
CHAPTER 9

✦
✦ ✦

✦ The Graph

Data Model

A graph is, in a sense, nothing more than a binary relation. However, it has a
powerful visualization as a set of points (called nodes) connected by lines (called
edges) or by arrows (called arcs). In this regard, the graph is a generalization of the
tree data model that we studied in Chapter 5. Like trees, graphs come in several
forms: directed/undirected, and labeled/unlabeled.

Also like trees, graphs are useful in a wide spectrum of problems such as com-
puting distances, finding circularities in relationships, and determining connectiv-
ities. We have already seen graphs used to represent the structure of programs in
Chapter 2. Graphs were used in Chapter 7 to represent binary relations and to
illustrate certain properties of relations, like commutativity. We shall see graphs
used to represent automata in Chapter 10 and to represent electronic circuits in
Chapter 13. Several other important applications of graphs are discussed in this
chapter.

✦
✦ ✦

✦
9.1 What This Chapter Is About

The main topics of this chapter are

✦ The definitions concerning directed and undirected graphs (Sections 9.2 and
9.10).

✦ The two principal data structures for representing graphs: adjacency lists and
adjacency matrices (Section 9.3).

✦ An algorithm and data structure for finding the connected components of an
undirected graph (Section 9.4).

✦ A technique for finding minimal spanning trees (Section 9.5).

✦ A useful technique for exploring graphs, called “depth-first search” (Section
9.6).
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452 THE GRAPH DATA MODEL

✦ Applications of depth-first search to test whether a directed graph has a cycle,
to find a topological order for acyclic graphs, and to determine whether there
is a path from one node to another (Section 9.7).

✦ Dijkstra’s algorithm for finding shortest paths (Section 9.8). This algorithm
finds the minimum distance from one “source” node to every node.

✦ Floyd’s algorithm for finding the minimum distance between any two nodes
(Section 9.9).

Many of the algorithms in this chapter are examples of useful techniques that are
much more efficient than the obvious way of solving the given problem.

✦
✦ ✦

✦
9.2 Basic Concepts

A directed graph, consists ofDirected graph

1. A set N of nodes and

2. A binary relation A on N . We call A the set of arcs of the directed graph.Nodes and arcs

Arcs are thus pairs of nodes.

Graphs are drawn as suggested in Fig. 9.1. Each node is represented by a
circle, with the name of the node inside. We shall usually name the nodes by
integers starting at 0, or we shall use an equivalent enumeration. In Fig. 9.1, the
set of nodes is N = {0, 1, 2, 3, 4}.

Each arc (u, v) in A is represented by an arrow from u to v. In Fig. 9.1, the
set of arcs is

A = {(0, 0), (0, 1), (0, 2), (1, 3), (2, 0), (2, 1), (2, 4), (3, 2), (3, 4), (4, 1)}

0 1

2 3

4

Fig. 9.1. Example of a directed graph.

In text, it is customary to represent an arc (u, v) as u → v. We call v the headHead and tail

of the arc and u the tail to conform with the notion that v is at the head of the
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arrow and u is at its tail. For example, 0 → 1 is an arc of Fig. 9.1; its head is node
1 and its tail is node 0. Another arc is 0 → 0; such an arc from a node to itself is
called a loop. For this arc, both the head and the tail are node 0.Loop

Predecessors and Successors

When u → v is an arc, we can also say that u is a predecessor of v, and that v is a
successor of u. Thus, the arc 0 → 1 tells us that 0 is a predecessor of 1 and that 1
is a successor of 0. The arc 0 → 0 tells us that node 0 is both a predecessor and a
successor of itself.

Labels

As for trees, it is permissible to attach a label to each node. Labels will be drawn
near their node. Similarly, we can label arcs by placing the label near the middle
of the arc. Any type can be used as a node label or an arc label. For instance, Fig.
9.2 shows a node named 1, with a label “dog,” a node named 2, labeled “cat,” and
an arc 1 → 2 labeled “bites.”

1 2
bites

dog cat

Fig. 9.2. A labeled graph with two nodes.

Again as with trees, we should not confuse the name of a node with its label.
Node names must be unique in a graph, but two or more nodes can have the same
label.

Paths

A path in a directed graph is a list of nodes (v1, v2, . . . , vk) such that there is an arc
from each node to the next, that is, vi → vi+1 for i = 1, 2, . . . , k − 1. The lengthLength of a

path of the path is k − 1, the number of arcs along the path. For example, (0, 1, 3) is a
path of length two in Fig. 9.1.

The trivial case k = 1 is permitted. That is, any node v by itself is a path of
length zero from v to v. This path has no arcs.

Cyclic and Acyclic Graphs

A cycle in a directed graph is a path of length 1 or more that begins and ends at
the same node. The length of the cycle is the length of the path. Note that a trivialLength of a

cycle path of length 0 is not a cycle, even though it “begins and ends at the same node.”
However, a path consisting of a single arc v → v is a cycle of length 1.

✦ Example 9.1. Consider the graph of Fig. 9.1. There is a cycle (0, 0) of length 1
because of the loop 0 → 0. There is a cycle (0, 2, 0) of length 2 because of the arcs
0 → 2 and 2 → 0. Similarly, (1, 3, 2, 1) is a cycle of length 3, and (1, 3, 2, 4, 1) is a
cycle of length 4. ✦
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Note that a cycle can be written to start and end at any of its nodes. That
is, the cycle (v1, v2, . . . , vk, v1) could also be written as (v2, . . . , vk, v1, v2) or asEquivalent

cycles (v3, . . . , vk, v1, v2, v3), and so on. For example, the cycle (1, 3, 2, 4, 1) could also
have been written as (2, 4, 1, 3, 2).

On every cycle, the first and last nodes are the same. We say that a cycle
(v1, v2, . . . , vk, v1) is simple if no node appears more than once among v1, . . . , vk;Simple cycle

that is, the only repetition in a simple cycle occurs at the final node.

✦ Example 9.2. All the cycles in Example 9.1 are simple. In Fig. 9.1 the
cycle (0, 2, 0) is simple. However, there are cycles that are not simple, such as
(0, 2, 1, 3, 2, 0) in which node 2 appears twice. ✦

Given a nonsimple cycle containing node v, we can find a simple cycle contain-
ing v. To see why, write the cycle to begin and end at v, as in (v, v1, v2, . . . , vk, v).
If the cycle is not simple, then either

1. v appears three or more times, or

2. There is some node u other than v that appears twice; that is, the cycle must
look like (v, . . . , u, . . . , u, . . . , v).

In case (1), we can remove everything up to, but not including, the next-to-last
occurrence of v. The result is a shorter cycle from v to v. In case (2), we can remove
the section from u to u, replacing it by a single occurrence of u, to get the cycle
(v, . . . , u, . . . , v). The result must still be a cycle in either case, because each arc of
the result is present in the original cycle, and therefore is present in the graph.

It may be necessary to repeat this transformation several times before the cycle
becomes simple. Since the cycle always gets shorter with each iteration, eventually
we must arrive at a simple cycle. What we have just shown is that if there is a cycle
in a graph, then there must be at least one simple cycle.

✦ Example 9.3. Given the cycle (0, 2, 1, 3, 2, 0), we can remove the first 2 and the
following 1, 3 to get the simple cycle (0, 2, 0). In physical terms, we started with
the cycle that begins at 0, goes to 2, then 1, then 3, back to 2, and finally back to
0. The first time we are at 2, we can pretend it is the second time, skip going to 1
and 3, and proceed right back to 0.

For another example, consider the nonsimple cycle (0, 0, 0). As 0 appears three
times, we remove the first 0, that is, everything up to but not including the next-
to-last 0. Physically, we have replaced the path in which we went around the loop
0 → 0 twice by the path in which we go around once. ✦

If a graph has one or more cycles, we say the graph is cyclic. If there are noCyclic graph

cycles, the graph is said to be acyclic. By what we just argued about simple cycles,
a graph is cyclic if and only if it has a simple cycle, because if it has any cycles at
all, it will have a simple cycle.

