CHAPTER

0
= 14.1

14

Predicate
Logic

We now turn our attention to a generalization of propositional logic, called “predi-
cate,” or “first-order,” logic. Predicates are functions of zero or more variables that
return Boolean values. Thus predicates can be true sometimes and false sometimes,
depending on the values of their arguments. For example, we shall find in predicate
logic atomic operands such as ¢sg(C, S, G). Here, csg is the predicate name, and
C, S, and G are arguments. We can think of this expression as a representation
in logic of the database relation Course-Student-Grade of Fig. 8.1. It returns the
value TRUE whenever the values of C, S, and G are such that student S got grade
G in course C, and it returns FALSE otherwise.

Using predicates as atomic operands, instead of propositional variables, gives
us a more powerful language than expressions involving only propositions. In fact,
predicate logic is expressive enough to form the basis of a number of useful program-
ming languages, such as Prolog (which stands for “Programming in logic”) and the
language SQL that we mentioned in Section 8.7. Predicate logic is also used in rea-
soning systems or “expert” systems, such as automatic medical diagnosis programs
and theorem-proving programs.

What This Chapter Is About

We introduce predicates in Section 14.2. As we shall see, predicates provide much
greater power to express ideas formally than do propositional variables. Much of
the development of predicate logic parallels that of propositional logic in Chapter
12, although there are important differences.

0 Expressions of predicate logic can be built from predicates using the operators
of propositional logic (Section 14.3).

O “Quantifiers” are operators of predicate logic that have no counterpart in
propositional logic (Section 14.4). We can use quantifiers to state that an
expression is true for all values of some argument or that there exists at least
one value of the argument that makes the expression true.

733

0
00 14.2

734 PREDICATE LOGIC

O “Interpretations” for expressions of predicate logic are possible meanings for
the predicates and variables (Section 14.5). They are analogous to truth as-
signments in propositional logic.

O Tautologies of predicate logic are expressions that are true for all interpreta-
tions. Some tautologies of predicate logic are analogs of tautologies for propo-
sitional logic (Section 14.6), while others are not (Section 14.7).

O Proofs in predicate logic can be carried out in a manner similar to proofs in
propositional logic (Sections 14.8 and 14.9).

In Section 14.10 we discuss some of the implications of predicate logic as to our
ability to compute answers to questions. We shall discover the following:

0 A statement’s being a tautology does not mean that it is provable in certain
proof systems.

O In particular, Godel’s incompleteness theorem tells us that there is a specialized
form of predicate logic, dealing with the integers, in which no proof system can
provide proofs of every tautology.

0 Further, Turing’s theorem tells us that there are problems we can state but
cannot solve by any computer. An example is whether or not a given C program
goes into an infinite loop on certain inputs.

Predicates

A predicate is a generalization of a propositional variable. Recalling Section 12.10,
suppose that we have three propositions: r (“It is raining”), u (“Joe takes his
umbrella”), and w (“Joe gets wet”). Suppose further that we have three hypotheses,
or expressions that we assume are true: r — u (“If it rains, then Joe takes his

umbrella”), v — @ (“If Joe takes an umbrella, then he doesn’t get wet”), and
7 — w (“If it doesn’t rain, Joe doesn’t get wet”).

What is true for Joe is also true for Mary, and Sue, and Bill, and so on. Thus
we might think of the proposition u as .., while w is the proposition w . If we
do, we have the hypotheses

T — UJoes Ujoe — Wioe, aNd T — W joe

If we define the proposition unsqry to mean that Mary takes her umbrella, and
Whrary to mean that Mary gets wet, then we have the similar set of hypotheses

T — UMary, UMary — WMary, and 7 — WM ary

We could go on like this, inventing propositions to talk about every individual
X we know of and stating the hypotheses that relate the proposition r to the new
propositions ux and wx, namely,

r—ux, ux — Wx, and 7 — wWx

Variables and
constants

Ground atomic
formula

SEC. 14.2 PREDICATES 735

We have now arrived at the notion of a predicate. Instead of an infinite col-
lection of propositions uyx and wy, we can define symbol u to be a predicate that
takes an argument X. The expression u(X) can be interpreted as saying “X takes
his or her umbrella.” Possibly, for some values of X, u(X) is true, and for other
values of X, u(X) is false. Similarly, w can be a predicate; informally w(X) says
“X gets wet.”

The propositional variable r can also be treated as a predicate with zero argu-
ments. That is, whether it is raining does not depend on the individual X the way
u and w do.

We can now write our hypotheses in terms of the predicates as follows:

1. 7 — w(X). (For any individual X, if it is raining, then X takes his or her
umbrella.)

2. w(X)— NOT w(X). (No matter who you are, if you take your umbrella, then
you won't get wet.)

3. NOTr — NOT w(X). (If it doesn’t rain, then nobody gets wet.)

Atomic Formulas

An atomic formula is a predicate with zero or more arguments. For example, u(X)
is an atomic formula with predicate u and one argument, here occupied by the
variable X. In general, an argument is either a variable or a constant.! While, in
principle, we must allow any sort of value for a constant, we shall usually imagine
that values are integers, reals, or character strings.

Variables are symbols capable of taking on any constant as value. We should
not confuse “variables” in this sense with “propositional variables,” as used in Chap-
ter 12. In fact, a propositional variable is equivalent to a predicate with no argu-
ments, and we shall write p for an atomic formula with predicate name p and zero
arguments.

An atomic formula all of whose arguments are constants is called a ground
atomic formula. Nonground atomic formulas can have constants or variables as
arguments, but at least one argument must be a variable. Note that any proposition,
being an atomic formula with no arguments, has “all arguments constant,” and is
therefore a ground atomic formula.

Distinguishing Constants From Variables

We shall use the following convention to distinguish constants from variables. A
variable name will always begin with an upper-case letter. Constants are represented
either by

1. Character strings beginning with a lower-case letter,
2. Numbers, like 12 or 14.3, or

3. Quoted character strings.

1 Predicate logic also allows arguments that are more complicated expressions than single
variables or constants. These are important for certain purposes that we do not discuss in
this book. Therefore, in this chapter we shall only see variables and constants as arguments
of predicates.

0
= 14.3

Ground literal

736 PREDICATE LOGIC

Thus, if we want to represent course CS101 by a constant, we could write it as
“CS1017, for example.?

Predicates, like constants, will be represented by character strings beginning
with a lower-case letter. There is no possibility that we can confuse a predicate
with a constant, since constants can only appear within argument lists in an atomic
formula, while predicates cannot appear there.

Example 14.1. We might invent a predicate name csg to represent the in-
formation contained in the Course-Student-Grade relation discussed in Section 8.2.
The atomic formula csg(C,S,G) can be thought of as saying, of variables C, S,
and G, that student S took course C' and got grade GG. Put another way, when we
substitute constants ¢ for C, s for S, and g for G, the value of csg(c, s, g) is TRUE if
and only if student s took course ¢ and got grade g.

We can also express the particular facts (i.e., tuples) in the relation as ground
atomic formulas, by using constants as arguments. For instance, the first tuple of
Fig. 8.1 could be expressed as csg(“CS1017,12345, “A”), asserting that the student
with ID 12345 got an A in CS101. Finally, we can mix constants and variables as
arguments, so that we might see an atomic formula like csg(“CS1017, S, G). This
atomic formula is true if variables S and G take on any pair of values (s, g) such
that s is a student who took course CS101, and got grade g and false otherwise. [

EXERCISES

14.2.1: Identify the following as constants, variables, ground atomic formulas, or
nonground atomic formulas, using the conventions of this section.

a) (CS205

b) ¢s205

¢) 205

d) “cs205”

¢) p(X,)

0 p(3,4,5)
g) “p(3,4,5)"

Logical Expressions

The notions that we used in Chapter 12 for propositional logic — literals, logical
expressions, clauses, and so on — carry over to predicate logic. In the next section
we introduce two additional operators to form logical expressions. However, the
basic idea behind the construction of logical expressions remains essentially the
same in both propositional and predicate logic.

Literals

A literal is either an atomic formula or its negation. If there are no variables among
the arguments of the atomic formula, then the literal is a ground literal.

2 Constants are often called “atoms” in logic. Unfortunately, what we have referred to as
“atomic formulas” are also called “atoms” at times. We shall generally avoid the term
“atom.”

SEC. 14.3 LOGICAL EXPRESSIONS 737

Example 14.2. p(X,a) is an atomic formula and a literal. It is not ground
because of the argument X, which is a variable by our convention. NOT p(X,a) is a
literal, but not an atomic formula, and not a ground literal. The expressions p(a, b)
and NOT p(a, b) are ground literals; only the first is a (ground) atomic formula. [

As for propositional logic, we can use an overbar in place of the NOT operator.
However, the bars become confusing to read when applied to a long expression, and
we shall see NOT used more frequently in this chapter than in Chapter 12.

Logical Expressions

We can build expressions from atomic formulas just as we built expressions in
Section 12.3 from propositional variables. We shall continue to use the operators
AND, OR, NOT, —, and =, as well as other logical connectives discussed in Chapter
12. In the next section, we introduce “quantifiers,” operators that can be used to
construct expressions in predicate logic but have no counterpart in propositional
logic.

As with the bar shorthand for NOT, we can continue to use the shorthands of
juxtaposition (no operator) for AND and + for OR. However, we use these shorthands
infrequently because they tend to make the longer expressions of predicate logic hard
to understand.

The following example should give the reader some insight into the meaning
of logical expressions. However, note that this discussion is a considerable oversim-
plification, and we shall have to wait until Section 14.5 to discuss “interpretations”
and the meaning that they impart to logical expressions in predicate logic.

Example 14.3. Suppose that we have predicates csg and snap, which we
interpret as the relations Course-Student-Grade and Student-Name-Address-Phone
that were introduced in Chapter 8. Suppose also that we want to find the grade
of the student named “C. Brown” in course CS101. We could assert the logical
expression

(csg(“CS1017, S, G) AND snap(S, “C. Brown”, A, P)) — answer(G) (14.1)

Here, answer is another predicate, intended to be true of a grade G if G is the
grade of some student named “C. Brown” in CS101.

When we “assert” an expression, we mean that its value is TRUE no matter
what values we substitute for its variables. Informally, an expression such as (14.1)
can be interpreted as follows. If we substitute a constant for each of the variables,
then each of the atomic formulas becomes a ground atomic formula. We can decide
whether a ground atomic formula is true or false by referring either to the “real
world,” or by looking it up in a relation that lists the true ground atomic formulas
with a given predicate. When we substitute 0 or 1 for each of the ground atomic
formulas, we can evaluate the expression itself, just as we did for propositional logic
expressions in Chapter 12.

In the case of expression (14.1), we can take the tuples in Fig. 8.1 and 8.2(a)
to be true. In particular,

csg(“CS1017,12345, “A”)

Clause

738 PREDICATE LOGIC

and
snap(12345, “C. Brown”, “12 Apple St.”, “555-1234")

are true. Then we can let

S = 12345

G — “A”

A = “12 Apple St.”
P = “555-1234”

That makes the left side of (14.1) become 1 AND 1, which has the value 1, of course.
In principle, we don’t know anything about the predicate answer. However, we
asserted (14.1), which means that whatever values we substitute for its variables,
its value is TRUE. Since its left side is made TRUE by the above substitution, the
right side cannot be FALSE. Thus we deduce that answer(“A”) is true. O

Other Terminology

We shall use other terms associated with propositional logic as well. In general,
when in Chapter 12 we spoke of propositional variables, in this chapter we speak of
any atomic formula, including a predicate with zero arguments (i.e., a propositional
variable) as a special case. For example, a clause is a collection of literals, connected
by OR’s. Similarly, an expression is said to be in product-of-sums form if it is the
AND of clauses. We may also speak of sum-of-products form, where the expression
is the OR of terms and each such term is the AND of literals.

