Theory of LSH

Distance Measures
LS Families of Hash Functions
S-Curves
Distance Measures

◆ Generalized LSH is based on some kind of “distance” between points.
 ♦ Similar points are “close.”

◆ Two major classes of distance measure:
 1. Euclidean
 2. Non-Euclidean
Euclidean Vs. Non-Euclidean

◆ A *Euclidean space* has some number of real-valued dimensions and “dense” points.
 - There is a notion of “average” of two points.
 - A *Euclidean distance* is based on the locations of points in such a space.

◆ A *Non-Euclidean distance* is based on properties of points, but not their “location” in a space.
Axioms of a Distance Measure

\(d \) is a distance measure if it is a function from pairs of points to real numbers such that:

1. \(d(x,y) \geq 0 \).
2. \(d(x,y) = 0 \) iff \(x = y \).
3. \(d(x,y) = d(y,x) \).
4. \(d(x,y) \leq d(x,z) + d(z,y) \) (triangle inequality).
Some Euclidean Distances

\(L_2 \) norm : \(d(x,y) = \sqrt{\text{sum of the squares of the differences between} \ x \ \text{and} \ y \ \text{in each dimension}} \)

- The most common notion of “distance.”

\(L_1 \) norm : sum of the differences in each dimension.

- *Manhattan distance* = distance if you had to travel along coordinates only.
Examples of Euclidean Distances

L₂-norm:
\[\text{dist}(x,y) = \sqrt{(4^2 + 3^2)} = 5 \]

L₁-norm:
\[\text{dist}(x,y) = 4 + 3 = 7 \]
Another Euclidean Distance

\(L_\infty \) norm: \(d(x,y) = \) the maximum of the differences between \(x \) and \(y \) in any dimension.

Note: the maximum is the limit as \(n \) goes to \(\infty \) of the \(L_n \) norm: what you get by taking the \(n \)th power of the differences, summing and taking the \(n \)th root.
Non-Euclidean Distances

- **Jaccard distance** for sets $= 1$ minus Jaccard similarity.
- **Cosine distance** $= \text{angle between vectors from the origin to the points in question.}$
- **Edit distance** $= \text{number of inserts and deletes to change one string into another.}$
- **Hamming Distance** $= \text{number of positions in which bit vectors differ.}$
Jaccard Distance for Sets (Bit-Vectors)

- **Example**: $p_1 = 10111; p_2 = 10011$.
- Size of intersection $= 3$; size of union $= 4$, Jaccard similarity (not distance) $= 3/4$.
- $d(x,y) = 1 - $ (Jaccard similarity) $= 1/4$.
Why J.D. Is a Distance Measure

- $d(x,x) = 0$ because $x \cap x = x \cup x$.
- $d(x,y) = d(y,x)$ because union and intersection are symmetric.
- $d(x,y) \geq 0$ because $|x \cap y| \leq |x \cup y|$.
- $d(x,y) \leq d(x,z) + d(z,y)$ trickier – next slide.
Triangle Inequality for J.D.

\[
1 - \frac{|x \cap z|}{|x \cup z|} + 1 - \frac{|y \cap z|}{|y \cup z|} \geq 1 - \frac{|x \cap y|}{|x \cup y|}
\]

\(\text{Remember: } |a \cap b|/|a \cup b| = \text{probability that minhash}(a) = \text{minhash}(b).\)

\(\text{Thus, } 1 - |a \cap b|/|a \cup b| = \text{probability that minhash}(a) \neq \text{minhash}(b).\)
Triangle Inequality – (2)

◆ **Claim**: \(\text{prob}[\text{minhash}(x) \neq \text{minhash}(y)] \leq \text{prob}[\text{minhash}(x) \neq \text{minhash}(z)] + \text{prob}[\text{minhash}(z) \neq \text{minhash}(y)]\)

◆ **Proof**: whenever \(\text{minhash}(x) \neq \text{minhash}(y)\), at least one of \(\text{minhash}(x) \neq \text{minhash}(z)\) and \(\text{minhash}(z) \neq \text{minhash}(y)\) must be true.
Cosine Distance

Think of a point as a vector from the origin (0,0,...,0) to its location.