✦ Example 9.4. We mentioned in Section 3.8 that we could represent the calls
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made by a collection of functions with a directed graph called the “calling graph.”Calling graph

The nodes are the functions, and there is an arc P → Q if function P calls function
Q. For instance, Fig. 9.3 shows the calling graph associated with the merge sort
algorithm of Section 2.9.

main

MakeList PrintList

MergeSort

split merge

Fig. 9.3. Calling graph for the mergesort algorithm.

The existence of a cycle in the calling graph implies a recursion in the algorithm.
In Fig. 9.3 there are four simple cycles, one around each of the nodes MakeList,
MergeSort, split, and merge. Each cycle is a trivial loop. Recall that all these
functions call themselves, and thus are recursive. Recursions in which a function
calls itself are by far the most common kind, and each of these appears as a loop in
the calling graph. We call these recursions direct. However, one occasionally sees anDirect and

indirect

recursion

indirect recursion, in which there is a cycle of length greater than 1. For instance,
the graph

P Q R

represents a function P that calls function Q, which calls function R, which calls
function P . ✦
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Acyclic Paths

A path is said to be acyclic if no node appears more than once on the path. Clearly,
no cycle is acyclic. The argument that we just gave to show that for every cycle
there is a simple cycle also demonstrates the following principle. If there is any path
at all from u to v, then there is an acyclic path from u to v. To see why, start with
any path from u to v. If there is a repetition of some node w, which could be u or
v, replace the two occurrences of w and everything in between by one occurrence of
w. As for the case of cycles, we may have to repeat this process several times, but
eventually we reduce the path to an acyclic path.

✦ Example 9.5. Consider the graph of Fig 9.1 again. The path (0, 1, 3, 2, 1, 3, 4)
is a path from 0 to 4 that contains a cycle. We can focus on the two occurrences of
node 1, and replace them, and the 3, 2 between them, by 1, leaving (0, 1, 3, 4), which
is an acyclic path because no node appears twice. We could also have obtained the
same result by focusing on the two occurrences of node 3. ✦

Undirected Graphs

Sometimes it makes sense to connect nodes by lines that have no direction, called
edges. Formally, an edge is a set of two nodes. The edge {u, v} says that nodes uEdge

and v are connected in both directions.1 If {u, v} is an edge, then nodes u and v
are said to be adjacent or to be neighbors. A graph with edges, that is, a graphNeighbors

with a symmetric arc relation, is called an undirected graph.

✦ Example 9.6. Figure 9.4 represents a partial road map of the Hawaiian Islands,
indicating some of the principal cities. Cities with a road between them are indicated
by an edge, and the edge is labeled by the driving distance. It is natural to represent
roads by edges, rather than arcs, because roads are normally two-way. ✦

Paths and Cycles in Undirected Graphs

A path in an undirected graph is a list of nodes (v1, v2, . . . , vk) such that each
node and the next are connected by an edge. That is, {vi, vi+1} is an edge for
i = 1, 2, . . . , k − 1. Note that edges, being sets, do not have their elements in any
particular order. Thus, the edge {vi, vi+1} could just as well appear as {vi+1, vi}.

The length of the path (v1, v2, . . . , vk) is k−1. As with directed graphs, a node
by itself is a path of length 0.

Defining cycles in undirected graphs is a little tricky. The problem is that we
do not want to consider a path such as (u, v, u), which exists whenever there is an
edge {u, v}, to be a cycle. Similarly, if (v1, v2, . . . , vk) is a path, we can traverse it
forward and backward, but we do not want to call the path

(v1, v2, . . . , vk−1, vk, vk−1, . . . , v2, v1)

1 Note that the edge is required to have exactly two nodes. A singleton set consisting of one
node is not an edge. Thus, although an arc from a node to itself is permitted, we do not
permit a looping edge from a node to itself. Some definitions of “undirected graph” do permit
such loops.
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Laie

Wahiawa Kaneohe

Honolulu
Pearl
City

Maili

28 24

12 11

13

15

20

Kahului

Lahaina

Keokea

Hana

22

16

60

Kamuela

Kona Hilo

31 45

114

Fig. 9.4. An undirected graph representing roads in three Hawaiian Islands
Oahu, Maui, and Hawaii (clockwise from the left).

a cycle.

Perhaps the easiest approach is to define a simple cycle in an undirected graphSimple cycle

to be a path of length three or more that begins and ends at the same node, and
with the exception of the last node does not repeat any node. The notion of a
nonsimple cycle in an undirected graph is not generally useful, and we shall not
pursue this concept.

As with directed cycles, we regard two undirected cycles as the same if theyEquivalent

cycles consist of the same nodes in the same order, with a different starting point. Undi-
rected cycles are also the same if they consist of the same nodes in reverse order.
Formally, the simple cycle (v1, v2, . . . , vk) is equivalent, for each i between 1 and k,
to the cycle (vi, vi+1, . . . , vk, v1, v2, . . . , vi−1) and to the cycle

(vi, vi−1, . . . , v1, vk, vk−1, . . . , vi+1)

✦ Example 9.7. In Fig. 9.4,

(Wahiawa, Pearl City, Maili, Wahiawa)

is a simple cycle of length three. It could have been written equivalently as

(Maili, Wahiawa, Pearl City, Maili)
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by starting at Maili and proceeding in the same order around the circle. Likewise,
it could have been written to start at Pearl City and proceed around the circle in
reverse order:

(Pearl City, Maili, Wahiawa, Pearl City)

For another example,

(Laie, Wahiawa, Pearl City, Honolulu, Kaneohe, Laie)

is a simple cycle of length five. ✦

a

f b

e c

d

Fig. 9.5. Directed graph for Exercises 9.2.1 and 9.2.2.

EXERCISES

9.2.1: Consider the graph of Fig. 9.5.

a) How many arcs are there?

b) How many acyclic paths are there from node a to node d? What are they?

c) What are the predecessors of node b?

d) What are the successors of node b?

e) How many simple cycles are there? List them. Do not repeat paths that differ
only in the starting point (see Exercise 9.2.8).

f) List all the nonsimple cycles of length up to 7.

9.2.2: Consider the graph of Fig. 9.5 to be an undirected graph, by replacing each
arc u → v by an edge {u, v}.

a) Find all the paths from a to d that do not repeat any node.

b) How many simple cycles are there that include all six nodes? List these cycles.

c) What are the neighbors of node a?

9.2.3*: If a graph has 10 nodes, what is the largest number of arcs it can have?
What is the smallest possible number of arcs? In general, if a graph has n nodes,
what are the minimum and maximum number of arcs?

9.2.4*: Repeat Exercise 9.2.3 for the edges of an undirected graph.

9.2.5**: If a directed graph is acyclic and has n nodes, what is the largest possible
number of arcs?
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9.2.6: Find an example of indirect recursion among the functions so far in this
book.

9.2.7: Write the cycle (0, 1, 2, 0) in all possible ways.

9.2.8*: Let G be a directed graph and let R be the relation on the cycles of G defined
by (u1, . . . , uk, u1)R(v1, . . . , vk, v1) if and only if (u1, . . . , uk, u1) and (v1, . . . , vk, v1)
represent the same cycle. Show that R is an equivalence relation on the cycles of
G.

9.2.9*: Show that the relation S defined on the nodes of a graph by uSv if and only
if u = v or there is some cycle that includes both nodes u and v, is an equivalence
relation.