EXERCISES

14.3.1: Write an expression similar to (14.1) for the question “What grade did
L. Van Pelt get in PH100?” For what value of its argument is answer definitely
true, assuming the facts of Figs. 8.1 and 8.27 What substitution for variables did
you make to demonstrate the truth of this answer?

14.3.2: Let cdh be a predicate that stands for the Course-Day-Hour relation of
Fig. 8.2(c), and cr a predicate for the Course-Room relation of Fig. 8.2(d). Write
an expression similar to (14.1) for the question “Where is C. Brown 9AM Monday
morning?” (More precisely, in what room does the course C. Brown is taking on
Monday at 9AM meet?) For what value of its argument is answer definitely true,
assuming the facts of Figs. 8.1 and 8.27 What substitution for variables did you
make to demonstrate the truth of this answer?

14.3.3**: Each of the operations of relational algebra discussed in Section 8.7 can
be expressed in predicate logic, using an expression like (14.1). For example, (14.1)
itself is the equivalent of the relational algebra expression

TGrade (UCourse:“08101” AND Name=“C.Brown” (CSG > SNAP))

Show how the effect of each of the operations selection, projection, join, union, in-
tersection, and difference can be expressed in predicate logic in the form “expression
implies answer.” Then translate each of the relational algebra expressions found in
the examples of Section 8.7 into logic.

0
= 14.4

“There exists”

“For all”

Universal and
existential
quantifiers

SEC. 14.4 QUANTIFIERS 739

Quantifiers

Let us return to our example involving the zero-argument predicate r (“It is rain-
ing”) and the one-argument predicates u(X) (“X takes his umbrella) and w(X)
(“X gets wet”). We might wish to assert that “If it rains, then somebody gets
wet.” Perhaps we could try

r — w(“Joe”) OR w(“Sally”) OR w(“Sue”) OR w(“Sam”) OR - - -
But this attempt fails because

1. We can write as an expression the OR of any finite set of expressions, but we
cannot write the OR of an infinite set of expressions.

2. We don’t know the complete set of individuals about whom we are speaking.

To express the OR of a collection of expressions formed by substituting every
possible value for some variable X, we need an additional way to create expressions
of predicate logic. The operator is 3, read “there exists.” We use it in expressions
such as (3X)w(X), or informally, “There exists an individual X such that X gets
wet.” In general, if F is any logical expression, then (3X)(E) is also a logical
expression.? Its informal meaning is that there is at least one value of X that
makes F true. More precisely, for every value of E’s other variables, we can find
some value of X (not necessarily the same value in all cases) to make E true.

Similarly, we cannot write the infinite AND of expressions like

u(“Joe”) AND u(“Sally”) AND u(“Sue”) AND u(“Sam”) AND - - -

We instead need a symbol V (read “for all”) to let us construct the AND of the
collection of expressions formed from a given expression by substituting all possible
values for a given variable. We write (VX)u(X) in this example to mean “for all
X, X takes his or her umbrella.” In general, for any logical expression E, the
expression (VX)(FE) means that for all possible values of the other variables of F,
every constant we may substitute for X makes F true.

The symbols V and 3 are called quantifiers. We sometimes call V the universal
quantifier and 3 the existential quantifier.

Example 14.4. The expression r — (VX)(u(X) OR w(X)) means “If it rains,
then for all individuals X, either X takes an umbrella or X gets wet.” Note that
quantifiers can apply to arbitrary expressions, not just to atomic formulas as was
the case in previous examples.

For another example, we can interpret the expression

(vC) (((39)esg(C, 5, “A™)) = ((AT)esg(C, T, “BY))) (14.2)

3 The parentheses around the E are sometimes needed and sometimes not, depending on
the expression. The matter will be clear when we discuss precedence and associativity of
operators later in the section. The parentheses around 3X are part of the notation and are
invariably required.

740 PREDICATE LOGIC

as saying, “For all courses C if there exists a student S who gets an A in the course,
then there must exist a student 7" who gets a B.” Less formally, “If you give A’s,
then you also have to give B’s.”

A third example expression is

((vX) NOT w(X)) OR ((3Y)w(Y)) (14.3)

Informally, “Either all individuals X stay dry or, at least one individual Y gets
wet.” Expression (14.3) is different from the other two in this example, in that
here we have a tautology — that is, an expression which is true, regardless of the
meaning of predicate w. The truth of (14.3) has nothing to do with properties of
“wetness.” No matter what the set S of values that make predicate w true is, either
S is empty (i.e., for all X, w(X) is false) or S is not empty (i.e., there exists a Y’
for which w(Y) is true). O

Recursive Definition of Logical Expressions
As a review, we shall give a recursive definition of the class of logical expressions in
predicate logic.

BASIS. Every atomic formula is an expression.

INDUCTION. If F and F are logical expressions, then so are

1. NOTE,EAND F,EORF, E — F, and F = F. Informally, we may allow other
operators of propositional logic, such as NAND, to be used as well.

2. (3X)E and (VX)E, for any variable X. In principle, X need not even appear
in F, although in practice such expressions rarely “make sense.”
Precedence of Operators

In general, we need to put parentheses around all uses of expressions E and F'.
However, as with the other algebras we have encountered, it is often possible to
remove parentheses because of the precedence of operators. We continue to use the
precedence of operators defined in Section 12.4, NOT (highest), AND, OR, —, and =
(lowest). However, quantifiers have highest precedence of all.

Example 14.5. (3X)p(X) 0R q(X) would be grouped
((3X)p(X)) OR ¢(X)

Similarly, the outer pairs of parentheses in (14.3) are redundant, and we could have
written

(VX) NOT w(X) OR (3Y)w(Y")
We can also eliminate two pairs of parentheses from (14.2) and write it
(VC)((39)esg(C, S, “A”) — (3T)csg(C, T, “B”))

The pair of parentheses around the entire expression after the (VC') is necessary so
the “for all C” will apply to the entire expression. [

Local and global
variables in C

SEC. 14.4 QUANTIFIERS 741

Order of Quantifiers

A common logical mistake is to confuse the order of quantifiers — for example, to
think that (VX)(3Y") means the same as (3Y)(VX), which it does not. For example,
if we informally interpret loves(X,Y) as “X loves Y,” then (VX)(3Y)loves(X,Y)
means “Everybody loves somebody,” that is, for every individual X there is at least
one individual Y that X loves. On the other hand, (3Y)(VX)loves(X,Y) means
that there is some individual Y who is loved by everyone — a very fortunate Y, if
such a person exists.

Note that the parentheses around the quantifiers (VX) and (3X) are not used
for grouping, and should be regarded as part of the symbol indicating a quantifier.
Also, remember that the quantifiers and NOT are unary, prefix operators, and the
only sensible way to group them is from the right.

Example 14.6. Thus the expression (VX) NOT (3Y)p(X,Y) is grouped

(VX)(NDT ((EY)p(X, Y)))

and means “For all X there is no Y such that p(X,Y) is true.” Put another way,
there is no pair of values for X and Y that makes p(X,Y) true. O

Bound and Free Variables

Quantifiers interact with the variables that appear in an expression in a subtle way.
To address this issue, let us first recall the notion of local and global variables in
C. Suppose X is defined as an external variable in a C program, as suggested by
Fig. 14.1. Assuming X is not declared in main, the reference to X in main is to
the external variable. On the other hand, X is declared in function f as a local
(automatic) variable, and all references to X within £ are to this local variable.

int X;
main()
{

++X;
}
void £()
{

int X;
}

Fig. 14.1. Local and global variables.

742 PREDICATE LOGIC

OR
(VX)/ (VX)
| |
u(X) w(X)

Fig. 14.2. Expression tree for (VX)u(X) OR (VX)w(X).

There is a close analogy between a declaration of X in a C program on one
hand, and a quantifier (VX) or (3X) on the other. If we have an expression (VX)FE
or (3X)E, then the quantifier serves to declare X locally for the expression F, as
if F were a function and X were declared local to that function.

In what follows, it helps to use the symbol @ to stand for either quantifier.
Specifically, we take (QX) to stand for “some quantifier applied to X,” that is,
either (VX) or (3X).

If E has a subexpression of the form (QX)F, then this subexpression is like a
block declared within E that has its own declaration of X. References to X within
F refer to the X “declared” by this (QX), while uses of X within F but outside
F refer to some other declaration of X — a quantifier either associated with E or
with some expression contained within £ but enclosing the use of X in question.

Example 14.7. Consider the expression
(VX)u(X) OR (VX)w(X) (14.4)

Informally, “Either everyone takes an umbrella, or everyone gets wet.” We might
not believe in the truth of this statement, but let us consider it as an example.
The expression tree for expression (14.4) is shown in Fig. 14.2. Note that the first
quantifier (VX)) has only the use of X within u as its descendant, while the second
(VX) has only the use of X within w as a descendant. To tell at which quantifier a
use of X is “declared,” we have only to trace upwards from the use until we meet
a quantifier (QX). Thus the two uses of X refer to different “declarations,” and
there is no relationship between them. [

Note we could have used different variables for the two “declarations” of X
in (14.4), perhaps writing (VX)u(X) OR (VY)w(Y). In general, we can always
rename variables of a predicate logic expression so no one variable appears in two
quantifiers. The situation is analogous to a programming language such as C, in
which we can rename variables of a program, so that the same name is not used
in two declarations. For example, in Fig. 14.1 we could change all instances of the
variable name X in the function f to any new variable name Y.

Example 14.8. For another example, consider the expression
(V) (u(X) OR (3X)u(X)

Bound and free
occurrences of
variables

SEC. 14.4 QUANTIFIERS 743

Informally, “For each individual, either that individual takes his umbrella, or there
exists some (perhaps other) individual who gets wet.” The tree for this expression
is shown in Fig. 14.3. Notice that the use of X within w refers to the closest
enclosing “declaration” of X, which is the existential quantifier. Put another way,
if we travel up the tree from w(X), we meet the existential quantifier before we
meet the universal quantifier. However, the use of X within u is not in the “scope”
of the existential quantifier. If we proceed upward from w(X), we first meet the
universal quantifier. We could rewrite the expression as

(VX)(u(X) OR (FY)w(Y))

so no variable is quantified more than once. [

(VX)

Fig. 14.3. Expression tree for (VX) (u(X) OR (EIX)w(X)).

We say an occurrence of a variable X within a logical expression F is bound
by a quantifier (QX) if, in the expression tree for E, that quantifier is the lowest
ancestor of this occurrence of X that is a quantifier involving X . If an occurrence
of X is not bound by any quantifier, then that occurrence of X is said to be free.
Thus quantifiers act like “declarations” that are local to the subtree T rooted at the
node of the quantifier. They apply everywhere within T', except within a subtree
rooted at another quantifier with the same variable. Free variables are like variables
global to a function, in that their “declaration,” if there is one, occurs somewhere
outside the expression in question.

Example 14.9. Consider the expression
w(X) OR (3X)w(X)

that is, “Either X takes his or her umbrella, or there is some person who gets wet.”
The tree is shown in Fig. 14.4. As in the previous examples, the two occurrences of
X refer to different individuals. The occurrence of X in w is bound to the existential
quantifier. However, there is no quantifier for X above the occurrence of X in u,
and so this occurrence of X is free in the given expression. This example points up
the fact that there can be both free and bound occurrences of the same variable,
so that we must talk of “bound occurrences” rather than “bound variables,” in
some situations. The expressions in Examples 14.7 and 14.8 illustrate that it is also

744 PREDICATE LOGIC

possible for different occurrences of a variable to be bound to different occurrences
of quantifiers. [

Fig. 14.4. Expression tree for u(X) OR (3X)w(X).

EXERCISES

14.4.1: Remove redundant pairs of parentheses from the following expressions.

a) (VX) <(ay) <NOT (p(X) OR (p(Y') AND q(X)))))

b) (3X) ((NOT p(X)) AND ((3Y)(p(Y)) OR (EIX)(q(X, Z))))

14.4.2: Draw expression trees for the expressions of Exercise 14.4.1. Indicate for
each occurrence of a variable to which quantifier, if any, it is bound.

