Recommendation Systems
Netflix Challenge

Anand Rajaraman, Jeffrey D. Ullman
Recommendations

Search → Recommendations

Items

Products, web sites, blogs, news items, …
From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How *Into Thin Air* made *Touching the Void* a bestseller
The Long Tail

Source: Chris Anderson (2004)
Recommendation Types

- Editorial
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...
Formal Model

- $C = \text{set of Customers}$
- $S = \text{set of Items}$
- Utility function $u: C \times S \rightarrow R$
 - $R = \text{set of ratings}$
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in $[0,1]$
Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>King Kong</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Nacho Libre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>
Key Problems

- Gathering “known” ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods
Gathering Ratings

☐ Explicit
 ■ Ask people to rate items
 ■ Doesn’t work well in practice – people can’t be bothered

☐ Implicit
 ■ Learn ratings from user actions
 ■ e.g., purchase implies high rating
 ■ What about low ratings?
Extrapolating Utilities

- Key problem: matrix U is sparse
 - most people have not rated most items
- Three approaches
 - Content-based
 - Collaborative
 - Hybrid
Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C

- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...

- Websites, blogs, news
 - recommend other sites with “similar” content
Plan of action

- Recommend
 - User profile
 - Red Circles
 - Triangles
 - Item profiles
 - Red Circles
 - Triangles
 - Match
 - Likes

- Build
Item Profiles

☐ For each item, create an item profile

☐ Profile is a set of features
 ■ movies: author, title, actor, director,...
 ■ text: set of “important” words in document

☐ How to pick important words?
 ■ Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)
TF.IDF

\(f_{ij} = \text{frequency of term } t_i \text{ in document } d_j \)

\[TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \]

\(n_i = \text{number of docs that mention term } i \)

\(N = \text{total number of docs} \)

\[IDF_i = \log \frac{N}{n_i} \]

TF.IDF score \(w_{ij} = TF_{ij} \cdot IDF_i \)

Doc profile = set of words with highest TF.IDF scores, together with their scores
User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...

- Prediction heuristic
 - Given user profile c and item profile s, estimate $u(c,s) = \cos(c,s) = \frac{c.s}{||c|| ||s||}$
 - Need efficient method to find items with high utility: later
Model-based approaches

- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - e.g., Bayesian, regression, SVM

- Apply classifier to each item to find recommendation candidates

- Problem: scalability
 - Won’t investigate further in this class
Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user’s content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?
Collaborative Filtering

- Consider user c
- Find set D of other users whose ratings are “similar” to c’s ratings
- Estimate user’s ratings based on ratings of users in D
Similar users

- Let r_x be the vector of user x’s ratings
- Cosine similarity measure
 - $\text{sim}(x,y) = \cos(r_x, r_y)$

- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

\[
\text{sim}(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)(r_{ys} - \bar{r}_y)}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)^2 (r_{ys} - \bar{r}_y)^2}}
\]
Rating predictions

- Let D be the set of k users most similar to c who have rated item s
- Possibilities for prediction function (item s):
 - $r_{cs} = 1/k \sum_{d \in D} r_{ds}$
 - $r_{cs} = (\sum_{d \in D} \text{sim}(c,d) \cdot r_{ds}) / (\sum_{d \in D} \text{sim}(c,d))$
- Other options?
- Many tricks possible...
Complexity

- Expensive step is finding k most similar customers
 - $O(|U|)$
- Too expensive to do at runtime
 - Need to pre-compute
- Naïve precomputation takes time $O(N|U|)$
 - Simple trick gives some speedup
- Can use clustering, partitioning as alternatives, but quality degrades
Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than user-user
Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?
Hybrid Methods

- Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem
Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives
Problems with Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions

- In practice, we care only to predict high ratings
 - RMSE might penalize a method that does well for high ratings and badly for others
Tip: Add data

- Leverage all the Netflix data
 - Don’t try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More Data Beats Better Algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
Finding similar vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high cosine-similarity
 - e.g., user profiles, item profiles
- Perfect set-up for next topic!
 - Near-neighbor search in high dimensions