9.2.10*: When we discussed simple cycles in undirected graphs, we mentioned
that two cycles were really the same if they were the same nodes, either in order,
or in reverse order, but with a different starting point. Show that the relation R
consisting of pairs of representations for the same simple cycle is an equivalence
relation.

✦
✦ ✦

✦
9.3 Implementation of Graphs

There are two standard ways to represent a graph. One, called adjacency lists, is
familiar from the implementation of binary relations in general. The second, called
adjacency matrices, is a new way to represent binary relations, and is more suitable
for relations where the number of pairs is a sizable fraction of the total number
of pairs that could possibly exist over a given domain. We shall consider these
representations, first for directed graphs, then for undirected graphs.

Adjacency Lists

Let nodes be named either by the integers 0, 1, . . . , MAX − 1 or by an equivalent
enumerated type. In general, we shall use NODE as the type of nodes, but we
may suppose that NODE is a synonym for int. Then we can use the generalized
characteristic-vector approach, introduced in Section 7.9, to represent the set of
arcs. This representation is called adjacency lists. We define linked lists of nodes
by

typedef struct CELL *LIST;

struct CELL {

NODE nodeName;

LIST next;

};

and then create an array

LIST successors[MAX];

That is, the entry successors[u] contains a pointer to a linked list of all the
successors of node u.
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0

1

2

3

4

0 1 2 •

3 •

0 1 4 •

2 4 •

1 •

successors

Fig. 9.6. Adjacency-list representation of the graph shown in Fig. 9.1.

✦ Example 9.8. The graph of Fig. 9.1 can be represented by the adjacency lists
shown in Fig. 9.6. We have sorted the adjacency lists by node number, but the
successors of a node can appear in any order on its adjacency list. ✦

Adjacency Matrices

Another common way to represent directed graphs is as adjacency matrices. We
can create a two-dimensional array

BOOLEAN arcs[MAX][MAX];

in which the value of arcs[u][v] is TRUE if there is an arc u → v, and FALSE if not.

✦ Example 9.9. The adjacency matrix for the graph of Fig. 9.1 is shown in Fig.
9.7. We use 1 for TRUE and 0 for FALSE. ✦

0 1 2 3 4

0 1 1 1 0 0

1 0 0 0 1 0

2 1 1 0 0 1

3 0 0 1 0 1

4 0 1 0 0 0

Fig. 9.7. Adjacency matrix representing the graph of Fig. 9.1.

Operations on Graphs

We can see some of the distinctions between the two graph representations if we
consider some simple operations on graphs. Perhaps the most basic operation is
to determine whether there is an arc u → v from a node u to a node v. In the
adjacency matrix, it takes O(1) time to look up arcs[u][v] to see whether the
entry there is TRUE or not.
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Comparison of Adjacency Matrices and Adjacency Lists

We tend to prefer adjacency matrices when the graphs are dense, that is, when the
number of arcs is near the maximum possible number, which is n2 for a graph of nDense and

sparse graphs nodes. However, if the graph is sparse, that is, if most of the possible arcs are not
present, then the adjacency-list representation may save space. To see why, note
that an adjacency matrix for an n-node graph has n2 bits (provided we represent
TRUE and FALSE by single bits rather than integers as we have done in this section).

In a typical computer, a structure consisting of an integer and a pointer, like our
adjacency list cells, will use 32 bits to represent the integer and 32 bits to represent
the pointer, or 64 bits total. Thus, if the number of arcs is a, we need about 64a
bits for the lists, and 32n bits for the array of n headers. The adjacency list will use
less space than the adjacency matrix if 32n+64a < n2, that is, if a < n2/64 − n/2.
If n is large, we can neglect the n/2 term and approximate the previous inequality
by a < n2/64, that is, if fewer than 1/64th of the possible arcs are actually present.
More detailed arguments favoring one or the other representation are presented
when we discuss operations on graphs. The following table summarizes the preferred
representations for various operations.

OPERATION DENSE GRAPH SPARSE GRAPH

Look up an arc Adjacency matrix Either
Find successors Either Adjacency lists
Find predecessors Adjacency matrix Either

With adjacency lists, it takes O(1) time to find the header of the adjacency
list for u. We must then traverse this list to the end if v is not there, or half the
way down the list on the average if v is present. If there are a arcs and n nodes in
the graph, then we take time O(1 + a/n) on the average to do the lookup. If a is
no more than a constant factor times n, this quantity is O(1). However, the larger
a is when compared with n, the longer it takes to tell whether an arc is present
using the adjacency list representation. In the extreme case where a is around n2,
its maximum possible value, there are around n nodes on each adjacency list. In
this case, it takes O(n) time on the average to find a given arc. Put another way,
the denser a graph is, the more we prefer the adjacency matrix to adjacency lists,
when we need to look up a given arc.

On the other hand, we often need to find all the successors of a given node
u. Using adjacency lists, we go to successors[u] and traverse the list, in average
time O(a/n), to find all the successors. If a is comparable to n, then we find all the
successors of u in O(1) time. But with adjacency matrices, we must examine the
entire row for node u, taking O(n) time no matter what a is. Thus, for graphs with
a small number of edges per node, adjacency lists are much faster than adjacency
matrices when we need to examine all the successors of a given node.

However, suppose we want to find all the predecessors of a given node v. With
an adjacency matrix, we can examine the column for v; a 1 in the row for u means
that u is a predecessor of v. This examination takes O(n) time. The adjacency-
list representation gives us no help finding predecessors. We must examine the
adjacency list for every node u, to see if that list includes v. Thus, we may examine
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A Matter of Degree

The number of arcs out of a node v is called the out-degree of v. Thus, the out-
degree of a node equals the length of its adjacency list; it also equals the numberIn- and Out-

degree of 1’s in the row for v in the adjacency matrix. The number of arcs into node v is
the in-degree of v. The in-degree measures the number of times v appears on the
adjacency list of some node, and it is the number of 1’s found in the column for v
in the adjacency matrix.

In an undirected graph, we do not distinguish between edges coming in or
going out of a node. For an undirected graph, the degree of node v is the number
of neighbors of v, that is, the number of edges {u, v} containing v for some node
u. Remember that in a set, order of members is unimportant, so {u, v} and {v, u}
are the same edge, and are counted only once. The degree of an undirected graph isDegree of a

graph the maximum degree of any node in the graph. For example, if we regard a binary
tree as an undirected graph, its degree is 3, since a node can only have edges to its
parent, its left child, and its right child. For a directed graph, we can say that the
in-degree of a graph is the maximum of the in-degrees of its nodes, and likewise, the
out-degree of a graph is the maximum of the out-degrees of its nodes.

all the cells of all the adjacency lists, and we shall probably examine most of them.
Since the number of cells in the entire adjacency list structure is equal to a, the
number of arcs of the graph, the time to find predecessors using adjacency lists is
thus O(a) on a graph of a arcs. Here, the advantage goes to the adjacency matrix;
and the denser the graph, the greater the advantage.

Implementing Undirected Graphs

If a graph is undirected, we can pretend that each edge is replaced by arcs in both
directions, and represent the resulting directed graph by either adjacency lists or
an adjacency matrix. If we use an adjacency matrix, the matrix is symmetric.Symmetric

adjacency

matrix

That is, if we call the matrix edges, then edges[u][v] = edges[v][u]. If we use an
adjacency-list representation, then the edge {u, v} is represented twice. We find v
on the adjacency list for u and we find u on the list for v. That arrangement is
often useful, since we cannot tell in advance whether we are more likely to follow
the edge {u, v} from u to v or from v to u.