14.4.3: Rewrite the expression of Exercise 14.4.1(b) so that it does not quantify
the same variable twice.

14.4.4%*: In the box on “Order of Quantifiers,” we spoke of a predicate loves(X,Y),
and gave it the expected informal interpretation. However, as we shall see in Section
14.5, predicates have no specific interpretation, and we could just as well have taken
loves to talk about integers rather than individuals, and for loves(X,Y’) to have
the informal interpretation that ¥ = X + 1. Under that interpretation, compare
the meanings of the expressions (VX)(IY)loves(X,Y) and (IY)(VX)loves(X,Y).
What are their informal interpretations? Which, if either, do you believe?

14.4.5*: Using the csg predicate of our running example, write expressions that
assert the following.

a) C. Brown is an A student (i.e., he gets A’s in all his courses).
b) C. Brown is not an A student.
14.4.6*: Design a grammar that describes the legal expressions of predicate logic.

You may use symbolic terminals like constant and variable, and you need not avoid
redundant parentheses.

0 14.5
t
Domain
Interpretation

for a predicate

Interpretation
for an
expression

SEC. 14.5 INTERPRETATIONS 745

Interpretations

Until now, we have been rather vague about what an expression of predicate logic
“means,” or how we ascribe a meaning to an expression. We shall approach the
subject by first recalling the “meaning” of a propositional logic expression E. That
meaning is a function that takes a “truth assignment” (assignment of truth values
0 and 1 to the propositional variables in F) as its argument and produces 0 or 1
as its result. The result is determined by evaluating E with the atomic operands
replaced by 0 or 1, according to the given truth assignment. Put another way, the
meaning of a logical expression E is a truth table, which gives the value of E (0 or
1) for each truth assignment.

A truth assignment, in turn, is a function that takes propositional variables as
arguments and returns 0 or 1 for each. Alternatively, we can see a truth assignment
as a table that gives, for each propositional variable, a truth value, 0 or 1. Figure
14.5 suggests the role of these two kinds of functions.

truth
p ——— » QOorl
assignment

(a) A truth assignment is a function from propositional variables to truth values.

truth meaning

: Oor1
assignment

(b) The meaning of an expression is a function from truth assignments to truth values.

Fig. 14.5. The meaning of expressions in propositional logic.

In predicate logic, it is not sufficient to assign a constant 0 or 1 (TRUE or FALSE)
to predicates (unless they have no arguments, in which case they are essentially
propositional variables). Rather, the value assigned to a predicate is itself a function
that takes values of the predicate’s arguments as its own input, and produces 0 or
1 as output.

More precisely, we must first pick a nonempty domain D of values, from which
we can select values for the variables. This domain could be anything: integers,
reals, or some set of values with no particular name or significance. We assume,
however, that the domain includes any constants appearing in the expression itself.

Now, let p be a predicate with k& arguments. Then an interpretation for predi-
cate p is a function that takes as input an assignment of domain elements to each of
the k arguments of p and returns 0 or 1 (TRUE or FALSE). Equivalently, we can see
the interpretation of p as a relation with k£ columns. For each assignment of values
to the arguments that makes p true in this interpretation, there is a tuple of the
relation.*

Now we can define an interpretation for an expression F to be

4 Unlike the relations discussed in Chapter 8, the relation that is the interpretation of a pred-
icate may have an infinite set of tuples.

746 PREDICATE LOGIC

1. A nonempty domain D, including any constants appearing in E,
2. An interpretation for each predicate p appearing in E, and
3. A value in D for each of the free variables of F, if any.

An interpretation and an “interpretation for a predicate” are illustrated in Fig.
14.6(a) and (b), respectively. Notice that interpretations play the role in predicate
logic that is served by truth assignments in propositional logic.

values . .
Interpretation
for — . ——» QOorl
for a predicate
arguments

(a) Interpretation for a predicate assigns truth values to
tuples of values for the arguments.

——» interpretation interpretation
! P for predicate p
X ———» interpretation —m value for
P variable X

(b) Interpretation assigns a predicate interpretation to each predicate
and a value to each variable (analogous to a truth assignment).

interpretation ——m meaning ——» Oorl

¢) Meaning of an expression assigns a truth value for each interpretation
Meani f i i truth value f h int tati
(analogous to a truth table).

Fig. 14.6. The meaning of expressions in predicate logic.

Example 14.10. Consider the following expression of predicate logic:
p(X,Y) — (32) (p(X, Z) AND p(Z, Y)) (14.5)

One possible interpretation for the predicate p, which we shall call interpretation
Il, is

1. The domain D is the set of real numbers.

SEC. 14.5 INTERPRETATIONS 747

2. p(U,V) is true whenever U < V. That is, the interpretation of p is the relation
consisting of the infinite set of pairs (U, V) such that U and V are real numbers,
and U is less than V.

Then (14.5) states that for any real numbers X and YV, if X < Y, then there is
some Z lying strictly between X and Y; that is, X < Z < Y. For interpretation I,
(14.5) is always true. If X <Y, we can pick Z = (X +Y)/2 — that is, the average
of X and Y — and we can then be sure that X < Z and Z < Y. If X > Y, then
the left-hand side of the implication is false, so surely (14.5) is true.

We can build an infinite number of interpretations for (14.5) based on the
interpretation I; for predicate p, by picking any real numbers for the free variables
X and Y. By what we just said, any of these interpretations for (14.5) will make
(14.5) true.

A second possible interpretation, Io, for p is

1. D is the set of integers.
2. p(U,V) is true if and only if U < V.

Now, we claim that (14.5) is true unless Y = X + 1. For if Y exceeds X by two or
more, then Z can be selected to be X 4 1. It will then be the case that X < Z <Y.
If Y < X, then p(X,Y) is false, and so (14.5) is again true. However, if Y = X 41,
then p(X,Y) is true, but there is no integer Z lying strictly between X and Y.
Thus for every integer Z, either p(X, Z) or p(Z,Y") will be false, and the right-hand
side of the implication — that is, (32)(p(X, Z) AND p(Z,Y’)) — is not true.

We can extend I to an interpretation for (14.5) by assigning integers to the
free variables X and Y. The analysis above shows that (14.5) will be true for any
such interpretation, except for those in which Y = X + 1.

Our third interpretation for p, I3, is abstract, without a common meaning in
mathematics like those possessed by interpretations 17 and Is:

1. D is the set of three symbols a, b, c.
2. p(U,V) is true if UV is one of the six pairs
aa, ab, ba, be, cb, cc
and false for the other three pairs: ac, bb, and ca.

Then it happens that (14.5) is true for each of the nine pairs XY. In each case,
either p(X,Y) is false, or there is a Z that makes the right side of (14.5) true. The
nine cases are enumerated in Fig. 14.7. We may extend I3 to an interpretation for
(14.5) in nine ways, by assigning any combination of a, b, and ¢ to the free variables
X and Y. Each of these interpretations imparts the value true to (14.5). O

Meaning of Expressions

Recall that the meaning of an expression in propositional logic is a function from
the truth assignments to truth values 0 and 1, as was illustrated in Fig. 14.5(b).
That is, a truth assignment states all that there is to know about the values of
the atomic operands of the expression, and the expression then evaluates to 0 or 1.
Similarly, in predicate logic, the meaning of an expression is a function that takes an
interpretation, which is what we need to evaluate the atomic operands, and returns
0 or 1. This notion of meaning was illustrated in Fig. 14.6(c).

748 PREDICATE LOGIC

X | Y | Why true
a a | Z=aorbd
a |b | Z=a

a | ¢ | pla,c) false
b a | Z=a

b | b | p(b,b) false
b c Z =c

¢ | a | plea) false
c b Z =c

c c | Z=borc

Fig. 14.7. Value of (14.5) under interpretation Is.

Example 14.11. Consider the expression (14.5) from Example 14.10. The free
variables of (14.5) are X and Y. If we are given interpretation I; of Example 14.10
for p (p is < on reals), and we are given values X = 3.14 and Y = 3.5, then the
value of (14.5) is 1. In fact, with interpretation I; for p and any values for X and
Y, the expression has value 1, as was discussed in Example 14.10. The same is true
of interpretation I3 for p; any values for X and Y chosen from the domain {a, b, c}.
gives (14.5) the value 1.

On the other hand, if we are given interpretation Iy (p is < on integers) and
values X = 3 and Y = 4, then (14.5) has value 0 as we discussed in Example 14.10.
If we have interpretation I3 and values X = 3 and Y = 5 for the free variables, then
(14.5) has the value 1. O

To complete the definition of “meaning” for an expression, we must formally
define how the truth values for atomic operands are translated to a truth value for
the expression as a whole. We have been using our intuition previously, based on
our understanding of how the logical connectives of propositional logic work and our
intuition regarding quantifiers. The formal definition of the value of an expression,
given an interpretation I with domain D, is a structural induction on the expression
tree for the given logical expression FE.

BASIS. If the expression tree is a leaf, then E is an atomic formula p(X7, ..., Xg).
The X;’s are all either constants or free variables of expression E. Interpretation [
gives us a value for each of the variables, and so we have values for all arguments of
p. Likewise, I tells us whether p, with those values as arguments, is true or false.
That truth value is the value of the expression F.

INDUCTION. Now, we must assume that we are given an expression E whose
expression tree has an operator at the root. There are several cases, depending on
what the operator at the root of E is.

First, consider the case where E is of the form Fy AND FEs; that is, the operator
at the root is AND. The inductive hypothesis may be applied to the subexpressions
E; and E». We can thus evaluate E; under interpretation I.° Likewise, we can

5 Strictly speaking, we must throw away from I the interpretation for any predicate p that

SEC. 14.5 INTERPRETATIONS 749

evaluate E5 under the interpretation I. If both evaluate to 1, then E evaluates to
1; otherwise, E evaluates to 0.

The induction for other logical operators like OR or NOT is carried out the
same way. For OR, we evaluate the two subexpressions and produce value 1 if
either subexpression produces value 1; for NOT we evaluate the one subexpression
and produce the negation of the value of that expression, and so on for the other
operators of propositional logic.

Now suppose E is of the form (3X)FE;. The root operator is the existential
quantifier, and we can apply the inductive hypothesis to the subexpression F;. The
predicates in F; all appear in E, and the free variables in E; are the free variables
of E, plus (possibly) X .6 Hence, we may construct, for each value v in the domain
D, an interpretation for F that is I, with the addition of the assignment of value
v to variable X; call this interpretation J,. We ask, for each value v, whether F; is
true under interpretation J,. If there is at least one such value v, then we say that
E = (3X)E; is true; otherwise, we say E is false.

Last, suppose that F is of the form (VX)E;. Again, the inductive hypothesis
applies to E1. Now we ask whether for every value v in the domain D, F; is true
under the interpretation J,. If so, we say E has value 1; if not, F has value 0.

Example 14.12. Let us evaluate expression (14.5) with the interpretation I for
p (< on the integers) and the values 3 and 7 for free variables X and Y, respectively.
The expression tree for (14.5) is shown in Fig. 14.8. We observe that the operator
at the root is —. We did not cover this case explicitly, but the principle should
be clear. The entire expression can be written as Ey — FEs, where E; is p(X,Y),
and FEo is (32)(p(X,Z) AND p(Z,Y)). Because of the meaning of —, the entire
expression (14.5) is true except in the case that Fj is true and Es is false.

p(X, / (32)
i
p(X, Z)/ p(Z,Y)

Fig. 14.8. Expression tree for (14.5).

Eq, which is p(X,Y), is easy to evaluate. Since X =3, Y =7, and p(X,Y)
is true if and only if X <Y, we conclude that E; is true. To evaluate E5 is more

appears in E but not F;. Also, we must drop the value for any free variable that appears in
E but not E;. However, there is no conceptual difficulty if we include in an interpretation
additional information that is not used.

Technically, 1 might not have any free occurrences of X, even though we apply a quantifier
involving X to Ej. In that case, the quantifier may as well not be there, but we have not
prohibited its presence.