Two points’ vectors make an angle, whose cosine is the normalized dot-product of the vectors: \(p_1 \cdot p_2 / |p_2||p_1| \).

- Example: \(p_1 = 00111; p_2 = 10011 \).
- \(p_1 \cdot p_2 = 2; |p_1| = |p_2| = \sqrt{3} \).
- \(\cos(\theta) = 2/3; \theta \) is about 48 degrees.
Cosine-Measure Diagram

\[d(p_1, p_2) = \theta = \arccos\left(\frac{p_1 \cdot p_2}{|p_2||p_1|}\right) \]
Why C.D. Is a Distance Measure

- $d(x,x) = 0$ because $\arccos(1) = 0$.
- $d(x,y) = d(y,x)$ by symmetry.
- $d(x,y) \geq 0$ because angles are chosen to be in the range 0 to 180 degrees.
- **Triangle inequality**: physical reasoning. If I rotate an angle from x to z and then from z to y, I can’t rotate less than from x to y.
Edit Distance

◆ The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently:

◆ \(d(x,y) = |x| + |y| - 2|LCS(x,y)|. \)
 - LCS = longest common subsequence = any longest string obtained both by deleting from \(x \) and deleting from \(y \).
Example: LCS

- $x = abcde$; $y = bcduve$.
- Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
- Or, $LCS(x,y) = bcde$.
- Note: $|x| + |y| - 2|LCS(x,y)| = 5 + 6 - 2*4 = 3 = \text{edit distance.}$
Why Edit Distance Is a Distance Measure

- \(d(x, x) = 0 \) because 0 edits suffice.
- \(d(x, y) = d(y, x)\) because insert/delete are inverses of each other.
- \(d(x, y) \geq 0\): no notion of negative edits.
- **Triangle inequality**: changing \(x\) to \(z\) and then to \(y\) is one way to change \(x\) to \(y\).
Variant Edit Distances

- Allow insert, delete, and *mutate*.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Ditto for any set of operations on strings.
 - **Example**: substring reversal OK for DNA sequences
Hamming Distance

- **Hamming distance** is the number of positions in which bit-vectors differ.
- **Example:** \(p_1 = 10101; p_2 = 10011. \)
- \(d(p_1, p_2) = 2 \) because the bit-vectors differ in the 3\(^{rd}\) and 4\(^{th}\) positions.
Why Hamming Distance Is a Distance Measure

\[d(x, x) = 0 \text{ since no positions differ.} \]

\[d(x, y) = d(y, x) \text{ by symmetry of “different from.”} \]

\[d(x, y) \geq 0 \text{ since strings cannot differ in a negative number of positions.} \]

Triangle inequality: changing \(x \) to \(z \) and then to \(y \) is one way to change \(x \) to \(y \).
Families of Hash Functions

1. A “hash function” is any function that takes two elements and says whether or not they are “equal” (really, are candidates for similarity checking).
 ◆ **Shorthand**: $h(x) = h(y)$ means “h says x and y are equal.”

2. A **family** of hash functions is any set of functions as in (1).
LS Families of Hash Functions

- Suppose we have a space S of points with a distance measure d.
- A family \mathcal{H} of hash functions is said to be (d_1, d_2, p_1, p_2)-sensitive if for any x and y in S:
 1. If $d(x,y) \leq d_1$, then prob. over all h in \mathcal{H}, that $h(x) = h(y)$ is at least p_1.
 2. If $d(x,y) \geq d_2$, then prob. over all h in \mathcal{H}, that $h(x) = h(y)$ is at most p_2.

LS Families: **Illustration**

- High probability; at least p_1
- Low probability; at most p_2
Example: LS Family

Let $S =$ sets, $d =$ Jaccard distance, H is formed from the minhash functions for all permutations.

Then Prob[$h(x) = h(y)$] = $1 - d(x, y)$.