Laie Kaneohe Honolulu PearlCity Maili Wahiawa

Laie 0 1 0 0 0 1

Kaneohe 1 0 1 0 0 0

Honolulu 0 1 0 1 0 0

PearlCity 0 0 1 0 1 1

Maili 0 0 0 1 0 1

Wahiawa 1 0 0 1 1 0

Fig. 9.8. Adjacency-matrix representation of an undirected graph from Fig. 9.4.
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✦ Example 9.10. Consider how to represent the largest component of the undi-
rected graph of Fig. 9.4 (which represents six cities on the island of Oahu). For the
moment, we shall ignore the labels on the edges. The adjacency matrix representa-
tion is shown in Fig. 9.8. Notice that the matrix is symmetric.

Figure 9.9 shows the representation by adjacency lists. In both cases, we are
using an enumeration type

enum CITYTYPE {Laie, Kaneohe, Honolulu,

PearlCity, Maili, Wahiawa};

to index arrays. That arrangement is somewhat rigid, since it does not allow any
changes in the set of nodes of the graph. We shall give a similar example shortly
where we name nodes explicitly by integers, and use city names as node labels, for
more flexibility in changing the set of nodes. ✦

Laie

Kaneohe

Honolulu

PearlCity

Maili

Wahiawa

Kaneohe Wahiawa •

Laie Honolulu •

Kaneohe PearlCity •

Honolulu Wahiawa Maili •

PearlCity Wahiawa •

Laie PearlCity Maili •

successors

Fig. 9.9. Adjacency-list representation of an undirected graph from Fig. 9.4.

Representing Labeled Graphs

Suppose a graph has labels on its arcs (or edges if it is undirected). Using an
adjacency matrix, we can replace the 1 that represents the presence of arc u → v in
the graph by the label of this arc. It is necessary that we have some value that is
permissible as a matrix entry but cannot be mistaken for a label; we use this value
to represent the absence of an arc.

If we represent the graph by adjacency lists, we add to the cells forming the
lists an additional field nodeLabel. If there is an arc u → v with label L, then on
the adjacency list for node u we shall find a cell with v in its nodeName field and L
in its nodeLabel field. That value represents the label of the arc.

We represent labels on nodes in a different way. For an adjacency matrix, we
simply create another array, say NodeLabels, and let NodeLabels[u] be the label of
node u. When we use adjacency lists, we already have an array of headers indexed
by nodes. We change this array so that it has elements that are structures, one field
for the node label and one field pointing to the beginning of the adjacency list.
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Laie

Wahiawa Kaneohe
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Fig. 9.10. Map of Oahu with nodes named by integers and labeled by cities.

cities

0 Laie

1 Kaneohe

2 Honolulu

3 PearlCity

4 Maili

5 Wahiawa

distances

0 1 2 3 4 5

0 −1 24 −1 −1 −1 28

1 24 −1 11 −1 −1 −1

2 −1 11 −1 13 −1 −1

3 −1 −1 13 −1 20 12

4 −1 −1 −1 20 −1 15

5 28 −1 −1 12 15 −1

Fig. 9.11. Adjacency-matrix representation of a directed graph.

✦ Example 9.11. Let us again represent the large component of the graph of
Fig. 9.4, but this time, we shall incorporate the edge labels, which are distances.
Furthermore, we shall give the nodes integer names, starting with 0 for Laie, and
proceeding clockwise. The city names themselves are indicated by node labels.
We shall take the type of node labels to be character arrays of length 32. This
representation is more flexible than that of Example 9.10, since if we allocate extra
places in the array, we can add cities should we wish. The resulting graph is redrawn
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in Fig. 9.10, and the adjacency matrix representation is in Fig. 9.11.
Notice that there are really two parts to this representation: the array cities,

indicating the city that each of the integers 0 through 5 stands for, and the matrix
distances, indicating the presence or absence of edges and the labels of present
edges. We use −1 as a value that cannot be mistaken for a label, since in this
example, labels, representing distances, must be positive.

We could declare this structure as follows:

typedef char CITYTYPE[32];

typedef CITYTYPE cities[MAX];

int distances[MAX][MAX];

Here, MAX is some number at least 6; it limits the number of nodes that can ever
appear in our graph. CITYTYPE is defined to be 32-character arrays, and the array
cities gives the labels of the various nodes. For example, we expect cities[0] to be
"Laie".

An alternative representation of the graph of Fig. 9.10 is by adjacency lists.
Suppose the constant MAX and the type CITYTYPE are as above. We define the
types CELL and LIST by

typedef struct CELL *LIST;

struct CELL {

NODE nodeName;

int distance;

LIST next;

};

Next, we declare the array cities by

struct {

CITYTYPE city;

LIST adjacent;

} cities[MAX];

Figure 9.12 shows the graph of Fig. 9.10 represented in this manner. ✦

Laie

Kaneohe

Honolulu

PearlCity

Maili

Wahiawa

0

1

2

3

4

5

1 24 5 28 •

0 24 2 11 •

1 11 3 13 •

2 13 4 20 5 12 •

3 20 5 15 •

0 28 3 12 4 15 •

cities

Fig. 9.12. Adjacency-list representation of graph with node and edge labels.
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EXERCISES

9.3.1: Represent the graph of Fig. 9.5 (see the exercises of Section 9.2) by

a) Adjacency lists

b) An adjacency matrix

Give the appropriate type definitions in each case.

9.3.2: Suppose the arcs of Fig. 9.5 were instead edges (i.e., the graph were undi-
rected). Repeat Exercise 9.3.1 for the undirected graph.

9.3.3: Let us label each of the arcs of the directed graph of Fig. 9.5 by the character
string of length 2 consisting of the tail followed by the head. For example, the arc
a → b is labeled by the character string ab. Also, suppose each node is labeled
by the capital letter corresponding to its name. For instance, the node named a is
labeled A. Repeat Exercise 9.3.1 for this labeled, directed graph.

9.3.4*: What is the relationship between the adjacency-matrix representation of
an unlabeled graph and the characteristic-vector representation of a set of arcs?

9.3.5*: Prove by induction on n that in an undirected graph of n nodes, the sum
of the degrees of the nodes is twice the number of edges. Note. A proof without
using induction is also possible, but here an inductive proof is required.

9.3.6: Design algorithms to insert and delete arcs from an (a) adjacency-matrix (b)
adjacency-list representation of a directed graph.

9.3.7: Repeat Exercise 9.3.6 for an undirected graph.

9.3.8: We can add a “predecessor list” to the adjacency-list representation of a di-
rected or undirected graph. When is this representation preferred for the operations
of

a) Looking up an arc?

b) Finding all successors?

c) Finding all predecessors?

Consider both dense and sparse graphs in your analysis.

✦
✦ ✦

✦
9.4 Connected Components of an Undirected Graph

We can divide any undirected graph into one or more connected components. Each
connected component is a set of nodes with paths from any member of the compo-
nent to any other. Moreover, the connected components are maximal, that is, for
no node in the component is there a path to any node outside the component. If aConnected

graph graph consists of a single connected component, then we say the graph is connected.
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Physical Interpretation of Connected Components

If we are given a drawing of an undirected graph, it is easy to see the connected
components. Imagine that the edges are strings. If we pick up any node, the
connected component of which it is a member will come up with it, and members
of all other connected components will stay where they are. Of course, what is easy
to do by “eyeball” is not necessarily easy to do by computer. An algorithm to find
the connected components of a graph is the principal subject of this section.

✦ Example 9.12. Consider again the graph of the Hawaiian Islands in Fig. 9.4.
There are three connected components, corresponding to three islands. The largest
component consists of Laie, Kaneohe, Honolulu, Pearl City, Maili, and Wahiawa.
These are cities on the island of Oahu, and they are clearly mutually connected
by roads, that is, by paths of edges. Also, clearly, there are no roads leading from
Oahu to any other island. In graph-theoretic terms, there are no paths from any of
the six cities mentioned above to any of the other cities in Fig. 9.4.