750 PREDICATE LOGIC

Can we Compute Values of Expressions?

You may be suspicious of our definition as to when an expression F has value 1, in
the cases where E is (3X)F; or (VX)F;. If domain D is infinite, the test we have
proposed, to evaluate F7 under each interpretation J,,, need not have an algorithm
for its execution. Essentially, we are asked to execute function

for (each v in D)
if (F; is true under interpretation J,)
return TRUE;
return FALSE;

for an existential quantifier, and function

for (each v in D)
if (F; is false under interpretation J,)
return FALSE;
return TRUE;

for a universal quantifier.

While the intent of these programs should be apparent, they are not algorithms,
since when the domain D is infinite, we go around the loop an infinite number of
times. However, although we may not be able to tell whether E is true or false,
we are nevertheless offering the correct definition of when E is true; that is, we
are ascribing the intended meaning to the quantifiers ¥V and 3. In many practical
and useful situations, we shall be able to tell whether FE is true or false. In other
situations, typically involving transformation of expressions into equivalent forms,
we shall see that it doesn’t matter whether F is true or false. We shall be able
to reason that two expressions are equivalent from the definitions of their values,
without knowing whether a value v that makes a subexpression like F; true exists.

difficult. We must consider all possible values of v for Z, to see if there is at least
one value that makes p(X, Z) AND p(Z,Y") true. For example, if we try Z = 0, then
p(Z,Y) is true, but p(X, Z) is false, since X = 3 is not less than Z.

If we think about the matter, we see that to make p(X,Z) AND p(Z,Y) true,
we need a value of v such that 3 < v [so p(X, Z) will be true] and such that v < 7
[so p(Z,Y) will be true]. For example, v = 4 makes p(X,Z) AND p(Z,Y) true
and therefore shows that Es, or (37) (p(X, Z) AND p(Z, Y)), is true for the given
interpretation.

We now know that both E; and Es are true. Since 1 — FE5 is true when both
E; and E5 are true, we conclude that (14.5) has value 1 for the interpretation in
which predicate p has the interpretation Iy, X =3, and Y =7. [

EXERCISES

14.5.1: For each of the following expressions, give one interpretation that makes it
true and one interpretation that makes it false.

0
= 14.6

SEC. 14.6 TAUTOLOGIES 751

o &

) (VX)(3Y)(loves(X,Y))

) p(X) — NOT p(X)

) (3X)p(X) — (VX)p(X)

d) (p(X,Y)AND p(Y, Z)) — p(X, Z)

(¢]

14.5.2: Explain why every interpretation makes the expression p(X) — p(X) true.

Tautologies

Recall that in propositional logic, we call an expression a tautology if for every truth
assignment, the value of the expression is 1. The same idea holds true in predicate
logic. An expression E is called a tautology if for every interpretation of E, the
value of F is 1.

Example 14.13. As in propositional logic, it is rare for a “random” expression
of predicate logic to be a tautology. For example, the expression (14.5), or

p(X,Y) — (32) (p(X, Z) AND p(Z, Y))

which we studied in Example 14.10, is always true under some interpretations for
predicate p, but there are interpretations such as I of Example 14.10 — p is <
on the integers — for which this expression is not always true (e.g., it is false for
X =1and Y = 2). Thus the expression is not a tautology.

An example of a tautology is the expression

q(X) OR NOT ¢(X)

Here, it does not matter what interpretation we use for predicate g, or what value
we assign to the free variable X. If our choice of interpretation makes ¢(X) true,
then the expression is true. If our choice makes ¢(X) false, then it must make
NOT ¢(X) true, and again the expression is true. O

The Substitution Principle

The tautologies of propositional logic are a rich source of tautologies for predicate
logic. The principle of substitution, which we introduced in Section 12.7, states
that we can take any tautology of propositional logic, make any substitution for
the propositional variables, and the result will still be a tautology. This principle
still holds true if we allow the substitution of expressions of predicate logic for the
propositional variables. For example, the tautology ¢(X) OR NOT ¢(X), mentioned in
Example 14.13, is the substitution of the expression ¢(X) for propositional variable
p in the tautology p OR NOT p.

The reason the principle of substitution holds true when expressions of predi-
cate logic are substituted for propositional variables is much the same as the reason
it holds true when propositional expressions are substituted. When we replace all
occurrences of a propositional variable such as p by an expression like ¢(X), we
know that for any interpretation, the value of the substituted expression will be the
same wherever it occurs. Since the original expression of propositional logic, into
which the substitution is made, is a tautology, it is always true when a consistent
substitution of 0 or a consistent substitution of 1 is made for one of its propositional
variables.

752 PREDICATE LOGIC

For example, in the expression ¢(X) OR NOT ¢(X), no matter what the interpre-
tation of ¢ or the value of X, ¢(X) is either true or false. Thus, either the expression
becomes 1 OR NOT 1 or it becomes 0 OR NOT 0, both of which evaluate to 1.

Equivalence of Expressions

As in propositional logic, we can define two expressions, E and F, of predicate
logic to be equivalent if £ = F is a tautology. The “principle of substitution of
equals for equals,” also introduced in Section 12.7, continues to hold when we have
equivalent expressions of predicate logic. That is, if F; is equivalent to E5, then we
may substitute Es for F in any expression F;, and the resulting expression Fb will
be equivalent; that is, F} = F5.

Example 14.14. The commutative law for AND says (p AND ¢) = (q AND p). We
might substitute p(X) for p and ¢(Y, Z) for ¢, giving us the tautology of predicate
logic

(p(X) AND (Y, Z)) = (q(Y, Z) AND p(X))

Thus the expressions p(X) AND ¢(Y, Z) and ¢(Y, Z) AND p(X) are equivalent. Now,
if we have an expression like (p(X) AND ¢(Y,Z)) OR ¢(X,Y), we can substitute
q(Y, Z) AND p(X) for p(X) AND ¢(Y, Z), to produce another expression,

(q(Y, Z) AND p(X)) OR¢(X,Y)
and know that
((p(X) AW (Y, 2)) OR ¢(X,Y)) = ((a(Y, 2) AND p(X)) OR g(X.Y))

There are more subtle cases of equivalent expressions in predicate logic. Nor-
mally, we would expect the equivalent expressions to have the same free variables
and predicates, but there are some cases in which the free variables and/or predi-
cates can be different. For example, the expression

(p(X) OR NOT p(X)) = (¢(Y) OR NOT ¢(Y))

is a tautology, simply because both sides of the = are tautologies, as we argued
in Example 14.13. Thus in the expression p(X) OR NOT p(X) OR ¢(X) we may
substitute ¢(Y") OR NOT ¢(Y") for p(X) OR NOT p(X), to deduce the equivalence

(p(X) OR NOT p(X) OR ¢(X)) = (¢(Y) OR NOT ¢(Y) OR ¢(X))
Since the left-hand side of the = is a tautology, we can also infer that
q(Y) OR NOT ¢(Y) OR ¢(X)

is a tautology. O
EXERCISES

14.6.1: Explain why each of the following are tautologies. That is, what expres-
sion(s) of predicate logic did we substitute into which tautologies of propositional
logic?

0
= 14.7

SEC. 14.7 TAUTOLOGIES INVOLVING QUANTIFIERS 753

a) (p(X)ORq(Y)) = (¢(Y)ORp(X))
b) (p(X,Y)AND p(X,Y)) = p(X,Y)
¢) (p(X)— FALSE) = NOT p(X)

Tautologies Involving Quantifiers

Tautologies of predicate logic that involve quantifiers do not have direct counterparts
in propositional logic. This section explores these tautologies and shows how they
can be used to manipulate expressions. The main result of this section is that we
can convert any expression into an equivalent expression with all the quantifiers at
the beginning.

Variable Renaming

In C, we can change the name of a local variable, provided we change all uses of
that local variable consistently. Analogously, one can change the variable used in
a quantifier, provided we also change all occurrences of that variable bound to the
quantifier. Also as in C, we must be careful which new variable name we pick,
because if we choose a name that is defined outside the function in question, then
we may change the meaning of the program, thereby committing a serious error.

Bearing in mind this kind of renaming, we can consider the following type of
equivalence and conditions under which it is a tautology.

(QX)E = (QY)E (14.6)

where E’ is E with all occurrences of X that are bound to the explicitly shown
quantifier (QX) replaced by Y. We claim that (14.6) is a tautology, provided no
occurrence of Y is free in E. To see why, consider any interpretation I for (QX)E (or
equivalently, for (QY)FE’, since the free variables and predicates of either quantified
expression are the same). If I, extended by giving X the value v, makes F true,
then I with the value v for Y will make E’ true. Conversely, if extending I by using
v for X makes F false, then extending I with v for Y makes E’ false.

If quantifier @ is 3, then should there be a value v for X that makes E true,
there will be a value, namely v, for Y that makes E’ true, and conversely. If @ is
V, then all values of X will make E true if and only if all values of Y make E’ true.
Thus, for either quantifier, (QX)E is true under any given interpretation I if and
only if (QY)E’ is true under the same interpretation, showing that

(QX)E = (QY)E

is a tautology.

Example 14.15. Consider the expression
((3X)p(X,Y)) OR NOT ((3X)p(X,Y)) (14.7)

Rectified
expression

754 PREDICATE LOGIC

Making Quantified Variables Unique

An interesting consequence of (14.6) is that we can always turn any expression E
of predicate logic into an equivalent expression in which no two quantifiers use the
same variable, and also, no quantifier uses a variable that is also free in E. Such an
expression is called rectified.

In proof, we may start with the tautology E = E. Then, we use (14.6) on the
occurrence of E on the right to rename, in turn, each quantified variable by a new
variable not used elsewhere in E. The result is an expression F = E’, where all
quantifiers (QX) of E’ involve distinct X’s, and these X’s do not appear free in F
or E’'. By the law of transitivity of equivalence for propositional logic, £ = E’ is a
tautology; that is, F and E’ are equivalent expressions.

which happens to be a tautology. We shall show how to rename one of the two X's,
to form another tautology with distinct variables used in the two quantifiers.

If we let E in (14.6) be p(X,Y), and we choose variable Z to play the role of
Y in (14.6), then we have the tautology ((3X)p(X,Y)) = ((32)p(Z,Y)). That is,
to construct the expression E' we substitute Z for X in E = p(X,Y), to obtain
p(Z,Y). Thus we can substitute “equals for equals,” replacing the first occurrence
of (3X)p(X,Y) in (14.7) by (32)p(Z,Y), to obtain the expression

((32)p(Z,Y)) OR NOT ((3X)p(X,Y)).

This expression is equivalent to (14.7), and therefore is also a tautology.

Note that we could also replace X in the second half of (14.7) by Z; it doesn’t
matter whether or not we do so, because the two quantifiers define distinct and
unrelated variables, each of which was named X in (14.7). However, we should
understand that it is not permissible to replace either occurrence of 43X by Y,
because Y is free in each of the subexpressions p(X,Y).

That is, ((3X)p(X,Y)) = ((IY)p(Y,Y)) is not an instance of (14.6) that is
a tautology, because Y is free in the expression p(X,Y). To see that it is not a
tautology, let p be interpreted as < on integers. Then for any value of the free
variable Y, say Y = 10, the expression (3X)p(X,Y) is true, because we can let
X =9, for example. Yet the right side of the equivalence, (3Y)p(Y,Y) is false,
because no integer is strictly less than itself.

