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Crowdsourcing: Getting Tasks done by People

Why?

Humans are better than computers in certain tasks

Human opinions are desired (product and ad design)

Positioning

Worker motivation

: payment

Skills required

: no qualifications

Time for tasks

: microtasks/seconds
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Crowdsourcing

Issues Mahine LearningSystems Quality ControlUser Interfaes
Spammer DetetionAlgorithms
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Max Item Problem: Example

Finding Peak Hours
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Crowdsourcing Marketplaces

Example: Amazon’s Mechanical Turk Marketplace

Requester
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Crowdsourcing Algorithms

Notion of steps HITs

Step 2
Step 3

Step 1

6 / 21



Max Algorithms

Model

e1
e2

e3
en

E

. . .

Items have inherent quality values

Max item e∗ ∈ E :

e ≤ e∗ ∀e ∈ E \ {e∗}
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Worker Tasks

HITs Used: Comparisons

s = 4

r = 3

HIT
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Worker Tasks

HITs Used: Comparisons
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Crowdsourced Max Algorithms

Structured Algorithms

How to break up the problem to retrieve max item:

Bubble

Tournament

Unstructured Algorithms (not here)

e3

e1 e2

e4

e5

2
4

1 21 1

Which comparison to perform next?

Which item is the max?
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Max Algorithms: Bubble

Example
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Max Algorithms: Tournament
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Max Algorithms: Tournament

Example

e1

e2

e3

e4

e5

e6

s1 = 2
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e1

e4
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r2 = 3

e1

Steps = 2Questions = 3 · 5 + 1 · 3 = 18

11 / 21



How to select {ri} and {si}

Problem Statement

maximize
A=A({ri},{si})

Pr[A returns max item from E ]

subject to Cost(A, E) ≤ B

Steps(A, E) ≤ T

Tuning Strategies (based on hill climbing)

Constant ri , si

Varying ri , constant si

Varying ri , si
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Models Considered

Comparison Input = {e1, e2, . . . , es}
es < . . . < e2 < e1

pi : probability ei is returned by worker

Worker Error Models

Constant p1 = p, p2 = p3 = . . .

Linear p1 decreases on s

Order-based p1 > p2 > . . . > ps
Distance-based pi ’s depend on value differences of items

Worker Compensation Models

Constant c

Linear c + λ× s
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Experiments

Why Not Analysis?

Analysis only for simple models and still is expensive

Simulations

Used linear error and compensation model

100,000 simulations per data point
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Simulations

Used linear error and compensation model

100,000 simulations per data point
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It pays off to vary ri , si

100

0.50.750.25 5025 75
Tournament Constant ri , siVarying riPr[maxitem℄ Budget (B) Varying ri , si
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Tournament is better

0.25

0.50

0.75 75 10025 50Budget (B)Pr[maxitem℄ TournamentBubble
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It pays off to have more responses towards the end

0

B = 1500B = 4000B = 5500432Step120 Tournament
r i
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MTurk Experiment

Dataset

80 and 100 dots

Setting

Learned distance-based model
(si = 4)

Images with 5, 10, . . . , 320 dots

Tournaments

B enough for 105 comparisons

200 runs

$0.01 per comparison
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MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Varying ri
r1 = 3

r2 = 5

r3 = 37

Observations

Experiments match predictions

Varying repetitions (ri ) improves results significantly

19 / 21



MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Predicted Pr[max item]: 0.67

Varying ri
r1 = 3

r2 = 5

r3 = 37

Predicted Pr[max item]: 0.84

Observations

Experiments match predictions

Varying repetitions (ri ) improves results significantly

19 / 21



MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Predicted Pr[max item]: 0.67
Measured Pr[max item]: 0.69

Varying ri
r1 = 3

r2 = 5

r3 = 37

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80

Observations

Experiments match predictions

Varying repetitions (ri ) improves results significantly

19 / 21



MTurk Experiment (cont’d)

Constant ri
r1 = r2 = r3 = 5

Predicted Pr[max item]: 0.67
Measured Pr[max item]: 0.69

Varying ri
r1 = 3

r2 = 5

r3 = 37

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80

Observations

Experiments match predictions

Varying repetitions (ri ) improves results significantly

19 / 21



More in paper

Experimental

Algorithms are robust

Repetitive algorithms not helpful

Relaxing step bound increases accuracy

Finding the top-1 item is usually hard, but top-k% is easy

Analysis

How to analyze tournament and bubble algorithms (for some models)
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Conclusions

Summary

It pays off to vary the size of a task (si )

It pays off to optimize the number of repetitions (ri )

Tournament performs significantly better than bubble

Tuning tournaments improves results in practice

Current Work

Spammer detection and appropriate actions

Dynamic adjustments to account for comparison difficulty

21 / 21



Conclusions

Summary

It pays off to vary the size of a task (si )

It pays off to optimize the number of repetitions (ri )

Tournament performs significantly better than bubble

Tuning tournaments improves results in practice

Current Work

Spammer detection and appropriate actions

Dynamic adjustments to account for comparison difficulty

21 / 21


