Economic considerations

- Search has become the default gateway to the web
- Very high premium to appear on the first page of search results
 - e.g., e-commerce sites
 - advertising-driven sites
What is web spam?

- Spamming = any deliberate action solely in order to boost a web page’s position in search engine results, incommensurate with page’s real value
- Spam = web pages that are the result of spamming
- This is a very broad definition
 - SEO industry might disagree!
 - SEO = search engine optimization
- Approximately 10-15% of web pages are spam
Web Spam Taxonomy

- We follow the treatment by Gyongyi and Garcia-Molina [2004]
- Boosting techniques
 - Techniques for achieving high relevance/importance for a web page
- Hiding techniques
 - Techniques to hide the use of boosting
 - From humans and web crawlers
Boosting techniques

- **Term spamming**
 - Manipulating the text of web pages in order to appear relevant to queries

- **Link spamming**
 - Creating link structures that boost page rank or hubs and authorities scores
Term Spamming

- **Repetition**
 - of one or a few specific terms e.g., free, cheap, viagra
 - Goal is to subvert TF.IDF ranking schemes

- **Dumping**
 - of a large number of unrelated terms
 - e.g., copy entire dictionaries

- **Weaving**
 - Copy legitimate pages and insert spam terms at random positions

- **Phrase Stitching**
 - Glue together sentences and phrases from different sources
Term spam targets

- Body of web page
- Title
- URL
- HTML meta tags
- Anchor text
Link spam

- Three kinds of web pages from a spammer’s point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., web log comments pages
 - spammer can post links to his pages
 - Own pages
 - Completely controlled by spammer
 - May span multiple domain names
Link Farms

- Spammer’s goal
 - Maximize the page rank of target page t

- Technique
 - Get as many links from accessible pages as possible to target page t
 - Construct “link farm” to get page rank multiplier effect
One of the most common and effective organizations for a link farm
Suppose rank contributed by accessible pages = x
Let page rank of target page = y
Rank of each “farm” page = $\beta y/M + (1-\beta)/N$

$y = x + \beta M[\beta y/M + (1-\beta)/N] + (1-\beta)/N$

$= x + \beta^2 y + \beta(1-\beta)M/N + (1-\beta)/N$ Very small; ignore

$y = x/(1-\beta^2) + cM/N$ where $c = \beta/(1+\beta)$
Analysis

- \(y = \frac{x}{1-\beta^2} + c\frac{M}{N} \) where \(c = \frac{\beta}{1+\beta} \)
- For \(\beta = 0.85 \), \(\frac{1}{1-\beta^2} = 3.6 \)
 - Multiplier effect for “acquired” page rank
 - By making \(M \) large, we can make \(y \) as large as we want
Hiding techniques

- **Content hiding**
 - Use same color for text and page background

- **Cloaking**
 - Return different page to crawlers and browsers

- **Redirection**
 - Alternative to cloaking
 - Redirects are followed by browsers but not crawlers
Detecting Spam

- Term spamming
 - Analyze text using statistical methods e.g., Naïve Bayes classifiers
 - Similar to email spam filtering
 - Also useful: detecting approximate duplicate pages

- Link spamming
 - Open research area
 - One approach: TrustRank
TrustRank idea

- Basic principle: approximate isolation
 - It is rare for a “good” page to point to a “bad” (spam) page
- Sample a set of “seed pages” from the web
- Have an oracle (human) identify the good pages and the spam pages in the seed set
 - Expensive task, so must make seed set as small as possible
Trust Propagation

- Call the subset of seed pages that are identified as “good” the “trusted pages”
- Set trust of each trusted page to 1
- Propagate trust through links
 - Each page gets a trust value between 0 and 1
 - Use a threshold value and mark all pages below the trust threshold as spam
Example
Rules for trust propagation

- Trust attenuation
 - The degree of trust conferred by a trusted page decreases with distance

- Trust splitting
 - The larger the number of outlinks from a page, the less scrutiny the page author gives each outlink
 - Trust is “split” across outlinks
Simple model

- Suppose trust of page \(p \) is \(t(p) \)
 - Set of outlinks \(O(p) \)
- For each \(q \in O(p) \), \(p \) confers the trust \(\beta t(p)/|O(p)| \) for \(0 < \beta < 1 \)
- Trust is additive
 - Trust of \(p \) is the sum of the trust conferred on \(p \) by all its inlinked pages
- Note similarity to Topic-Specific Page Rank
 - Within a scaling factor, trust rank = biased page rank with trusted pages as teleport set
Picking the seed set

- Two conflicting considerations
 - Human has to inspect each seed page, so seed set must be as small as possible
 - Must ensure every “good page” gets adequate trust rank, so need make all good pages reachable from seed set by short paths
Approaches to picking seed set

- Suppose we want to pick a seed set of k pages
- PageRank
 - Pick the top k pages by page rank
 - Assume high page rank pages are close to other highly ranked pages
 - We care more about high page rank “good” pages
Inverse page rank

- Pick the pages with the maximum number of outlinks
- Can make it recursive
 - Pick pages that link to pages with many outlinks
- Formalize as “inverse page rank”
 - Construct graph G' by reversing each edge in web graph G
 - Page Rank in G' is inverse page rank in G
- Pick top k pages by inverse page rank