Similarly, it is not permissible to substitute (3Y)p(Y,Y) for the first instance
of (3X)p(X,Y) in (14.7). The resulting expression,

((3Y)p(Y,Y)) OR NOT ((3X)p(X,Y)) (14.8)

can also be seen not to be a tautology. Again, let the interpretation of p be < on
the integers, and let, for instance, the value of the free variable Y be 10. Note that
in (14.8), the first two occurrences of Y, in p(Y,Y’), are bound occurrences, bound
to the quantifier (3Y). Only the last occurrence of Y, in p(X,Y), is free. Then
(3Y)p(Y,Y) is false for this interpretation, because no value of Y is less than itself.
On the other hand, (3X)p(X,Y) is true when Y = 10 (or any other integer, for
that matter), and so NOT ((3X)p(X,Y')) is false. As a result, (14.8) is false for this
interpretation. [J

SEC. 14.7 TAUTOLOGIES INVOLVING QUANTIFIERS 755

Universal Quantification of Free Variables

An expression with free variables can only be a tautology if the same expression
with its free variables universally quantified is a tautology. Formally, for every
tautology T' and variable X, (VX)T is also a tautology. Technically, it does not
matter whether or not X appears free in 7.

To see why (VX)T is a tautology, let Y7,..., Y be the free variables of T; X
may or may not be one of them. First, suppose that X = Y;. We need to show that
for every interpretation I, (VX)T is true. Equivalently, we need to show that for
every value v in the domain of I, the interpretation J, formed from I by giving X
the value v makes T true. But T is a tautology, and so every interpretation makes
it true.

If X is one of the other free variables Y; of 7', the argument that (VX)T is a
tautology is essentially the same. If X is none of the Y;’s, then its value doesn’t
affect the truth or falsehood of T'. Thus T is true for all X, simply because T is a
tautology.

Closed Expressions

An interesting consequence is that for tautologies, we can assume there are no free
variables. We can apply the preceding transformation to universally quantify one
free variable at a time. An expression with no free variables is called a closed
expression.

Example 14.16. We know that p(X,Y) OR NOT p(X,Y) is a tautology. We
may add universal quantifiers for the free variables X and Y, to get the tautology

(VX)(VY)(p(X,Y) OR NOT p(X,Y))

Moving Quantifiers Through noT

There is an infinite version of DeMorgan’s law that lets us replace V by 3 or vice
versa, just as the “normal” DeMorgan’s laws allow us to switch between AND and
OR, while moving through a NOT. Suppose that we have an expression like

NOT ((VX)p(X))

If the domain of values is finite, say vy, . . ., vy, then we could think of this expression
as NOT (p(vl) AND p(vg) AND - - - AND p(vn)). We could then apply DeMorgan’s law
to rewrite this expression as NOT p(v;) OR NOT p(vz) OR --- OR NOT p(v,). On the
assumption of a finite domain, this expression is the same as (3X)(NOT p(X)) —
that is, for some value of X, p(X) is false.

In fact, this transformation does not depend on the finiteness of the domain;
it holds for every possible interpretation. That is, the following equivalence is a
tautology for any expression E.

(NDT ((VX)E)) = ((3X)(NOT E)) (14.9)

756 PREDICATE LOGIC

Informally, (14.9) says that F fails to be true for all X exactly when there is some
value of X that makes F false.

There is a similar tautology that lets us push a NOT inside an existential quan-
tifier.

(NDT ((EIX)E)) = ((VX)(NOT E)) (14.10)

Informally, there does not exist an X that makes F true exactly when F is false for
all X.

Example 14.17. Consider the tautology
(VX)p(X) OR NOT ((VX)p(X)) (14.11)

which we obtain by the principle of substitution from the tautology of propositional
logic p OR NOT p. We may use (14.9) with E = p(X), to replace NOT ((VX)p(X)) in
(14.11) by (3X)(NOT p(X)), to yield the tautology

(VX)p(X) OR (3X) (NOT p(X)).

That is, either p(X) is true for all X, or there exists some X for which p(X) is
false. O

Moving Quantifiers Through anp and or

Laws (14.9) and (14.10), when applied from left to right, have the effect of moving
a quantifier outside a negation, “inverting” the quantifier as we do so, that is,
swapping V for 3 and vice versa. Similarly, we can move quantifiers outside of AND
or OR, but we must be careful not to change the binding of any variable occurrence.
Also, we do not invert quantifiers moving through AND or OR. The expressions of
these laws are

(E AND (QX)F) = (QX)(E AND F) (14.12)

(EOR(QX)F) = (QX)(EORF) (14.13)

where F and F' are any expressions, and @ is either quantifier. However, we require
that X not be free in F.

Since AND and OR are commutative, we can also use (14.12) and (14.13) to
move quantifiers attached to the left operand of AND or OR. For example, a form of
tautology that follows from (14.12) and the commutativity of AND is

((QX)E AND F) = (QX)(E AND F)

Here, we require that X is not free in F.

Example 14.18. Let us transform the tautology developed in Example 14.17,
that is,

(VX)p(X) OR (3X)(NOT p(X))

Quantifier-free
expression

SEC. 14.7 TAUTOLOGIES INVOLVING QUANTIFIERS 757

so that the quantifiers are outside the expression. First, we need to rename the
variable used by one of the two quantifiers. By law (14.6), we can replace the
subexpression (X)) NOT p(X) by (FY) NOT p(Y'), giving us the tautology

(VX)p(X) OR (3Y) (NOT p(Y)) (14.14)

Now we can use (14.13), in its variant form where the quantifier on the left
operand of the OR is moved, to take the V outside the OR. The resulting expression
is

(VX) (p(X) OR (3Y')(NOT p(Y))) (14.15)

Expression (14.15) differs from (14.14) in form, but not in meaning; (14.15) states
that for all values of X, at least one of the following holds:

1. p(X) is true.
2. There is some value of Y that makes p(Y) false.

To see why (14.15) is a tautology, consider some value v for X. If the interpretation
under consideration makes p(v) true, then p(X) OR (3Y)(NOT p(Y)) is true. If p(v)
is false, then in this interpretation, (2) must hold. In particular, when Y = v,
NOT p(Y) is true, and so (3Y)(NOT p(Y)) is true.

Finally, we can apply (14.13) to move Y outside the OR. The expression that
results is

(VX)(3Y)(p(X) OR NOT p(Y'))

This expression also must be a tautology. Informally, it states that for every value
of X, there exists some value of Y that makes p(X) OR NOT p(Y) true. To see why,
let v be a possible value of X. If p(v) is true in given interpretation I, then surely

p(X) OR NOT p(Y)

is true, regardless of Y. If p(v) is false in interpretation I, then we may pick v for
Y, and (3Y)(p(X) OR NOT p(Y)) will be true. O

Prenex Form

A consequence of the laws (14.9), (14.10), (14.12), and (14.13) is that, given any
expression involving quantifiers and the logical operators AND, OR, and NOT, we can
find an equivalent expression that has all its quantifiers on the outside (at the top
of the expression tree). That is, we can find an equivalent expression of the form

(Q1X1)(Q2X2) -+ (QpXr)E (14.16)

where @1, ..., Qk each stand for one of the quantifiers V or 3, and the subexpression
E is quantifier free — that is, it has no quantifiers. The expression (14.16) is said
to be in prenez form.

We can transform an expression into prenex form in two steps.

1. Rectify the expression. That is, use law (14.6) to make each of the quantifiers
refer to a distinct variable, one that appears neither in another quantifier nor
free in the expression.

2. Then, move each quantifier through NOT’s by laws (14.9) and (14.10), through
AND’s by (14.12), and through OR’s by (14.13).

758 PREDICATE LOGIC

Programs in Prenex Form

In principle, we can put a C program in “prenex form,” if we rename all local
variables so that they are distinct, and then move their declarations into the main
program. We generally don’t want to do that; we prefer to declare variables locally,
so that we don’t have to worry, for example, about inventing different names for a
variable i used as a loop index in ten different functions. For logical expressions,
there is often a reason to put expressions in prenex form, although the matter is
beyond the scope of this book.

Example 14.19. Examples 14.17 and 14.18 were examples of this process. We
started in Example 14.17 with the expression (VX)p(X) OR NOT ((VX)p(X)). By
moving the second V through the NOT, we obtained the expression

(VX)p(X) OR (3X)(NOT p(X))

with which we started in Example 14.18. We then renamed the second use of X,
which we could (and should) have done initially. By moving the two quantifiers
through the OR, we obtained (VX)(3Y)(p(X) OR NOT p(Y)), which is in prenex
form. O

Note that expressions involving logical operators other than AND, OR, and NOT
can also be put in prenex form. Every logical operator can be written in terms
of AND, OR, and NOT, as we learned in Chapter 12. For example, £ — F' can be
replaced by NOT E OR F'. If we write each logical operator in terms of AND, OR, and
NOT, then we are able to apply the transformation just outlined to find an equivalent
expression in prenex form.

Reordering Quantifiers

Our final family of tautologies is derived by noting that in applying a universal
quantifier to two variables, the order in which we write the quantifiers does not
matter. Similarly, we can write two existential quantifiers in either order. Formally,
the following are tautologies.

(VX)(VY)E = (VY)(VX)E (14.17)
(3X)(3Y)E = (IY)(3X)E (14.18)

Note that by (14.17), we can permute any string of V’s, (VX1)(VX2)(---)(VX}y)
into whatever order we choose. In effect, (14.17) is the commutative law for V.
Analogous observations hold for law (14.18), which is the commutative law for 3.

EXERCISES

14.7.1: Transform the following expressions into rectified expressions, that is, ex-
pressions for which no two quantifier occurrences share the same variable.

a) (3X) ((NOT p(X)) AND ((ay) (p(Y))) OR ((EIX)(q(X, Z))))

0
= 14.8

SEC. 14.8 PROOFS IN PREDICATE LOGIC 759

b) (3X)((3X)p(X) OR (3X)q(X) OR r(X))

14.7.2: Turn the following into closed expressions by universally quantifying each
of the free variables. If necessary, rename variables so that no two quantifier occur-
rences use the same variable.

a) p(X,Y) AND (3Y)g(Y)

b) (VX)(p(X,Y)OR (3X)p(Y, X))

14.7.3*: Does law (14.12) imply that p(X,Y") AND (VX)q(X) is equivalent to
(VX)(p(X,Y) AND q(X))

Explain your answer.

14.7.4: Transform the expressions of Exercise 14.7.1 into prenex form.

14.7.5*: Show how to move quantifiers through an — operator. That is, turn
the expression ((QlX)E) — ((QQY)F) into a prenex form expression. What con-
straints on free variables in E and F' do you need?

14.7.6: We can use tautologies (14.9) and (14.10) to move NOT’s inside quantifiers
as well as to move them outside. Using these laws, plus DeMorgan’s laws, we can
move all NOT’s so they apply directly to atomic formulas. Apply this transformation
to the following expressions.

a) NOT ((VX)(3Y)p(X,Y))
b) NOT ((VX)(p(X) O0R (3Y)q(X, Y)))

14.7.7%: Is it true that E is a tautology whenever (3X)F is a tautology?

Proofs in Predicate Logic

In this chapter and the next, we shall discuss proofs in predicate logic. We do not,
however, extend the resolution method of Section 12.11 to predicate logic, although
it can be done. In fact, resolution is extremely important for many systems that use
predicate logic. The mechanics of proofs were introduced in Section 12.10. Recall
that in a proof of propositional logic we are given some expressions F1, Fs, ..., B
as hypotheses, or “axioms,” and we construct a sequence of expressions (lines) such
that each expression either

1. Is one of the E;’s, or
2. Follows from zero or more of the previous expressions by some rule of inference.

Rules of inference must have the property that, whenever we are allowed to add F'
to the list of expressions because of the presence of Fy, Fs,..., F, on the list,

(F) AND F, AND - -- AND F,) — F

760 PREDICATE LOGIC

is a tautology.

Proofs in predicate logic are much the same. Of course, the expressions that are
hypotheses and lines of the proof are expressions of predicate logic, not propositional
logic. Moreover, it does not make sense to have, in one expression, free variables
that bear a relationship to a free variable of the same name in another expression.
Thus we shall require that the hypotheses and lines of the proof be closed formulas.

