

Max Algorithms in Crowdsourcing Environments

Petros Venetis¹ H Kerui Huang²

Hector Garcia-Molina¹ Neoklis Polyzotis²

¹Stanford University

²UC Santa Cruz

April 20, 2012

Crowdsourcing: Getting Tasks done by People

Why?

• Humans are better than computers in certain tasks

• Human opinions are desired (product and ad design)

Crowdsourcing: Getting Tasks done by People

Why?

• Humans are better than computers in certain tasks

• Human opinions are desired (product and ad design)

Positioning

- Worker motivation
- Skills required
- Time for tasks

Crowdsourcing: Getting Tasks done by People

Why?

• Humans are better than computers in certain tasks

• Human opinions are desired (product and ad design)

Positioning

- Worker motivation: payment
- Skills required: no qualifications
- Time for tasks: microtasks/seconds

Max Item Problem: Example

Finding Peak Hours

Max Item Problem: Example

Finding Peak Hours

Max Item Problem: Example

Finding Peak Hours

Example: Amazon's Mechanical Turk Marketplace

Requester

Crowdsourcing Marketplaces

Crowdsourcing Marketplaces

Crowdsourcing Marketplaces

Crowdsourcing Algorithms

Max Algorithms

Model E (e) (e) (e) (f) (

Max Algorithms

Model

• Items have inherent quality values

Max Algorithms

Model

• Items have inherent quality values

• Max item
$$e^* \in \mathcal{E}$$
:

$$e \leq e^* \; orall e \in \mathcal{E} \setminus \{e^*\}$$

Worker Tasks

HITs Used: Comparisons

Worker Tasks

HITs Used: Comparisons

Structured Algorithms

How to break up the problem to retrieve max item:

- Bubble
- Tournament

Structured Algorithms

How to break up the problem to retrieve max item:

- Bubble
- Tournament

Unstructured Algorithms (not here)

- Which comparison to perform next?
- Which item is the max?

Example

6

Example

6

Example

6

Steps = 2 Questions = $3 \cdot 5 + 1 \cdot 3 = 18$

How to select $\{r_i\}$ and $\{s_i\}$

Problem Statement

 $\begin{array}{ll} \underset{A=\mathcal{A}(\{r_i\},\{s_i\})}{\text{maximize}} & \Pr[A \text{ returns max item from } \mathcal{E}] \\ \text{subject to} & \operatorname{Cost}(A,\mathcal{E}) \leq B \\ & \operatorname{Steps}(A,\mathcal{E}) \leq T \end{array}$

How to select $\{r_i\}$ and $\{s_i\}$

Problem Statement

 $\begin{array}{ll} \underset{A=\mathcal{A}(\{r_i\},\{s_i\})}{\text{maximize}} & \Pr[A \text{ returns max item from } \mathcal{E}] \\ \text{subject to} & \operatorname{Cost}(A,\mathcal{E}) \leq B \\ & \operatorname{Steps}(A,\mathcal{E}) \leq T \end{array}$

Tuning Strategies (based on hill climbing)

- Constant r_i, s_i
- Varying r_i, constant s_i
- Varying r_i, s_i

Models Considered

- Comparison Input = $\{e_1, e_2, \dots, e_s\}$
- $e_s < \ldots < e_2 < e_1$
- p_i: probability e_i is returned by worker

Models Considered

- Comparison Input = $\{e_1, e_2, \dots, e_s\}$
- $e_s < \ldots < e_2 < e_1$
- p_i: probability e_i is returned by worker

Worker Error Models

Constant	$p_1 = p, p_2 = p_3 = \dots$
Linear	p_1 decreases on s
Order-based	$p_1 > p_2 > \ldots > p_s$
Distance-based	p_i 's depend on value differences of items

Models Considered

- Comparison Input = $\{e_1, e_2, \dots, e_s\}$
- $e_s < \ldots < e_2 < e_1$
- p_i: probability e_i is returned by worker

Worker Error Models

Constant	$p_1 = p, p_2 = p_3 = \dots$
Linear	<i>p</i> ₁ decreases on <i>s</i>
Order-based	$p_1 > p_2 > \ldots > p_s$
Distance-based	p_i 's depend on value differences of items

Worker Compensation Models

Constant	С
Linear	$c + \lambda \times s$

Why Not Analysis?

