

On the Selection of Tags for Tag Clouds

Petros Venetis¹ Georgia Koutrika² Hector Garcia-Molina¹

¹Computer Science Department Stanford University

²IBM Almaden

February 11, 2011

Search example

Tag cloud: set of keywords that describe a set of objects mostly for exploration

Other uses

System	Objects	Tags
Search engines	Webpages	
(e.g., quintura.com)	vvenhages	
CourseRank	Courses	Extracted keywords
Technorati	Blog posts	
PubCloud	Medical publications	
flickr.com	Photographs	Licor supplied words
del.icio.us	Webpages/Bookmarks	Oser supplied words
:	•	•

Our goal

official travel region travel guide accommodation sight NeW airport	tourism ^{china} hong kong hotel	photo hotel reservation special map tour hotels hong
---	---	--

Questions

- What makes a tag cloud good?
- User model?
- Algorithms?

Our focus

- Exploration
- Actual tags (not: color, font size, etc.)

Outline

What is a tag cloud?

Metrics

User model

Algorithms

Experiments

Outline

What is a tag cloud?

Metrics

User model

Algorithms

Experiments

System model

Examined metrics

Metrics examined in our paper

- Extent
- Balance
- Independence
- Popularity

Metrics: Coverage

- Query: "california"
- Result: 5 photographs
- Tag cloud size = 1

Metrics: Overlap

- Query: "california"
- Result: 5 photographs
- Tag cloud size = 2

Metrics: Relevance

- Query: "california"
- Result: 5 photographs
- ► Tag cloud size = 1

Metrics: Cohesiveness

- Query: "california"
- Result: 5 photographs
- ► Tag cloud size = 1

Problem

How to compare tag clouds

- 1. Humans
- 2. Synthetic User

User model

Synthetic user:

- 1. Searches for a particular object
- 2. Queries the system
- 3. Abundance of results
- 4. Unable to refine query
- 5. Has to use tag cloud

Failure probability: probability the synthetic user did not find desired object

User model details: coverage only

Failure probability
$$= 1 - ext{coverage}(\mathcal{T}) = 1 - rac{4}{5} = 0.2$$

User model details: coverage and relevance

User model details

Model trends

Coverage ↑	Failure probability \downarrow
Relevance \uparrow	Failure probability \downarrow
Cohesiveness ↑	Failure probability \downarrow
Overlap ↑	Failure probability \uparrow

Existing algorithms

Algorithms' interface

Input: Query results and associated tags Budget of tags

Output: Subset of the tags of the bipartite graph

Explored algorithms

- Maximum coverage algorithm (COV)
- Popularity-based algorithm (POP)
- Tf-idf algorithms (2 versions: TF and WTF)

Experiments: focus on user model

- Which algorithms work best in real data?
- Can humans agree on the best tag cloud?
- Does our model predict what real users prefer?

Experiments: datasets

del.icio.us (thanks Paul Heymann!)

- ► 100K urls
- \sim 400K tags applied in total

CourseRank

- ► ~18K courses
- ~ 11.5 M keywords (excluding stop-words)

Algorithms ordering is stable

30 queries: various sizes of query results

Figure: CourseRank

Algorithms ordering is stable

▶ 30 queries: various sizes of query results

Algorithms ordering is stable

▶ 30 queries: various sizes of query results

Different ordering! (COV better in CourseRank, TF better in del.icio.us)

Do users agree on one tag cloud?

- del.icio.us dataset
- ▶ 450 "random" pairs of tag clouds
- 5 evaluators for each pair
- Agreement: 4 or more evaluators

Does our user model predict the best tag cloud?

- del.icio.us dataset
- ▶ 450 "random" pairs of tag clouds
- 5 evaluators for each pair
- Agreement: 4 or more evaluators

Conclusions

Summary

- Problem: tag cloud comparison
- Described metrics
- Proposed synthetic user model built on top of the metrics
- Experimentally justified user model
- Provided intuition about algorithms

Future work

- Construction of optimal algorithm
- Items with no assigned tags or spam tags

Thank you! Questions?