Implicit Universal Quantifiers

However, it is conventional to write expressions in proofs without explicitly show-
ing the outermost universal quantifiers. For example, consider the expression in
Example 14.3,

(csg(“CS1017, S, G) AND snap(S, “C.Brown”, A, P)) — answer(G) (14.19)

Expression (14.19) might be one of the hypotheses in a proof. In Example 14.3, we
saw it intuitively as a definition of the predicate answer. We might use (14.19) in
a proof of, say, answer(“A”) — that is, C. Brown received an A in course CS101.

In Example 14.3 we explained the meaning of (14.19) by saying that for all
values of S, GG, A, and P, if student S received grade G in CS101 — that is, if
csg(“CS1017, S, G) is true — and student S has name “C. Brown,” address A, and
phone P — that is, if snap(S, “C.Brown”, A, P) is true — then G is an answer
(i.e., answer(Q) is true). In that example, we did not have the formal notion of
quantifiers. However, now we see that what we really want to assert is

(VS)(VG)(VA)(VYP) ((csg(“CSlOl”, S,G) AND snap(S, “C.Brown”, A, P))
— answer(G))

Because it is frequently necessary to introduce a string of universal quantifiers
around an expression, we shall adopt the shorthand notation (V*)F to mean a
string of quantifiers (VX1)(VX2)(---)(VXk)E, where X1, Xs, ..., X}, are all the free
variables of expression E. For example, (14.19) could be written

(V*)((csg(“CSlOl”, S,G) AND snap(S, “C.Brown”, 4, P)) — answer(G))

However, we shall continue to refer to variables that are free in E as “free” in (Vx)E.
This use of the term “free” is strictly incorrect, but is quite useful.

Substitution for Variables as an Inference Rule

In addition to the inference rules discussed in Chapter 12 for propositional logic,
such as modus ponens, and substitution of equals for equals in a previous line of
the proof, there is an inference rule involving substitution for variables that is quite
useful for proofs in predicate logic. If we have asserted an expression F, either as a
hypothesis or as a line of a proof, and E’ is formed from E by substituting variables
or constants for some of the free variables of E, then E — E’ is a tautology, and
we may add E’ as a line of the proof. It is important to remember that we cannot
substitute for bound variables of E, only for the free variables of E.

Formally, we can represent a substitution for variables by a function sub. For
each free variable X of E, we may define sub(X) to be some variable or some
constant. If we do not specify a value for sub(X), then we shall assume that
sub(X) = X is intended. If E is any expression of predicate logic, the expression
sub(E) is E with all free occurrences of any variable X replaced by sub(X).

SEC. 14.8 PROOFS IN PREDICATE LOGIC 761

Expressions in Proofs

Remember that when we see an expression E in a proof, it is really short for the
expression (Vx)E. Note that E = (V+)FE is generally not a tautology, and so we are
definitely using one expression to stand for a different expression.

It is also helpful to remember that when E appears in a proof, we are not
asserting that (V+)E is a tautology. Rather, we are asserting that (Vx)E follows
from the hypotheses. That is, if E1, Fs, ..., E, are the hypotheses, and we correctly
write proof line E, then we know

((V*)Ey AND (Vx)Ey AND - - - AND (V*)E,,) — (V*)E

is a tautology.

The law of variable substitution says that E — sub(E) is a tautology. Thus, if
E is a line of a proof, we may add sub(F) as a line of the same proof.

Example 14.20. Consider the expression (14.19)
(csg(“CS1017, S, G) AND snap(S, “C.Brown”, A, P)) — answer(G)

as E. A possible substitution sub is defined by

sub(G) = “B”
sub(P) =S

That is, we substitute the constant “B” for the variable G and we substitute variable
S for variable P. The variables S and A remain unchanged. The expression sub(E)
is

(csg(“CS1017, S, “B”) AND snap(S, “C.Brown”, A, S)) — answer(“B”) (14.20)

Informally, (14.20) says that if there is a student S who received a B in CS101, and
the student’s name is C. Brown, and the student’s phone number and student ID
are identical, then “B” is an answer.

Notice that (14.20) is a special case of the more general rule expressed by
(14.19). That is, (14.20) only infers the correct answer in the case that the grade
is B, and C. Brown, by a strange coincidence, has the same student ID and phone
number; otherwise (14.20) infers nothing. O

Example 14.21. The expression
p(X,Y)0OR (32)q(X, Z) (14.21)
has free variables X and Y, and it has bound variable Z. Recall that technically,

(14.21) stands for the closed expression (V*)(p(X,Y) OR (32)q(X,Z)), and that
here the (Vx) stands for quantification over the free variables X and Y, that is,

(VX)(VY)(p(X,Y) OR (32)q(X, Z))

0
= 14.9

762 PREDICATE LOGIC

Substitution as Special-Casing

Example 14.20 is typical, in that whenever we apply a substitution sub to an expres-
sion F, what we get is a special case of E. If sub replaces variable X by a constant
¢, then the expression sub(F) only applies when X = ¢, and not otherwise. If
sub makes two variables become the same, then sub(E) only applies in the special
case that these two variables have the same value. Nonetheless, substitutions for
variables are often exactly what we need to make a proof, because they allow us to
apply a general rule in a special case, and they allow us to combine rules to make
additional rules. We shall study this form of proof in the next section.

In (14.21), we might substitute sub(X) = a, and sub(Y) = b, yielding the
expression p(a,b) OR (3Z)q(a,Z). This expression, which has no free variables
because we chose to substitute a constant for each free variable, is easily seen to be
a special case of (14.21); it states that either p(a,d) is true or for some value of Z,
q(a, Z) is true. Formally,

((vX) () (p(X,Y) OR (32)a(X, 2))) = (p(a,b) OR (3Z)a(a, 2)

is a tautology.

One might wonder what happened to the implied quantifiers in (14.21) when
we substituted a and b for X and Y. The answer is that in the resulting expression,
p(a,b) OR (3Z)q(a,Z), there are no free variables, and so the implied expression
(V*)(p(a,b) OR (3Z)q(a, Z)) has no prefix of universal quantifiers; that is,

p(a;b) OR (32)q(a, Z)
stands for itself in this case. We do not replace (Vx*) by (Va)(Vb), which makes no
sense, since constants cannot be quantified. O

EXERCISES

14.8.1: Prove the following conclusions from hypotheses, using the inference rules
discussed in Section 12.10, plus the variable-substitution rule just discussed. Note
that you can use as a line of proof any tautology of either propositional or predi-
cate calculus. However, try to restrict your tautologies to the ones enumerated in
Sections 12.8, 12.9, and 14.7.

a) From hypothesis (VX)p(X) prove the conclusion (VX)p(X) OR ¢(Y).
b) From hypothesis (3X)p(X,Y) prove the conclusion NOT ((VX) (NOT p(X, a))).

¢) From the hypotheses p(X) and p(X) — ¢(X) prove the conclusion ¢(X).

Proofs from Rules and Facts

Perhaps the simplest form of proof in predicate logic involves hypotheses that fall
into two classes.

Body, head,
subgoal

SEC. 14.9 PROOFS FROM RULES AND FACTS 763

1. Facts, which are ground atomic formulas.

2. Rules, which are “if-then” expressions. An example is the query (14.19) about
C. Brown’s grade in CS101,

(csg(“CS1017, S, G) AND snap(S, “C.Brown”, A, P)) — answer(G)

which we discussed in Example 14.20. Rules consist of the AND of one or more atomic
formulas on the left-hand side of the implication sign, and one atomic formula on the
right-hand side. We assume that any variable appearing in the head also appears
somewhere in the body.

The left-hand side (hypotheses) of a rule is called the body, and the right-
hand side side is called the head. Any one of the atomic formulas of the body is
called a subgoal. For instance, in (14.19), the rule repeated above, the subgoals are
csg(“CS1017, S, G) and snap(S, “C.Brown”, A, P). The head is answer(G).

The general idea behind the use of rules is that rules are general principles
that we can apply to facts. We try to match the subgoals of the body of a rule to
facts that are either given or already proven, by substituting for variables in the
rule. When we can do so, the substitution makes the head a ground atomic formula,
because we have assumed that each variable of the head appears in the body. We
can add this new ground atomic formula to the collection of facts at our disposal
for further proofs.

Example 14.22. One simple application of proofs from rules and facts is in
answering queries as in the relational model discussed in Chapter 8. Each relation
corresponds to a predicate symbol, and each tuple in the relation corresponds to a
ground atomic formula with that predicate symbol and with arguments equal to the
components of the tuple, in order. For example, from the Course-Student-Grade
relation of Fig. 8.1, we would get the facts

csg(“CS1017,12345, “A”) csg(“CS1017, 67890, “B”)

csg(“EE2007,12345, “C7) esg(“EE2007, 22222, “B+”)
csg(“CS1017,33333, “A-") esg(“PH1007, 67890, “C+”)

Similarly, from the Student-Name-Address-Phone relation of Fig. 8.2(a), we get the
facts

snap(12345, “C.Brown”, “12 Apple St.”, 555-1234)

snap(67890, “L.VanPelt”, “34 Pear Ave.”, 555-5678)

snap(22222, “P.Patty”, “56 Grape Blvd.”, 555-9999)

To these facts, we might add the rule (14.19),
(csg(“CS1017, S, G) AND snap(S, “C.Brown”, A, P)) — answer(G)

to complete the list of hypotheses.

Suppose we want to show that answer(“A”) is true, that is, C. Brown gets an
A in CS101. We could begin our proof with all of the facts and the rule, although
in this case we only need the rule, the first csg fact and the first snap fact. That
is, the first three lines of the proof are

1. (csg(“CS1017, S, G) AND snap(S, “C.Brown”, A, P)) — answer(G)

764 PREDICATE LOGIC

2. ¢sg(“CS1017,12345, “A”)
3. snap(12345, “C.Brown”, “12 Apple St.”, 555-1234)

The next step is to combine the second and third lines, using the inference rule that
says if 1 and E5 are lines of a proof then E; AND E5 may be written as a line of
the proof. Thus we have line

4. esg(“CS1017,12345, “A”) AND
snap(12345, “C.Brown”, “12 Apple St.”, 555-1234)

Next, let us use the law of substitution for free variables to specialize our
rule — line (1) — so that it applies to the constants in line (4). That is, we make
the substitution

sub(S) = “12345”
sub(G) = “A”

sub(A) = “12 Apple St.”
sub(P) = 555-1234

in (1) to obtain the line

5. (csg(“CS1017,12345, “A”) AND
snap(12345, “C.Brown”, “12 Apple St.”,555—1234))
— answer(“A”)

Finally, modus ponens applied to (4) and (5) gives us the sixth and last line of the
proof,

6. answer(“A”). O

A Simplified Inference Rule

If we look at the proof of Example 14.22, we can observe the following strategy for
building a proof from ground atomic formulas and logical rules.

1. We select a rule to apply and we select a substitution that turns each subgoal
into a ground atomic formula that either is a given fact, or is something we
have already proved. In Example 14.22, we substituted 12345 for .S, and so on.
The result appeared as line (4) of Example 14.22.

2. We create lines of the proof for each of the substituted subgoals, either because
they are facts, or by inferring them in some way. This step appeared as lines
(2) and (3) in Example 14.22.

3. We create a line that is the AND of the lines corresponding to each of the
substituted subgoals. This line is the body of the substituted rule. In Example
14.22, this step appeared as line (5).

4. We use modus ponens, with the substituted body from (3) and the substituted
rule from (1) to infer the substituted head. This step appeared as line (6) in
Example 14.22.

We can combine these steps into a single inference rule, as follows. If there is
a rule R among the hypotheses and a substitution sub such that in the substituted
instance sub(R), each of the subgoals is a line of the proof, then we may add the
head of sub(R) as a line of the proof.