A second component consists of the cities of Lahaina, Kahului, Hana, and
Keokea; these are cities on the island of Maui. The third component is the cities of
Hilo, Kona, and Kamuela, on the “big island” of Hawaii. ✦

Connected Components as Equivalence Classes

Another useful way to look at connected components is that they are the equivalence
classes of the equivalence relation P defined on the nodes of the undirected graph
by: uPv if and only if there is a path from u to v. It is easy to check that P is an
equivalence relation.

1. P is reflexive, that is, uPu for any node u, since there is a path of length 0
from any node to itself.

2. P is symmetric. If uPv, then there is a path from u to v. Since the graph is
undirected, the reverse sequence of nodes is also a path. Thus vPu.

3. P is transitive. Suppose uPw and wPv are true. Then there is a path, say

(x1, x2, . . . , xj)

from u to w. Here, u = x1 and w = xj . Also, there is a path (y1, y2, . . . , yk)
from w to v where w = y1 and v = yk. If we put these paths together, we get
a path from u to v, namely

(u = x1, x2, · · · , xj = w = y1, y2, · · · , yk = v)

✦ Example 9.13. Consider the path

(Honolulu, PearlCity, Wahiawa, Maili)

from Honolulu to Maili in Fig. 9.10. Also consider the path

(Maili, PearlCity, Wahiawa, Laie)
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from Maili to Laie in the same graph. If we put these paths together, we get a path
from Honolulu to Laie:

(Honolulu, PearlCity, Wahiawa, Maili, PearlCity, Wahiawa, Laie)

It happens that this path is cyclic. As mentioned in Section 9.2, we can always
remove cycles to get an acyclic path. In this case, one way to do so is to replace
the two occurrences of Wahiawa and the nodes in between by one occurrence of
Wahiawa to get

(Honolulu, PearlCity, Wahiawa, Laie)

which is an acyclic path from Honolulu to Laie. ✦

Since P is an equivalence relation, it partitions the set of nodes of the undirected
graph in question into equivalence classes. The class containing node v is the set
of nodes u such that vPu, that is, the set of nodes connected to v by a path.
Moreover, another property of equivalence classes is that if nodes u and v are in
different classes, then it is not possible that uPv; that is, there is never a path
from a node in one equivalence class to a node in another. Thus, the equivalence
classes defined by the “path” relation P are exactly the connected components of
the graph.

An Algorithm for Computing the Connected Components

Suppose we want to construct the connected components of a graph G. One ap-
proach is to begin with a graph G0 consisting of the nodes of G with none of the
edges. We then consider the edges of G, one at a time, to construct a sequence of
graphs G0, G1, . . . , where Gi consists of the nodes of G and the first i edges of G.

BASIS. G0 consists of only the nodes of G with none of the edges. Every node is
in a component by itself.

INDUCTION. Suppose we have the connected components for the graph Gi after
considering the first i edges, and we now consider the (i + 1)st edge, {u, v}.

1. If u and v are in the same component of Gi, then Gi+1 has the same set of
connected components as Gi, because the new edge does not connect any nodes
that were not already connected.

2. If u and v are in different components, we merge the components containing
u and v to get the connected components for Gi+1. Figure 9.13 suggests why
there is a path from any node x in the component of u, to any node y in the
component of v. We follow the path in the first component from x to u, then
the edge {u, v}, and finally the path from v to y that we know exists in the
second component.

When we have considered all edges in this manner, we have the connected compo-
nents of the full graph.
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x

u v

y

Fig. 9.13. Adding edge {u, v} connects the components containing u and v.

✦ Example 9.14. Let us consider the graph of Fig. 9.4. We can consider edges
in any order, but for reasons having to do with an algorithm in the next section,
let us list the edges in order of the edge labels, smallest first. This list of edges is
shown in Fig. 9.14.

Initially, all thirteen nodes are in components of their own. When we consider
edge 1, {Kaneohe, Honolulu}, we merge these two nodes into a single component.
The second edge, {Wahiawa, PearlCity}, merges those two cities. The third edge
is {PearlCity, Honolulu}. That edge merges the components containing these two
cities. Presently, each of these components contains two cities, so we now have one
component with four cities, namely

{Wahiawa, PearlCity, Honolulu, Kaneohe}

All other cities are still in components by themselves.

EDGE CITY 1 CITY 2 DISTANCE

1 Kaneohe Honolulu 11
2 Wahiawa PearlCity 12
3 PearlCity Honolulu 13
4 Wahiawa Maili 15
5 Kahului Keokea 16
6 Maili PearlCity 20
7 Lahaina Kahului 22
8 Laie Kaneohe 24
9 Laie Wahiawa 28

10 Kona Kamuela 31
11 Kamuela Hilo 45
12 Kahului Hana 60
13 Kona Hilo 114

Fig. 9.14. Edges of Fig. 9.4 in order of labels.
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Edge 4 is {Maili, Wahiawa} and adds Maili to the large component. The fifth
edge is {Kahului, Keokea}, which merges these two cities into a component. When
we consider edge 6, {Maili, PearlCity}, we see a new phenomenon: both ends of the
edge are already in the same component. We therefore do no merging with edge 6.

Edge 7 is {Lahaina, Kahului}, and it adds the node Lahaina to the component
{Kahului, Keokea}, forming the component {Lahaina, Kahului, Keokea}. Edge 8
adds Laie to the largest component, which is now

{Laie, Kaneohe, Honolulu, PearlCity, Wahiawa, Maili}

The ninth edge, {Laie, Wahiawa}, connects two cities in this component and is thus
ignored.

Edge 10 groups Kamuela and Kona into a component, and edge 11 adds Hilo
to this component. Edge 12 adds Hana to the component of

{Lahaina, Kahului, Keokea}

Finally, edge 13, {Hilo, Kona}, connects two cities already in the same component.
Thus,

{Laie, Kaneohe, Honolulu, PearlCity, Wahiawa, Maili}
{Lahaina, Kahului, Keokea, Hana}
{Kamuela, Hilo, Kona}

is the final set of connected components. ✦

A Data Structure for Forming Components

If we consider the algorithm described informally above, we need to be able to do
two things quickly:

1. Given a node, find its current component.

2. Merge two components into one.

There are a number of data structures that can support these operations. We shall
study one simple idea that gives surprisingly good performance. The key is to put
the nodes of each component into a tree.2 The component is represented by the
root of the tree. The two operations above can now be implemented as follows:

1. To find the component of a node in the graph, we go to the representative
of that node in the tree and follow the path in that tree to the root, which
represents the component.

2. To merge two different components, we make the root of one component a child
of the root of the other.

2 It is important to understand that, in what follows, the “tree” and the “graph” are distinct
structures. There is a one-to-one correspondence between the nodes of the graph and the
nodes of the tree; that is, each tree node represents a graph node. However, the parent-child
edges of the tree are not necessarily edges in the graph.
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✦ Example 9.15. Let us follow the steps of Example 9.14, showing the trees
created at certain steps. Initially, every node is in a one-node tree by itself. The
first edge, {Kaneohe, Honolulu}, causes us to merge two one-node trees, {Kaneohe}
and {Honolulu}, into one two-node tree, {Kaneohe, Honolulu}. Either node could
be made a child of the other. Let us suppose that Honolulu is made the child of
the root Kaneohe.

Similarly, the second edge, {Wahiawa, PearlCity}, merges two trees, and we
may suppose that PearlCity is made the child of the root Wahiawa. At this point,
the current collection of components is represented by the two trees in Fig. 9.15 and
nine one-node trees.

Wahiawa

PearlCity

Kaneohe

Honolulu

Fig. 9.15. The first two nontrivial trees as we merge components.

The third edge, {PearlCity, Honolulu}, merges these two components. Let
us suppose that Wahiawa is made a child of the other root, Kaneohe. Then the
resulting component is represented by the tree of Fig. 9.16.

