves results significantly

19 / 21

More in paper

Experimental

Algorithms are robust

Repetitive algorithms not helpful

Relaxing step bound increases accuracy

Finding the top-1 item is usually hard, but top-k% is easy

Analysis

How to analyze tournament and bubble algorithms (for some models)

20 / 21

Conclusions

Summary

It pays off to vary the size of a task (si)

It pays off to optimize the number of repetitions (ri)

Tournament performs significantly better than bubble

Tuning tournaments improves results in practice

Current Work

Spammer detection and appropriate actions

Dynamic adjustments to account for comparison difficulty

21 / 21

Conclusions

Summary

It pays off to vary the size of a task (si)

It pays off to optimize the number of repetitions (ri)

Tournament performs significantly better than bubble

Tuning tournaments improves results in practice

Current Work

Spammer detection and appropriate actions

Dynamic adjustments to account for comparison difficulty

21 / 21