SEC. 14.9 PROOFS FROM RULES AND FACTS 765

Interpreting Rules

Rules, like all expressions that appear in proofs, are implicitly universally quantified.
Thus we can read (14.19) as “for all S, G, A, and P, if ¢sg(“CS1017, S, G) is true,
and snap(S, “C.Brown”, A, P) is true, then answer(G) is true.” However, we may
treat variables that appear in the body, but not in the head, such as S, A, and P,
as existentially quantified for the scope of the body. Formally, (14.19) is equivalent
to

(VG) ((35)(3A)(3P) (csg(“CS1017, S, G) AND snap(S, “C.Brown”, A, P))
— answer(G))

That is, for all G, if there exists S, A, and P such that ¢sg(“CS101”,S,G) and
snap(S, “C.Brown”, A, P) are both true, then answer(G) is true.

This phrasing corresponds more closely to the way we think of applying a rule.
It suggests that for each value of the variable or variables that appear in the head,
we should try to find values of the variables appearing only in the body, that make
the body true. If we find such values, then the head is true for the chosen values of
its variables.

To see why we can treat variables that are local to the body as existentially
quantified, start with a rule of the form B — H, where B is the body, and H is the
head. Let X be one variable that appears only in B. Implicitly, this rule is

(Vx)(B — H)

and by law (14.17), we can make the quantifier for X be the innermost, writing the
expression as (Vx)(VX)(B — H). Here, the (Vx) includes all variables but X. Now
we replace the implication by its equivalent expression using NOT and OR, that is,
(V%) (VX) ((NOT B) O0R H) Since X does not appear in H, we may apply law (14.13)

in reverse, to make the (VX) apply to NOT B only, as (V*)(((VX) NOT B) OR H)
Next, we use law (14.10) to move the (VX) inside the negation, yielding

(V) ((NDT (3X)(NOT NOT B)) OR H)

or, after eliminating the double negation, (V*)((NDT (3X)B) OR H) Finally, we
restore the implication to get (Vx) (((EIX)B) — H)

Example 14.23. In Example 14.22, rule R is (14.19), or
(csg(“CSlOl”, S, G) AND snap(S, “C.Brown”, A, P)) — answer(Q)

The substitution sub is as given in that example, and the subgoals of sub(R) are
lines (2) and (3) in Example 14.22. By the new inference rule, we could write down
line (6) of Example 14.22 immediately; we do not need lines (4) and (5). In fact,
line (1), the rule R itself, can be omitted from the proof as long as it is a given
hypothesis. O

766 PREDICATE LOGIC

Example 14.24. For another example of how rules may be applied in proofs,
let us consider the Course-Prerequisite relation of Fig. 8.2(b), whose eight facts can
be represented by eight ground atomic formulas with predicate cp,

ep(“CS1017, “CS1007) cp(“EE2007, “EE005")
ep(“EE200”, “CS100”) ep(“CS1207, “CS1017)
ep(“CS1217, “CS1207) ep(“CS205”, “CS1017)
ep(“CS206”, “CS1217) ep(“CS206”, “CS205”)

We might wish to define another predicate before(X,Y) that means course Y must
be taken before course X. Either Y is a prerequisite of X, a prerequisite of a
prerequisite of X, or so on. We can define the notion “before” recursively, by
saying

1. IfY is a prerequisite of X, then Y comes before X.

2. If X has a prerequisite Z, and Y comes before Z, then Y comes before X.

Rules (1) and (2) can be expressed as rules of predicate logic as follows.

ep(X,Y) — before(X,Y) (14.22)

(ep(X, Z) AND before(Z,Y)) — before(X,Y) (14.23)

Let us now explore some of the before facts that we can prove with the eight
Course-Prerequisite facts given at the beginning of the example, plus rules (14.22)
and (14.23). First, we can apply rule (14.22) to turn each of the c¢p facts into a
corresponding before fact, yielding

before(“CS101”, “CS100”) before(“EE200”, “EE005”)
before(“EE200”, “CS100”) before(“CS120”, “CS101”)
before(“CS121”, “CS120”) before(“CS205”, “CS101”)
before(“CS206”, “CS121”) before(“CS206”, “CS205”)

For example, we may use the substitution

suby (X) = “CS101”
subi(Y) = “CS100”

on (14.22) to get the substituted rule instance
ep(“CS1017, “CS100”) — before(“CS1017, “CS100”)

This rule, together with the hypothesis ¢p(“CS101”, “CS100”), gives us
before(“CS1017, “CS1007)

Now we can use rule (14.23) with the hypothesis ¢p(“CS120”, “CS101”) and
the fact before(“CS1017, “CS100”) that we just proved, to prove

before(“CS1207, “CS1007)

That is, we apply the substitution

subg(X) = “CS120”
sube(Y) = “CS100”
suba(Z) = “CS101”

to (14.23) to obtain the rule

SEC. 14.9 PROOFS FROM RULES AND FACTS 767

Paths in a Graph

Example 14.24 deals with a common form of rules that define paths in a directed
graph, given the arcs of the graph. Think of the courses as nodes, with an arc
a — b if course b is a prerequisite of course a. Then before(a,b) corresponds to the
existence of a path of length 1 or more from a to b. Figure 14.9 shows the graph
based on the Course-Prerequisite information from Fig. 8.2(b).

When the graph represents prerequisites, we expect it to be acyclic, because
it would not do to have a course that had to be taken before itself. However, even
if the graph has cycles, the same sort of logical rules define paths in terms of arcs.
We can write these rules

arc(X,Y) — path(X,Y)
that is, if there is an arc from node X to node Y, then there is a path from X to
Y, and

(arc(X, Z) AND path(Z,Y)) — path(X,Y)

That is, if there is an arc from X to some Z, and a path from Z to Y, then there
is a path from X to Y. Notice that these are the same rules as (14.22) and (14.23),
with predicate arc in place of ¢p, and path in place of before.

(ep(“CS1207, “CS1017) AND before(“CS1017, “CS1007))
— before(“CS120”, “CS100”)

We then may infer the head of this substituted rule, to prove
before(“CS1207, “CS1007)
Similarly, we may apply rule (14.23) to the ground atomic formulas
ep(“CS1217, “CS1207)

and before(“CS120”, “CS100”) to prove before(“CS121”, “CS100”). Then we use
(14.23) on ¢p(“CS206”, “CS121”) and before(“CS121”, “CS100”) to prove

before(“CS206”, “CS1007)

There are many other before facts we could prove in a similar manner. O

EXERCISES

14.9.1*: We can show that the before predicate of Example 14.24 is the transi-
tive closure of the cp predicate as follows. Suppose there is a sequence of courses

C1,Co,...,Cn, for somen > 2, and c; is a prerequisite of ¢y, which is a prerequisite of
cs, and so on; in general, e¢p(c;, ¢;41) is a given fact for i = 1,2,...,n—1. Show that
¢1 comes before ¢, by showing that before(cy, ¢;) for all i = 2,3, ..., n, by induction
on 1.

14.9.2: Using the rules and facts of Example 14.24, prove the following facts.

a) before(“CS120”, “CS100”)
b) before(“CS206”, “CS100”)

0
00 14.10

768 PREDICATE LOGIC

CS206
N
CS121 CS205

CS+120
CS+101 EE200
CStOO‘/EEt%

Fig. 14.9. Prerequisite information as a directed graph.

14.9.3: We can speed up the process of following chains of prerequisites by adding
to Example 14.24 the rule

(before(X, Z) AND before(Z,Y)) — before(X,Y)

That is, the first subgoal can be any before fact, not just a prerequisite fact. Using
this rule, find a shorter proof for Exercise 14.9.2(b).

14.9.4%*: How many before facts can we prove in Example 14.247

14.9.5: Let csg be a predicate that stands for the Course-Student-Grade relation
of Fig. 8.1, cdh be a predicate that stands for the Course-Day-Hour relation of
Fig. 8.2(c), and cr a predicate for the Course-Room relation of Fig. 8.2(d). Let
where(S, D, H, R) be a predicate that means student S is in room R at hour H of
day D. More precisely, S is taking a course that meets in that room at that time.

a) Write a rule that defines where in terms of csg, cdh, and cr.

b) If the facts for the predicates csg, cdh, and cr are as given in Figs. 8.1 and 8.2,
what where facts can you infer? Give a proof of two such facts.

Truth and Provability

We close our discussion of predicate logic with an introduction to one of the more
subtle issues of logic: the distinction between what is provable and what is true.
We have seen inference rules that allow us to prove things in either propositional or
predicate logic, yet we could not be sure that a given set of rules was complete, in the
sense that they allowed us to prove every true statement. We asserted, for instance,
that resolution as we presented it in Section 12.11 is complete for propositional
logic. A generalized form of resolution, which we do not cover here, is also complete
for predicate logic.

Double turnstile

Single turnstile

SEC. 14.10 TRUTH AND PROVABILITY 769

Models

However, to understand completeness of a proof-strategy, we need to grasp the
notion of “truth.” To get at “truth,” we need to understand the notion of a model.
Every kind of logic has a notion of models for a collection of expressions. These
models are the interpretations that make the expressions true.

Example 14.25. In propositional logic, the interpretations are truth assign-
ments. Consider the expressions 1 = p AND ¢ and E5 = p OR r. There are eight
truth assignments for expressions involving variables p, ¢, and r, which we may
denote by a string of three bits, for the truth values of each of these variables, in
order.

The expression E; is made true only by those assignments that make both
p and ¢ true, that is, by 110 and 111. The expression E5 is made true by six
assignments: 000, 001, 010, 011, 101, and 111. Thus there is only one model for set
of expressions { F1, Es}, namely 111, since only this model appears on both lists. 0

Example 14.26. In predicate logic, interpretations are the structures defined
in Section 14.5. Let us consider the expression F

(VX)3EY)p(X,Y)

That is, for every value of X there is at least one value of Y for which p(X,Y) is
true.

An interpretation makes E true if for every element a of the domain D, there
is some element b in D — not necessarily the same b for each a — such that the
relation that is the interpretation for predicate p has the pair (a,b) as a member.
These interpretations are models of F; other interpretations are not. For example,
if domain D is the integers and the interpretation for predicate p makes p(X,Y)
true if and only if X < Y, then we have a model for expression E. However, the
interpretation that has domain D equal to the integers and has the interpretation
of p in which p(X,Y) is true if and only if X = Y2, is not a model for expression
E. O

Entailment

We can now state what it means for an expression E to be true, given a collection
of expressions {Fy, Es, ..., E,}. We say that {E1, Fs, ..., E,} entails expression E
if every model M for {Ey, Es, ..., E,} is also a model for E. The double turnstile
operator |= denotes entailment, as

ElaE27"'7En ':E

The intuition we need is that each interpretation is a possible world. When we say
Ey, Es, ..., E, E E, we are saying that E is true in every possible world where the
expressions Fn, Fo, ..., E, are true.

The notion of entailment should be contrasted with the notion of proof. If
we have a particular proof system such as resolution in mind, then we can use the
single turnstile operator I to denote proof in the same way. That is,

Ey,Ey,...,E,F E

Consistent
proof system

770 PREDICATE LOGIC

means that, for the set of inference rules at hand, there is a proof of E from the
hypotheses Fi, Es, ..., E,. Note that F can have different meanings for different
proof systems. Also remember that = and - are not necessarily the same relation-
ship, although we would generally like to have a proof system in which one is true
if and only if the other is true.

There is a close connection between tautologies and entailment. In particular,
suppose E1, Es, ..., E, = E. Then we claim

(Ey AND Fo AND --- AND E,,) — E (14.24)

is a tautology. Consider some interpretation I. If I makes the left-hand side of
(14.24) true, then I is a model of {Ey, Es,...,E,}. Since F1,Es,...,E, E E,
interpretation I must also make F true. Thus I makes (14.24) true.

The only other possibility is that I makes the left-hand side of (14.24) false.
Then, because an implication is always true when its left-hand side is false, we know
(14.24) is again true. Thus (14.24) is a tautology.

Conversely, if (14.24) is a tautology, then we can prove Eq, Fs, ..., E, E E.
We leave this proof as an exercise.

Notice that our argument does not depend on whether the expressions involved
are of propositional or predicate logic, or some other kind of logic that we have not
studied. We only need to know that the tautologies are the expressions made true
by every “interpretation” and that a model for an expression or set of expressions
is an interpretation making the expression(s) true.

