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Crowdsourcing: Getting Tasks done by People

Why?

@ Humans are better than computers in certain tasks

@ Human opinions are desired (product and ad design)

Positioning
@ Worker motivation: payment

@ Skills required: no qualifications

@ Time for tasks: microtasks/seconds




Crowdsourcing

SYES

User Interfaces

Machine Learning

Quality Control
Systems

Spammer Detection
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Crowdsourcing Marketplaces

Example: Amazon's Mechanical Turk Marketplace
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Crowdsourcing Algorithms

Notion of steps

HITs

Step 1
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Step 2

Step 3
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Max Algorithms
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@ ltems have inherent quality values
@ o Max item e* € &:

e<e*Vec&\{e*}




HITs Used: Comparisons
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Crowdsourced Max Algorithms

Structured Algorithms

How to break up the problem to retrieve max item:
@ Bubble

@ Tournament




Crowdsourced Max Algorithms

Structured Algorithms

How to break up the problem to retrieve max item:
@ Bubble

@ Tournament

Unstructured Algorithms (not here)
4

@ Which comparison to perform next?

@ Which item is the max?




Max Algorithms: Bubble
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Max Algorithms: Bubble

s1=3 Steps = 3
n=>5 Questions =5 +5 4+ 1 =11

©)

DNOI® O
OIS,
2V

®
i

10/21



Max Algorithms: Tournament
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Max Algorithms: Tournament

s1=2
n=>5 =3
n=3 Steps = 2
@ Questions =3 -5+ 1.3 =18
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How to select {r;} and {s;}

Problem Statement

maximize  Pr[A returns max item from &]
A=A({ri}{si})

subject to  Cost(A,€) < B
Steps(A,€) < T
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How to select {r;} and {s;}

Problem Statement

maximize  Pr[A returns max item from &]
A=A({ri}{si})

subject to  Cost(A,€) < B
Steps(A,€) < T

Tuning Strategies (based on hill climbing)
@ Constant r;, s;

e Varying r;, constant s;

o Varying rj, s;

12 /21



Models Considered

e Comparison Input = {e1, e,..., 65}
0 6<...<e<e
@ p;: probability e; is returned by worker
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Models Considered

e Comparison Input = {e1, e,..., 65}
2 & <...<e<Ke

@ p;: probability €; is returned by worker

Worker Error Models

Constant pL=p, P2=p3=...

Linear p1 decreases on s

Order-based pL>p2> ... > ps

Distance-based | p;'s depend on value differences of items

Worker Compensation Models

Constant | ¢
Linear cC+AXs
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Experiments

Why Not Analysis?
@ Analysis only for simple models and still is expensive
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Why Not Analysis?

@ Analysis only for simple models and still is expensive

Single HIT Accuracy(s, r; p) =

Z ZZ > (nl)/ sz [1 A

n=1LeL o<k;<n—1,icL zel wel
E,eLk-i-/n r

v
Simulations

@ Used linear error and compensation model

@ 100,000 simulations per data point
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It pays off to vary r;, s;

Tournament
g 0-75_- ] | = Varying r;, s
.r;u 0.5 4 | == Varying r;
%0_25_ ] | == Constant r;, s;
D_ | I | 1 | L B
25 50 75 100
Budget (B)
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Tournament is better

— FT
E 0.75 |- Tournamen
= 0.50
=l
& 025
25 50 75 100
Budget (B)
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It pays off to have more responses towards the end

Tournament
o0k = 1500
- = 4000
' IH — 5500
0 =11
1 2 3 4
Step
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MTurk Experiment

80 and 100 dots
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MTurk Experiment

80 and 100 dots

@ Learned distance-based model @ B enough for 105 comparisons
(si=4) @ 200 runs
o Images with 5, 10, ..., 320 dots ¢ §0.01 per comparison

@ Tournaments
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MTurk Experiment (cont'd)
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MTurk Experiment (cont'd)

en=n=mn=>5 en=3
Predicted Pr[max item]: 0.67 °orn=>5
e r3 =37

Predicted Pr[max item]: 0.84
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MTurk Experiment (cont'd)

Varying r;

en=n=mn=>5 en=3

Predicted Pr[max item]: 0.67 °orn=>5
Measured Pr[max item]: 0.69 o r3=237

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80
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MTurk Experiment (cont'd)

Varying r;

en=n=mn=>5 en=3

Predicted Pr[max item]: 0.67 °orn=>5
Measured Pr[max item]: 0.69 o r3=237

Predicted Pr[max item]: 0.84
Measured Pr[max item]: 0.80

Observations

@ Experiments match predictions

@ Varying repetitions (r;) improves results significantly
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Experimental

o Algorithms are robust
@ Repetitive algorithms not helpful
@ Relaxing step bound increases accuracy

@ Finding the top-1 item is usually hard, but top-k% is easy

@ How to analyze tournament and bubble algorithms (for some models)
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Conclusions

It pays off to vary the size of a task (s;)

It pays off to optimize the number of repetitions (r;)

Tournament performs significantly better than bubble

Tuning tournaments improves results in practice
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Conclusions

o It pays off to vary the size of a task (s;)

@ It pays off to optimize the number of repetitions (r;)
@ Tournament performs significantly better than bubble

@ Tuning tournaments improves results in practice

v

@ Spammer detection and appropriate actions

@ Dynamic adjustments to account for comparison difficulty
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