Kaneohe

Wahiawa

PearlCity

Honolulu

Fig. 9.16. Tree representing component of four nodes.

When we consider the fourth edge, {Wahiawa, Maili}, we merge Maili into the
component represented by the tree of Fig. 9.16. We could either make Maili a child
of Kaneohe, or make Kaneohe a child of Maili. We prefer the former, since that
keeps the height of the tree small, while making the root of the large component
a child of the root of the small component tends to make paths in the tree larger.
Large paths, in turn, cause us to take more time following a path to the root, which
we need to do to determine the component of a node. By following that policy
and making arbitrary decisions when components have the same height, we might
wind up with the three trees in Fig. 9.17 that represent the three final connected
components. ✦
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Kaneohe

Maili Wahiawa Honolulu Laie

PearlCity

Kahului

Lahaina Keokea Hana

Kamuela

Kona Hilo

Fig. 9.17. Trees representing final connected components using tree-merging algorithm.

Following the lesson of Example 9.15, we formulate a policy that whenever we
merge two trees, the root of lesser height becomes a child of the root with greater
height. Ties can be broken arbitrarily. The important gain from this policy is that
heights of trees can only grow logarithmically with the number of nodes in the trees,
and in practice, the height is often smaller. Therefore, when we follow a path from
a tree node to its root, we take at most time proportional to the logarithm of the
number of nodes in the tree. We can derive the logarithmic bound by proving the
following statement by induction on the height h.

STATEMENT S(h): A tree of height h, formed by the policy of merging lower into
higher, has at least 2h nodes.

BASIS. The basis is h = 0. Such a tree must be a single node, and since 20 = 1,
the statement S(0) is true.

INDUCTION. Suppose S(h) is true for some h ≥ 0, and consider a tree T of height
h + 1. At some time during the formation of T by mergers, the height first reached
h + 1. The only way to get a tree of height h + 1 is to make the root of some tree
T1, of height h, a child of the root of some tree T2. T is T1 plus T2, plus perhaps
other nodes that were added later, as suggested by Fig. 9.18.

Now T1, by the inductive hypothesis, has at least 2h nodes. Since its root was
made a child of the root of T2, the height of T2 is also at least h. Thus, T2 also
has at least 2h nodes. T consists of T1, T2, and perhaps more, so T has at least
2h+2h = 2h+1 nodes. That statement is S(h+1), and we have proved the inductive
step.

We now know that if a tree has n nodes and height h, it must be that n ≥ 2h.
Taking logarithms of both sides, we have log2 n ≥ h; that is, the height of the tree
cannot be greater than the logarithm of the number of nodes. Consequently, when
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T1

T2

Fig. 9.18. Forming a tree of height h + 1.

we follow any path from a node to its root, we take O(log n) time.
We shall now describe in more detail the data structure that implements these

ideas. First, suppose that there is a type NODE representing nodes. As before, we
assume the type NODE is int and MAX is at least the number of nodes in the graph.
For our example of Fig. 9.4, we shall let MAX be 13.

We shall also assume that there is a list edges consisting of cells of type EDGE.
These cells are defined by

typedef struct EDGE *EDGELIST;

struct EDGE {

NODE node1, node2;

EDGELIST next;

};

Finally, for each node of the graph, we need a corresponding tree node. Tree
nodes will be structures of type TREENODE, consisting of

1. A parent pointer, so that we can build a tree on the graph’s nodes, and follow
the tree to its root. A root node will be identified by having NULL as its parent.

2. The height of the tree of which a given node is the root. The height will only
be used if the node is presently a root.

We may thus define type TREENODE by

typedef struct TREENODE *TREE;

struct TREENODE {

int height;

TREE parent;

}:

We shall define an array

TREE nodes[MAX];

to associate with each graph node a node in some tree. It is important to realize
that each entry in the array nodes is a pointer to a node in the tree, yet this entry
is the sole representative of the node in the graph.

Two important auxiliary functions are shown in Fig. 9.19. The first, find,
takes a node a, gets a pointer to the corresponding tree node, x, and follows the
parent pointers in x and its ancestors, until it comes to the root. This search for
the root is performed by lines (2) and (3). If the root is found, a pointer to the root
is returned at line (4). Note that at line (1), the type NODE must be int so it may
be used to index the array nodes.
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/* return the root of the tree containing the tree node x

corresponding to graph node a */

TREE find(NODE a, TREE nodes[]);

{

TREE x;

(1) x = nodes[a];

(2) while (x->parent != NULL)

(3) x = x->parent;

(4) return x;

}

/* merge the trees with roots x and y into one tree,

by making the root of the lower a child of

the root of the higher */

void merge(TREE x, TREE y)

{

TREE higher, lower;

(5) if (x->height > y->height) {

(6) higher = x;

(7) lower = y;

}

else {

(8) higher = y;

(9) lower = x;

}

(10) lower->parent = higher;

(11) if (lower->height == higher->height)

(12) ++(higher->height);

}

Fig. 9.19. Auxiliary functions find and merge.

The second function, merge,3 takes pointers to two tree nodes, x and y, which
must be the roots of distinct trees for the merger to work properly. The test of line
(5) determines which of the roots has the greater height; ties are broken in favor of
y. The higher is assigned to the local variable higher and the lower to the local
variable lower at lines (6–7) or lines (8–9), whichever is appropriate. Then at line
(10) the lower is made a child of the higher and at lines (11) and (12) the height
of the higher, which is now the root of the combined tree, is incremented by one if
the heights of T1 and T2 are equal. The height of the lower remains as it was, but
it is now meaningless, because the lower is no longer a root.

The heart of the algorithm to find connected components is shown in Fig. 9.20.
We assume that the function makeEdges() turns the graph at hand into a list of

3 Do not confuse this function with a function of the same name used for merge sorting in
Chapters 2 and 3.
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#include <stdio.h>

#include <stdlib.h>

#define MAX 13

typedef int NODE;

typedef struct EDGE *EDGELIST;

struct EDGE {

NODE node1, node2;

EDGELIST next;

};

typedef struct TREENODE *TREE;

struct TREENODE {

int height;

TREE parent;

};

TREE find(NODE a, TREE nodes[]);

void merge(TREE x, TREE y);

EDGELIST makeEdges();

main()

{

NODE u;

TREE a, b;

EDGELIST e;

TREE nodes[MAX];

/* initialize nodes so each node is in a tree by itself */

(1) for (u = 0; u < MAX; u++) {

(2) nodes[u] = (TREE) malloc(sizeof(struct TREENODE));

(3) nodes[u]->parent = NULL;

(4) nodes[u]->height = 0;

}

/* initialize e as the list of edges of the graph */

(5) e = makeEdges();

/* examine each edge, and if its ends are in different

components, then merge them */

(6) while (e != NULL) {

(7) a = find(e->node1, nodes);

(8) b = find(e->node2, nodes);

(9) if (a != b)

(10) merge(a, b);

(11) e = e->next;

}

}

Fig. 9.20. C program to find connected components.



476 THE GRAPH DATA MODEL

Better Algorithms for Connected Components

We shall see, when we learn about depth-first search in Section 9.6, that there is
actually a better way to compute connected components, one that takes only O(m)
time, instead of O(m log n) time. However, the data structure given in Section 9.4
is useful in its own right, and we shall see in Section 9.5 another program that uses
this data structure.

edges. The code for this function is not shown.

Lines (1) through (4) of Fig. 9.20 go down the array nodes, and for each node,
a tree node is created at line (2). Its parent field is set to NULL at line (3), making
it the root of its own tree, and its height field is set to 0 at line (4), reflecting the
fact that the node is alone in its tree.