Comparing Provability and Entailment

We would like to know that a given proof system allows us to prove everything that
is true and nothing that is false. That is, we want the single and double turnstiles
to mean the same thing. A proof system is said to be consistent if, whenever
something can be proved, it is also entailed. That is, F1, Fo,..., E, = E implies
Ey,Es,...,E, E E. For example, we discussed in Section 12.10 why our inference
rules for propositional logic were consistent. To be exact, we showed that whenever
we started with hypotheses E1, Fs, ..., E, and wrote a line F in our proof, then
(E1 AND E5 AND - -- AND E,,) — E was a tautology. By what we argued above, that
is the same as saying E1, F», ..., E, E E.

We would also like our proof system to be complete. Then we could prove
everything that was entailed by our hypotheses, even if finding that proof was hard.
It turns out that the inference rules we gave in Section 12.10, or the resolution rule
in Section 12.11 are both complete proof systems. That is, if Eq, Fs,...,E, = E,
then Fi, Es, ..., E, F FE in either of these proof systems. There are also complete
proof systems for predicate logic, although we shall not introduce them.

Godel’s Incompleteness Theorem

One of the most striking results of modern mathematics is often seen as a contra-
diction to what we have just said about there being complete proof systems for
predicate logic. This result actually concerns not predicate logic as we have dis-
cussed it, but rather a specialization of this logic that lets us talk about integers
and the usual operations on integers. In particular, we have to modify predicate
logic to introduce predicates for the arithmetic operations, such as

SEC. 14.10 TRUTH AND PROVABILITY 771

plus(X,Y, Z), which we want to be true when and only when X +Y = Z,
. times(X,Y, Z), true exactly when X x Y = Z, and
3. less(X,Y), true exactly when X < Y.

Further, we need to restrict the domain in interpretations so that the values
appear to be the nonnegative integers. We can do that in one of two ways. One
way is to introduce a set of expressions that we assert are true. By selecting these
expressions properly, the domain in any interpretation satisfying the expressions
must “look like” the integers, and the special predicates such as plus or less must
act as would the familiar operations with those names.

Example 14.27. We can assert expressions such as
plus(X,Y, Z) — plus(Y, X, Z)

which is the commutative law for addition, or
(less(X,Y) AND less(Y, Z)) — less(X, Z)

which is the transitive law for <. O

Perhaps a simpler way to understand the restriction of predicate logic that
Godel’s theorem addresses is to suppose that the logic allows only one model, the
model in which the domain is the nonnegative integers, and the special predicates
are given relations corresponding to their conventional meaning. For instance, we
would let the interpretation for predicate plus be

{(a,b,¢) | a+b=c}

Godel’s theorem states that no matter what consistent proof system one se-
lects, there is some expression E that is true but unprovable! More precisely, if
FEy,Es, ... E, is a set of expressions all of whose models behave as do the non-
negative integers, then Ey, Fs, ..., E, = FE is true, yet E1, Fa, ..., E, F E is false.
That is, there is no proof of E from {Ey, Es, ..., E,} in our chosen system.

The unprovable expression E may be different for different chosen proof sys-
tems. In fact, the selected expression E can be thought of as a way to encode into
integers the fact that the expression itself has no proof in the given proof system.

Limits on What a Computer Can Do

An important consequence of Godel’s theorem is that there is a limit on our ability to
answer questions about mathematics. If we have a mathematical model as complex
as the integers (and many mathematical models are far more complex than integers,
as we have seen in this book), then there is no mechanical way we can distinguish
true statements from false ones. The best we can do is use some consistent proof
system to allow us to search for proofs. If we find one, we are lucky, and we
can be sure that the proved statement is true. However, our search may go on
forever, without ever finding a proof, even though the statement is true; that is, the
statement is entailed by the assumptions we have made to define the mathematical
model at hand.

Philosophically, this situation suggests that mathematics will forever remain
interesting and challenging. Practically, it suggests that there are limits to what

Turing machine

772 PREDICATE LOGIC

Undecidability

The logician Alan Turing developed a formal theory of computing in the 1930’s
considerably before there were any electronic computers to model with his theory.
The most important result of this theory is the discovery that certain problems are
undecidable; no computer whatsoever can answer them.

A centerpiece of the theory is the Turing machine, an abstract computer that
consists of a finite automaton with an infinite tape divided into squares. In a single
move, the Turing machine can read the character on the one square seen by its tape
head, and based on that character and its current state, replace the character by
a different one, change its state, and move the tape head one square left or right.
An observed fact is that every real computer, as well as every other mathematical
model of what a computing engine should be, can compute exactly what the Turing
machine can compute. Thus we take the Turing machine as the standard abstract
model of a computer.

However, we do not have to learn the details of what a Turing machine can do
in order to appreciate Turing’s theory. It suffices to take as a model of a computer a
kind of C program that reads character input and has only two possible write state-
ments: printf ("yes\n") and printf ("no\n"). Moreover, after making an output
of either type, the program must terminate, so that it cannot make a contradictory
output later. Understand that a program of this type might, on some inputs, give
neither a “yes” nor a “no” response; it might run forever in a loop.

We shall prove that there is no program like D, the “decider” program of Fig.
14.10(a). D supposedly takes as input a program P of the special type above, and
says “yes” if P says “yes” when given P itself as input. D says “no” if — when
P is given P as input — P either says “no” or P fails to make any decision. As
we shall see, it is this requirement that D figure out the occasions when P is never
going to render a decision that makes D impossible to write.

However, supposing that D exists, it is a simple matter to write a “comple-
menter” program C, as suggested in Fig. 14.10(b). C is formed from the hypotheti-
cal D by changing every statement that prints “no” into one that prints “yes,” and
vice versa.

Now we ask what happens when C' is given itself as input, as suggested in Fig.
14.10(c)? If C says “yes,” then as Fig. 14.10(b) reminds us, C' is asserting that “C
does not say ‘yes’ on input C.” If C' says “no,” then C' is asserting that “C says
‘yes’ on input C.” We now have a contradiction similar to Russell’s paradox, where
C' can say neither “yes” nor “no” truthfully.

The conclusion is that the decider program D does not really exist. That is,
the problem solved by D, which is whether a given C program of the restricted type
says “yes” or fails to say “yes” (by saying “no” or by saying nothing) when given
itself as input, cannot be solved by computer. It is an undecidable problem.

Since Turing’s original result, a wide variety of undecidable problems have been
discovered. For example, it is undecidable whether a given C program enters an
infinite loop on a given input, or whether two C programs produce the same output
on the same input.

SEC. 14.10 TRUTH AND PROVABILITY 773

“yes” if P says “yes” on input P

/
P—D

N

“no” if P does not say “yes” on input P

(a) The hypothetical decider D.

“yes” if P does not say “yes” on input P

/!
N\

“no” if P says “yes” on input P

P—-C

(b) The complementer C.

(c) What does C' do with itself as input?

Fig. 14.10. Parts of Turing’s construction.

we can do with a computer. In particular, we cannot write programs to find proofs
in sufficiently complex systems, although we can do so in simple systems, such as
propositional logic or even predicate logic without any special predicates or restric-
tions. The reader should observe the box on “Undecidability,” in which a theorem
related to Godel’s is discussed. The theory of undecidability allows us to point to
specific problems that we can show no computer can solve.

Thus, rather than ending this book on a negative note, the theory of undecid-
ability reminds us that, like mathematics, computer science is destined to challenge
the best minds the human race can produce. The student who pursues the sub-
ject will learn the art and science that is needed to avoid the undecidable (and
the intractable as well). He or she may then join the ranks of those scientists and
engineers pushing back the frontiers of what our computing machines can do.

EXERCISES

14.10.1: Let Ey = p, Ey = ¢, and E3 = gr + pr. Describe the models (truth assign-
ments for propositional variables p, ¢, and r) that make {Fj, Ex} true. Describe
the models for E3. Is Eq, Es |= E3 true? Why or why not?

14.10.2**: Consider the following expressions of predicate logic.

0
00 14.11

774 PREDICATE LOGIC

1. By = (VX)p(X, X)

2. Z(VX)(VY)(pXY —>pYX))

3. Es=(VX)(VY)(VZ)(((X,Y) AND p(Y, Z)) — p(X, Z))
4, = (VX)(VY) (p(X,Y) OR p(Y, X))

= (vX)(FY)p(X,Y)

Which of these five expressions are entailed by the other four? In each case, either
give an argument about all possible interpretations, to show entailment, or give a
particular interpretation that is a model of four of the expressions but not the fifth.
Hint: Start by imagining that the predicate p represents the arcs of a directed graph,
and look at each expression as a property of graphs. The material in Section 7.10
should give some hints either for finding appropriate models in which the domain is
the nodes of a certain graph and predicate p the arcs of that graph, or for showing
why there must be entailment. Note however, that it is not sufficient to show
entailment by insisting that the interpretation be a graph.

14.10.3*: Let S7 and S2 be two sets of expressions of predicate logic (or proposi-
tional logic — it doesn’t matter), and let their corresponding sets of models be M;
and Mo, respectively.

a) Show that the set of models for the set of expressions S; U Sy is My N Mo.
b) Is the set of models for set of expressions S; N Sy always equal to My U Ms?

14.10.4*: Show that if (E; AND FEy AND --- AND E,) — E is a tautology, then
E\,E,,...,E, E E.

Summary of Chapter 14

The reader should have learned the following points from this chapter.

O Predicate logic uses atomic formulas, that is, predicates with arguments, as
atomic operands and the operators of propositional logic, plus the two quanti-
fiers, “for all” and “there exists.”

O Variables in an expression of predicate logic are bound by quantifiers in a
manner analogous to the binding of variables in a program to declarations.

O Instead of the truth assignments of propositional logic, in predicate logic we
have a complex structure called an “interpretation.” An interpretation consists
of a domain of values, relations on that domain for the predicates, and values
from the domain for any free variables.

O The interpretations that make a set of expressions true are the “models” of
that set of expressions.

O Tautologies of predicate calculus are those that evaluate to TRUE for every inter-
pretation. While many tautologies are obtained by substitution into tautolo-
gies of propositional logic, there are also some important tautologies involving
quantifiers.

0
m=a 14.12

SEC. 14.12 BIBLIOGRAPHIC NOTES FOR CHAPTER 14 775

O It is possible to put every expression of predicate logic into “prenex form,”
consisting of a quantifier-free expression to which quantifiers are applied as the
last operators.

O Proofs in predicate logic can be constructed in a manner similar to proofs in
propositional logic.

O The substitution of constants for variables in tautologies yields another tautol-
ogy, and this inference rule is useful in proofs, especially when we work from a
database of facts and a collection of rules.

O A set of expressions {E1,. .., E,} “entails” an expression E if any model of the
former is also a model of the latter. We regard E as “true” given Fj,..., F,
as hypotheses if F is entailed by F1, ..., E,.

O Godel’s theorem states that if we take expressions describing number theory
(i.e., arithmetic for the nonnegative integers) as hypotheses, then for any proof
system, there is some expression that is entailed by the hypotheses but cannot
be proved from them.

O Turing’s theorem describes a formal model of a computer called a “Turing ma-
chine” and says that there are problems that cannot be solved by a computer.

Bibliographic Notes for Chapter 14

The books on logic, including Enderton [1972], Mendelson [1987], Lewis and Pa-
padimitriou [1981], and Manna and Waldinger [1990] that we cited in Section 12.14,
also cover predicate logic.

Godel’s incompleteness theorem appeared in Godel [1931]. Turing’s paper on
undecidability is Turing [1936].

Godel, K. [1931]. “Uber formal unentscheidbare satze der Principia Mathematica
und verwander systeme,” Monatschefte fur Mathematik und Physik 38, pp. 173—
198.

Turing, A. M. [1936]. “On computable numbers with an application to the entschei-
dungsproblem,” Proc. London Math. Soc. 2:42, pp. 230-265.

