
Experiments as Research Validation – Have We Gone too Far?

Jeffrey D. Ullman, July 9, 2013

I recently submitted a paper to VLDB, and when I got the reviews back, I noticed that

the review form now has a question referees are required to answer, about whether the

experiments were well carried out, with choices like “believable” and “not believable.”

The reviewers had a bit of trouble with that question, because my paper had no

experiments; it was a paper about computational complexity of MapReduce algorithms.

Two of the reviewers said the nonexistent experiments were not believable, which is

wrong – you have to see something to disbelieve it.

It appears the database community has now reached the point where experiments are

no longer an option. There was a time when experiments were not normal in a

computer-science research paper. There was even a term in the database community -

- a “Wisconsin-style paper” -- for a paper in which a proposed algorithm was

implemented and experiments regarding its performance were described. Kudos to the

faculty at Wisconsin for seeing the value of using experimentation as a way to

demonstrate the worth of certain ideas. However, now it appears the pendulum has

swung way too far, to the point where experiments are considered the only way to

validate ideas. It is time to restore the balance, where experiments are used when

appropriate, and ideas that require analysis rather than experiments are handled

appropriately, rather than “justified” by inappropriate and meaningless experiments.

Good ideas should stand on their own. Look at the two database ideas that have won

the Turing award: the relational model and 2-phase locking (I know Jim Gray won for

many contributions, but this one is, I think, the centerpiece). Neither paper was about

experiments. Should we have rejected a paper that said “let’s organize data into

relations” because there was no experiment to prove that its queries were executable

more efficiently? Would we want to reject the 2PL paper because it did not measure

experimentally the space required by locking tables?

Please don’t mistake this essay as saying “no paper should have experiments.” The

need for experiments in many situations is clear. Rather, let’s consider what harm the

overemphasis on experiments brings. First, experiments are conducted on particular

data or under particular assumptions. They rarely tell you what happens in other

situations. In contrast, when you do a formal analysis of the resources required by an

algorithm, that analysis applies generally. In a well done analysis, you are forced to

introduce the relevant parameters (amount of main memory, maximum number of

occurrences of a single value of a single attribute, e.g.) that characterize the true

performance of the algorithm.

For example, long ago we discovered algorithms to sort in O(n log n) time. These

algorithms were analyzed formally, using a realistic model of the main memory of a

computer. We didn’t have to run the algorithms and plot their running time to know

they were better than the obvious O(n2) algorithms. There was a place for

experimentation, and some investigations looked at matters such as how many

elements must there be before Quicksort really beats Bubblesort. And of course when

you ran out of main memory, the model no longer applied and you had an unpredicted

increase in running time as you suddenly needed to move data to and from disk. Yet

the basic O(n log n) idea still applies even when you use secondary storage.

But there is a more damaging effect of the seriousness with which we take

experimental results. It encourages the writing of papers that really shouldn’t be

written, because they are so incremental and specialized that their use in practice is

unlikely. There are many areas of database research where the nature of the data can

vary greatly, and performance of different algorithms will vary with the data. Think of

multidimensional indexes, or clustering, or even join algorithms. In research areas of

this kind, it is very easy to find a special form of data and invent an algorithm that

works well in this narrow special case. You then run your experiments on data for

which your algorithm is best suited and compare it with others, which – surprise

surprise – do not work as well. But were you to run your algorithm on the common

cases, or random cases, you would do less well or not well at all. It doesn’t matter; you

can still publish yet another paper about yet another algorithm for doing this or that.

Suppose we expected, as an alternative or supplement to experiments, a formal

analysis of the performance of the algorithm(s) described in a research paper. It would

then be much harder to hide the fact that your algorithm works well only in some

narrow special case. You would need to give expressions for the performance of the

algorithm in all cases, and this expression would be compared with the analogous

expressions for other algorithms. Because these expressions can’t represent the details

of the code that would implement the algorithms involved, you get only a big-oh

estimate of the running times. But Big-oh analysis becomes progressively more

relevant as the data size gets larger, and database research always focuses on the

largest data anyway. Returning to the sorting example, if you know one algorithm is

O(n log n) and another is O(n2), you might not know which is really better for small n,

but you know for certain that the first is better for matters a database researcher might

be interested in.

Another example of the way analysis of algorithms has been downgraded as an

important part of computer science is a blog pointed out on Google+ by Moshe Vardi:

http://feedproxy.google.com/~r/daniel-lemire/atom/~3/4bht7t0oFZc/ In this article,

the author argues that one should never use a model that is not real running time on a

real computer. For example, this author would not accept the O(n log n) lower bound

on sorting, because it is based on counting comparisons rather than machine

instructions executed. If you remember the details of sorting complexity, you know

that the comparison model does not apply in some circumstances.

For example, if you are sorting n integers and they are in the range 1 to n2, then you

can sort in O(n) time. Yet the sorting-by-comparisons model is still highly instructive

and applies whenever you want a sorting algorithm that works on objects without some

special structure like integers. For another example, I’ve been working a lot recently on

communication complexity for MapReduce algorithms. It is generally accepted that for

many problems communication cost is the bottleneck when MapReduce is used,

although there are exceptions. So I think we get some instructive results and

algorithm-design principles out of this analysis, even if it is not conclusive for every

possible MapReduce algorithm.

It is time to recenter the pendulum. So I propose that, as reviewers of submissions to

conferences or journals, we should start by asking whether the value of the proposed

ideas have been analyzed for the general case. We should not accept experiments as a

substitute for a more careful and general analysis, unless there really is no way to

parameterize the input space suitably. And we should not accept experiments on

contrived, specialized data under almost any circumstances. As authors, we should

stop thinking of experiments as a substitute for analysis and deep understanding of why

our algorithms work better than others that have been proposed. A little self-

censorship might be a benefit to the community as well. Not every algorithm that

works in some narrow window has to be published. And of course VLDB should make

the question about experiments optional and include an equivalent question about

whether the analysis of the algorithms is realistic.

http://feedproxy.google.com/~r/daniel-lemire/atom/~3/4bht7t0oFZc/