Restates theorem about Jaccard similarity and minhashing in terms of Jaccard distance.
Example: LS Family – (2)

Claim: \(H \) is a \((1/3, 2/3, 2/3, 1/3)\)-sensitive family for \(S \) and \(d \).

If distance \(\leq 1/3 \) (so similarity \(\geq 2/3 \))

Then probability that minhash values agree is \(\geq 2/3 \)
Comments

1. For Jaccard similarity, minhashing gives us a \((d_1, d_2, (1-d_1), (1-d_2))\)-sensitive family for any \(d_1 < d_2\).

2. The theory leaves unknown what happens to pairs that are at distance between \(d_1\) and \(d_2\).

 - **Consequence**: no guarantees about fraction of false positives in that range.
Amplifying a LS-Family

- The “bands” technique we learned for signature matrices carries over to this more general setting.
- **Goal**: the “S-curve” effect seen there.
- **AND construction** like “rows in a band.”
- **OR construction** like “many bands.”
AND of Hash Functions

◆ Given family H, construct family H' consisting of r functions from H.

◆ For $h = [h_1, \ldots, h_r]$ in H', $h(x) = h(y)$ if and only if $h_i(x) = h_i(y)$ for all i.

◆ Theorem: If H is (d_1, d_2, p_1, p_2)-sensitive, then H' is $(d_1, d_2, (p_1)^r, (p_2)^r)$-sensitive.

◆ Proof: Use fact that h_i’s are independent.
OR of Hash Functions

◆ Given family \(H \), construct family \(H' \) consisting of \(b \) functions from \(H \).

◆ For \(h = [h_1, \ldots, h_b] \) in \(H' \), \(h(x) = h(y) \) if and only if \(h_i(x) = h_i(y) \) for some \(i \).

◆ **Theorem**: If \(H \) is \((d_1, d_2, p_1, p_2)\)-sensitive, then \(H' \) is \((d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)\)-sensitive.
Effect of AND and OR Constructions

- **AND** makes all probabilities shrink, but by choosing r correctly, we can make the lower probability approach 0 while the higher does not.

- **OR** makes all probabilities grow, but by choosing b correctly, we can make the upper probability approach 1 while the lower does not.
Composing Constructions

As for the signature matrix, we can use the AND construction followed by the OR construction.
- Or vice-versa.
- Or any sequence of AND’s and OR’s alternating.
AND-OR Composition

- Each of the two probabilities \(p \) is transformed into \(1-(1-p^r)^b \).
 - The “S-curve” studied before.

- **Example**: Take \(H \) and construct \(H' \) by the AND construction with \(r = 4 \). Then, from \(H' \), construct \(H'' \) by the OR construction with \(b = 4 \).
Table for Function $1-(1-p^4)^4$

<table>
<thead>
<tr>
<th>p</th>
<th>$1-(1-p^4)^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.0064</td>
</tr>
<tr>
<td>.3</td>
<td>.0320</td>
</tr>
<tr>
<td>.4</td>
<td>.0985</td>
</tr>
<tr>
<td>.5</td>
<td>.2275</td>
</tr>
<tr>
<td>.6</td>
<td>.4260</td>
</tr>
<tr>
<td>.7</td>
<td>.6666</td>
</tr>
<tr>
<td>.8</td>
<td>.8785</td>
</tr>
<tr>
<td>.9</td>
<td>.9860</td>
</tr>
</tbody>
</table>

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.
OR-AND Composition

◆ Each of the two probabilities \(p \) is transformed into \((1-(1-p)^b)^r \).
 ✷ The same S-curve, mirrored horizontally and vertically.