Line (5) then initializes e to point to the first edge on the list of edges, and
the loop of lines (6) through (11) examines each edge in turn. At lines (7) and (8)
we find the roots of the two ends of the current edge. Then at line (9) we test to
see if these roots are different tree nodes. If so, the ends of the current edge are
in different components, and we merge these components at line (10). If the two
ends of the edge are in the same component, we skip line (10), so no change to the
collection of trees is made. Finally, line (11) advances us along the list of edges.

Running Time of the Connected Components Algorithm

Let us determine how long the algorithm of Fig. 9.20 takes to process a graph.
Suppose the graph has n nodes, and let m be the larger of the number of nodes and
the number of edges.4 First, let us examine the auxiliary functions. We argued that
the policy of merging lower trees into higher ones guarantees that the path from
any tree node to its root cannot be longer than log n. Thus, find takes O(log n)
time.

Next, let us examine the function merge from Fig. 9.19. Each of its statements
takes O(1) time. Since there are no loops or function calls, the entire function takes
O(1) time.

Finally, let us examine the main program of Fig. 9.20. The body of the for-loop
of lines (1) to (4) takes O(1) time, and the loop is iterated n times. Thus, the time
for lines (1) through (4) is O(n). Let us assume line (5) takes O(m) time. Finally,
consider the while-loop of lines (6) to (11). In the body, lines (7) and (8) each
take O(log n) time, since they are calls to a function, find, that we just determined
takes O(log n) time. Lines (9) and (11) clearly take O(1) time. Line (10) likewise
takes O(1) time, because we just determined that function merge takes O(1) time.
Thus, the entire body takes O(log n) time. The while-loop iterates m times, where
m is the number of edges. Thus, the time for this loop is O(m log n), that is, the
number of iterations times the bound on the time for the body.

In general, then, the running time of the entire program can be expressed as
O(n + m + m log n). However, m is at least n, and so the m log n term dominates
the other terms. Thus, the running time of the program in Fig. 9.20 is O(m log n).

4 It is normal to think of m as the number of edges, but in some graphs, there are more nodes
than edges.
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CITY 1 CITY 2 DISTANCE

Marquette Sault Ste. Marie 153
Saginaw Flint 31
Grand Rapids Lansing 60
Detroit Lansing 78
Escanba Sault Ste. Marie 175
Ann Arbor Detroit 28
Ann Arbor Battle Creek 89
Battle Creek Kalamazoo 21
Menominee Escanba 56
Kalamazoo Grand Rapids 45
Escanba Marquette 78
Battle Creek Lansing 40
Flint Detroit 58

Fig. 9.21. Some distances within the state of Michigan.

EXERCISES

9.4.1: Figure 9.21 lists some cities in the state of Michigan and the road mileage
between them. For the purposes of this exercise, ignore the mileage. Construct the
connected components of the graph by examining each edge in the manner described
in this section.

9.4.2*: Prove, by induction on k, that a connected component of k nodes has at
least k − 1 edges.

9.4.3*: There is a simpler way to implement “merge” and “find,” in which we keep
an array indexed by nodes, giving the component of each node. Initially, each node
is in a component by itself, and we name the component by the node. To find
the component of a node, we simply look up the corresponding array entry. To
merge components, we run down the array, changing each occurrence of the first
component to the second.

a) Write a C program to implement this algorithm.

b) As a function of n, the number of nodes, and m, the larger of the number of
nodes and edges, what is the running time of this program?

c) For certain numbers of edges and nodes, this implementation is actually better
than the one described in the section. When?

9.4.4*: Suppose that instead of merging lower trees into higher trees in the con-
nected components algorithm of this section, we merge trees with fewer nodes
into trees with a larger number of nodes. Is the running time of the connected-
components algorithm still O(m log n)?
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✦
✦ ✦

✦
9.5 Minimal Spanning Trees

There is an important generalization of the connected components problem, in which
we are given an undirected graph with edges labeled by numbers (integers or reals).
We must not only find the connected components, but for each component we must
find a tree connecting the nodes of that component. Moreover, this tree must be
minimal, meaning that the sum of the edge labels is as small as possible.

The trees talked about here are not quite the same as the trees of Chapter 5.Unrooted,

unordered trees Here, no node is designated the root, and there is no notion of children or of order
among the children. Rather, when we speak of “trees” in this section, we mean
unrooted, unordered trees, which are just undirected graphs that have no simple
cycles.

A spanning tree for an undirected graph G is the nodes of G together with aSpanning tree

subset of the edges of G that

1. Connect the nodes; that is, there is a path between any two nodes using only
edges in the spanning tree.

2. Form an unrooted, unordered tree; that is, there are no (simple) cycles.

If G is a single connected component, then there is always a spanning tree. A
minimal spanning tree is a spanning tree the sum of whose edge labels is as small
as that of any spanning tree for the given graph.

✦ Example 9.16. Let graph G be the connected component for the island of
Oahu, as in Fig. 9.4 or Fig. 9.10. One possible spanning tree is shown in Fig. 9.22.
It is formed by deleting the edges {Maili, Wahiawa} and {Kaneohe, Laie}, and
retaining the other five edges. The weight, or sum of edge labels, for this tree is 84.Weight of a tree

As we shall see, that is not a minimum. ✦

Laie

Wahiawa Kaneohe

Honolulu
Pearl
City

Maili

28

12 11

13

20

Fig. 9.22. A spanning tree for the island of Oahu.



SEC. 9.5 MINIMAL SPANNING TREES 479

Rooted and Unrooted Trees

The notion of an unrooted tree should not seem too strange. In fact, we can choose
any node of an unrooted tree to be the root. That gives a direction to all edges,
away from the root, or from parent to child. Physically, it is as if we picked up the
unrooted tree by a node, letting the rest of the tree dangle from the selected node.
For example, we could make Pearl City the root of the spanning tree in Fig. 9.22,
and it would look like this:

PearlCity

Maili Wahiawa Honolulu

Laie Kaneohe

We can order the children of each node if we wish, but the order will be arbitrary,
bearing no relation to the original unrooted tree.

Finding a Minimal Spanning Tree

There are a number of algorithms to find minimal spanning trees. We shall exhibit
one, called Kruskal’s algorithm, that is a simple extension to the algorithm discussedKruskal’s

algorithm in the last section for finding connected components. The changes needed are

1. We are required to consider edges in increasing order of their labels. (We
happened to choose that order in Example 9.14, but it was not required for
connected components.)

2. As we consider edges, if an edge has its ends in different components, then
we select that edge for the spanning tree and merge components, as in the
algorithm of the previous section. Otherwise, we do not select the edge for the
spanning tree, and, of course, we do not merge components.

✦ Example 9.17. The Acme Surfboard Wax Company has offices in the thirteen
cities shown in Fig. 9.4. It wishes to rent dedicated data transmission lines from the
phone company, and we shall suppose that the phone lines run along the roads that
are indicated by edges in Fig. 9.4. Between islands, the company must use satellite
transmission, and the cost will be proportional to the number of components. How-
ever, for the ground transmission lines, the phone company charges by the mile.5

Thus, we wish to find a minimal spanning tree for each connected component of the
graph of Fig. 9.4.

If we divide the edges by component, then we can run Kruskal’s algorithm on
each component separately. However, if we do not already know the components,

5 This is one possible way to charge for leased telephone lines. One finds a minimal spanning
tree connecting the desired sites, and the charge is based on the weight of that tree, regardless
of how the phone connections are provided physically.
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then we must consider all the edges together, smallest label first, in the order of
Fig. 9.14. As in Section 9.4, we begin with each node in a component by itself.

We first consider the edge {Kaneohe, Honolulu}, the edge with the smallest
label. This edge merges these two cities into one component, and because we
perform a merge operation, we select that edge for the minimal spanning tree.
Edge 2 is {Wahiawa, PearlCity}, and since that edge also merges two components,
it is selected for the spanning tree. Likewise, edges 3 and 4, {PearlCity, Honolulu}
and {Wahiawa, Maili}, merge components, and are therefore put in the spanning
tree.