• Analysis only for simple models and still is expensive

Experiments

Why Not Analysis?

Analysis only for simple models and still is expensive

Single HIT Accuracy $(s, r; \vec{p}) =$ $\sum_{l=1}^{s} \frac{1}{l} \cdot \sum_{n=1}^{r} \sum_{L \in \mathcal{L}} \sum_{\substack{0 \le k_i \le n-1, i \in \bar{L} \\ \sum_{i \in \bar{L}} k_i + l \cdot n = r}} \left[\frac{r!}{(n!)^l \cdot \prod_{j \in \bar{L}} k_j!} \cdot \prod_{z \in L} p_z^n \cdot \prod_{w \in \bar{L}} p_w^{k_w} \right]$

Experiments

Why Not Analysis?

Analysis only for simple models and still is expensive

Single HIT Accuracy $(s, r; \vec{p}) =$ $\sum_{l=1}^{s} \frac{1}{l} \cdot \sum_{n=1}^{r} \sum_{L \in \mathcal{L}} \sum_{\substack{0 \le k_i \le n-1, i \in \bar{L} \\ \sum_{i \in \bar{L}} k_i + l \cdot n = r}} \left[\frac{r!}{(n!)^l \cdot \prod_{j \in \bar{L}} k_j!} \cdot \prod_{z \in L} p_z^n \cdot \prod_{w \in \bar{L}} p_w^{k_w} \right]$

Simulations

- Used linear error and compensation model
- 100,000 simulations per data point

It pays off to vary r_i , s_i

Tournament is better

It pays off to have more responses towards the end

MTurk Experiment

Dataset

80 and 100 dots

MTurk Experiment

Dataset

Setting

- Learned distance-based model (*s_i* = 4)
- Images with 5, 10, ..., 320 dots
- Tournaments

- *B* enough for 105 comparisons
- 200 runs
- \$0.01 per comparison

MTurk Experiment (cont'd)

Constant r_i

• $r_1 = r_2 = r_3 = 5$

Varying r_i

•
$$r_1 = 3$$

•
$$r_2 = 5$$

•
$$r_3 = 37$$

MTurk Experiment (cont'd)

Constant r_i

• $r_1 = r_2 = r_3 = 5$

Predicted Pr[max item]: 0.67

Varying r_i

•
$$r_2 = 5$$

•
$$r_3 = 37$$

Predicted Pr[max item]: 0.84

Constant r_i

• $r_1 = r_2 = r_3 = 5$

Predicted Pr[max item]: 0.67 Measured Pr[max item]: 0.69

Varying r_i

•
$$r_2 = 5$$

•
$$r_3 = 37$$

Predicted Pr[max item]: 0.84 Measured Pr[max item]: 0.80

Constant r_i

• $r_1 = r_2 = r_3 = 5$

Predicted Pr[max item]: 0.67 Measured Pr[max item]: 0.69

Varying r_i

•
$$r_2 = 5$$

•
$$r_3 = 37$$

Predicted Pr[max item]: 0.84 Measured Pr[max item]: 0.80

Observations

- Experiments match predictions
- Varying repetitions (r_i) improves results significantly

More in paper

Experimental

- Algorithms are robust
- Repetitive algorithms not helpful
- Relaxing step bound increases accuracy
- Finding the top-1 item is usually hard, but top-k% is easy

Analysis

• How to analyze tournament and bubble algorithms (for some models)

Summary

- It pays off to vary the size of a task (s_i)
- It pays off to optimize the number of repetitions (r_i)
- Tournament performs significantly better than bubble
- Tuning tournaments improves results in practice

Summary

- It pays off to vary the size of a task (s_i)
- It pays off to optimize the number of repetitions (r_i)
- Tournament performs significantly better than bubble
- Tuning tournaments improves results in practice

Current Work

- Spammer detection and appropriate actions
- Dynamic adjustments to account for comparison difficulty