◆ **Example**: Take \(H \) and construct \(H' \) by the OR construction with \(b = 4 \). Then, from \(H' \), construct \(H'' \) by the AND construction with \(r = 4 \).
Table for Function $\left(1-(1-p)^4\right)^4$

<table>
<thead>
<tr>
<th>p</th>
<th>$\left(1-(1-p)^4\right)^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.0140</td>
</tr>
<tr>
<td>.2</td>
<td>.1215</td>
</tr>
<tr>
<td>.3</td>
<td>.3334</td>
</tr>
<tr>
<td>.4</td>
<td>.5740</td>
</tr>
<tr>
<td>.5</td>
<td>.7725</td>
</tr>
<tr>
<td>.6</td>
<td>.9015</td>
</tr>
<tr>
<td>.7</td>
<td>.9680</td>
</tr>
<tr>
<td>.8</td>
<td>.9936</td>
</tr>
</tbody>
</table>

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family.
Cascading Constructions

◆ **Example**: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction.

◆ Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)-sensitive family.

◆ Note this family uses 256 of the original hash functions.
For each S-curve $1 - (1 - p^r)^b$, there is a threshold t, for which $1 - (1 - t^r)^b = t$.

Above t, high probabilities are increased; below t, they are decreased.

You improve the sensitivity as long as the low probability is less than t, and the high probability is greater than t.

Iterate as you like.
Use of S-Curves – (2)

Thus, we can pick any two distances $x < y$, start with a $(x, y, (1-x), (1-y))$-sensitive family, and apply constructions to produce a (x, y, p, q)-sensitive family, where p is almost 1 and q is almost 0.

The closer to 0 and 1 we get, the more hash functions must be used.
For cosine distance, there is a technique analogous to minhashing for generating a \((d_1,d_2,(1-d_1/180),(1-d_2/180))\)-sensitive family for any \(d_1\) and \(d_2\).

Called *random hyperplanes*.
Random Hyperplanes

◆ Pick a random vector ν, which determines a hash function h_ν with two buckets.

◆ $h_\nu(x) = +1$ if $\nu.x > 0$; $= -1$ if $\nu.x < 0$.

◆ LS-family $H = \text{set of all functions derived from any vector.}$

◆ Claim: $\text{Prob}[h(x) = h(y)] = 1 - (\text{angle between } x \text{ and } y \text{ divided by 180}).$
Proof of Claim

Look in the plane of x and y.

Hyperplanes for which $h(x) = h(y)$

Hyperplanes (normal to ν) for which $h(x) \neq h(y)$

$\text{Prob[Red case]} = \theta/180$
Signatures for Cosine Distance

- Pick some number of vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1’s and –1’s that can be used for LSH like the minhash signatures for Jaccard distance.
- But you don’t have to think this way.
- The existence of the LS-family is sufficient for amplification by AND/OR.
Simplification

- We need not pick from among all possible vectors ν to form a component of a sketch.
- It suffices to consider only vectors ν consisting of +1 and −1 components.
LSH for Euclidean Distance

◆ Simple idea: hash functions correspond to lines.
◆ Partition the line into buckets of size a.
◆ Hash each point to the bucket containing its projection onto the line.
◆ Nearby points are always close; distant points are rarely in same bucket.
Projection of Points

If $d \gg a$, θ must be close to 90° for there to be any chance points go to the same bucket.

If $d \ll a$, then the chance the points are in the same bucket is at least $1 - \frac{d}{a}$.
An LS-Family for Euclidean Distance

◆ If points are distance $\geq 2a$ apart, then $60 \leq \theta \leq 90$ for there to be a chance that the points go in the same bucket.
 - I.e., at most 1/3 probability.
◆ If points are distance $\leq a/2$, then there is at least $\frac{1}{2}$ chance they share a bucket.
◆ Yields a $(a/2, 2a, 1/2, 1/3)$-sensitive family of hash functions.
Fixup: Euclidean Distance

- For previous distance measures, we could start with an \((x, y, p, q)\)-sensitive family for any \(x < y\), and drive \(p\) and \(q\) to 1 and 0 by AND/OR constructions.
- Here, we seem to need \(y \geq 4x\).
Fixup – (2)

- But as long as $x < y$, the probability of points at distance x falling in the same bucket is greater than the probability of points at distance y doing so.

- Thus, the hash family formed by projecting onto lines is an (x, y, p, q)-sensitive family for some $p > q$.
 - Then, amplify by AND/OR constructions.