Edge 5, {Kahului, Keokea}, merges these two cities, and is also accepted for
the spanning tree, although this edge will turn out to be part of the spanning tree
for the Maui component, rather than the Oahu component as was the case for the
four previous edges.

Edge 6, {Maili, PearlCity}, connects two cities that are already in the same
component. Thus, this edge is rejected for the spanning tree. Even though we
shall have to pick some edges with larger labels, we cannot pick {Maili, PearlCity},
because to do so would form a cycle of the cities Maili, Wahiawa, and Pearl City. We
cannot have a cycle in the spanning tree, so one of the three edges must be excluded.
As we consider edges in order of label, the last edge of the cycle considered must
have the largest label, and is the best choice to exclude.

Edge 7, {Lahaina, Kahului}, and edge 8, {Laie, Kaneohe}, are both accepted
for the spanning tree, because they merge components. Edge 9, {Laie, Wahiawa},
is rejected because its ends are in the same component. We accept edges 10 and 11;
they form the spanning tree for the “big island” component, and we accept edge 12
to complete the Maui component. Edge 13 is rejected, because it connects Kona
and Hilo, which were merged into the same component by edges 10 and 11. The
resulting spanning trees of the components are shown in Fig. 9.23. ✦

Why Kruskal’s Algorithm Works

We can prove that Kruskal’s algorithm produces a spanning tree whose weight is
as small as that of any spanning tree for the given graph. Let G be an undirected,
connected graph. For convenience, let us add infinitesimal amounts to some labels, if
necessary, so that all labels are distinct, and yet the sum of the added infinitesimals
is not as great as the difference between two edges of G that have different labels.
As a result, G with the new labels will have a unique minimal spanning tree, which
will be one of the minimal spanning trees of G with the original weights.

Then, let e1, e2, . . . , em be all the edges of G, in order of their labels, smallest
first. Note that this order is also the order in which Kruskal’s algorithm considers
the edges. Let K be the spanning tree for G with the adjusted labels produced by
Kruskal’s algorithm, and let T be the unique minimal spanning tree for G.

We shall prove that K and T are really the same. If they are different, then
there must be at least one edge that is in one but not the other. Let ei be the first
such edge in the ordering of edges; that is, each of e1, . . . , ei−1 is either in both K
and T , or in neither of K and T . There are two cases, depending on whether ei is
in K or is in T . We shall show a contradiction in each case, and thus conclude that
ei does not exist; thus K = T , and K is the minimal spanning tree for G.
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Laie

Wahiawa Kaneohe

Honolulu
Pearl
City

Maili

24

12 11

13

15

Kahului

Lahaina

Keokea

Hana

22

16

60

Kamuela

Kona Hilo

31 45

Fig. 9.23. Spanning trees for the graph of Fig. 9.4.

Greed Sometimes Pays

Kruskal’s algorithm is a good example of a greedy algorithm, in which we make aGreedy

algorithm series of decisions, each doing what seems best at the time. The local decisions
are which edge to add to the spanning tree being formed. In each case, we pick
the edge with the least label that does not violate the definition of “spanning tree”
by completing a cycle. Often, the overall effect of locally optimal decisions is not
globally optimum. However, in the case of Kruskal’s algorithm, it can be shown that
the result is globally optimal; that is, a spanning tree of minimal weight results.

Case 1 . Edge ei is in T but not in K. If Kruskal’s algorithm rejects ei, then ei must
form a cycle with some path P of edges previously selected for K, as suggested in
Fig. 9.24. Thus, the edges of P are all found among e1, . . . , ei−1. However, T and
K agree about these edges; that is, if the edges of P are in K, then they are also
in T . But since T has ei as well, P plus ei form a cycle in T , contradicting our
assumption that T was a spanning tree. Thus, it is not possible that ei is in T but
not in K.

Case 2 . Edge ei is in K but not in T . Let ei connect the nodes u and v. Since T
is connected, there must be some acyclic path in T between u and v; call it path
Q. Since Q does not use edge ei, Q plus ei forms a simple cycle in the graph G.
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ei

Fig. 9.24. Path P (solid lines) is in T and K; edge ei is in T only.

There are two subcases, depending on whether or not ei has a higher label than all
the edges on path Q.

a) Edge ei has the highest label. Then all the edges on Q are among {e1, . . . , ei−1}.
Remember that T and K agree on all edges before ei, and so all the edges of
Q are also edges of K. But ei is also in K, which implies K has a cycle. We
thus rule out the possibility that ei has a higher label than any of the edges of
path Q.

b) There is some edge f on path Q that has a higher label than ei. Suppose
f connects nodes w and x. Figure 9.25 shows the situation in tree T . If we
remove edge f from T , and add edge ei, we do not form a cycle, because path
Q was broken by the removal of f . The resulting collection of edges has a lower
weight than T , because f has a higher label than ei. We claim the resulting
edges still connect all the nodes. To see why, notice that w and x are still
connected; there is a path that follows Q from w to u, then follows the edge
ei, then the path Q from v to x. Since {w, x} was the only edge removed, if its
endpoints are still connected, surely all nodes are connected. Thus, the new
set of edges is a spanning tree, and its existence contradicts the assumption
that T was minimal.

We have now shown that it is impossible for ei to be in K but not in T . That rules
out the second case. Since it is impossible that ei is in one of T and K, but not the
other, we conclude that K really is the minimal spanning tree T . That is, Kruskal’s
algorithm always finds a minimal spanning tree.

Running Time of Kruskal’s Algorithm

Suppose we run Kruskal’s algorithm on a graph of n nodes. As in the previous
section, let m be the larger of the number of nodes and the number of edges, but
remember that typically the number of edges is the larger. Let us suppose that the
graph is represented by adjacency lists, so we can find all the edges in O(m) time.

To begin, we must sort the edges by label, which takes O(m log m) time, if
we use an efficient sorting algorithm such as merge sort. Next, we consider the
edges, taking O(m log n) time to do all the merges and finds, as discussed in the
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w

x

u

v

f

ei

Fig. 9.25. Path Q (solid) is in T .
We can add edge ei to T and remove the edge f .

previous section. It appears that the total time for Kruskal’s algorithm is thus
O

(

m(log n + log m)
)

.

However, notice that m ≤ n2, because there are only n(n−1)/2 pairs of nodes.
Thus, log m ≤ 2 logn, and m(log n + log m) ≤ 3m logn. Since constant factors can
be neglected within a big-oh expression, we conclude that Kruskal’s algorithm takes
O(m log n) time.

EXERCISES

9.5.1: Draw the tree of Fig. 9.22 if Wahiawa is selected as the root.

9.5.2: Use Kruskal’s algorithm to find minimal spanning trees for each of the
components of the graph whose edges and labels are listed in Fig. 9.21 (see the
exercises for Section 9.4).

9.5.3**: Prove that if G is a connected, undirected graph of n nodes, and T is a
spanning tree for G, then T has n− 1 edges. Hint : We need to do an induction on
n. The hard part is to show that T must have some node v with degree 1; that is,
T has exactly one edge containing v. Consider what would happen if for every node
u, there were at least two edges of T containing u. By following edges into and out
of a sequence of nodes, we would eventually find a cycle. Since T is supposedly a
spanning tree, it could not have a cycle, which gives us a contradiction.

9.5.4*: Once we have selected n− 1 edges, it is not necessary to consider any more
edges for possible inclusion in the spanning tree. Describe a variation of Kruskal’s
algorithm that does not sort all the edges, but puts them in a priority queue, with
the negative of the edge’s label as its priority (i.e., shortest edge is selected first by
deleteMax). Show that if a spanning tree can be found among the first m/ logm
edges, then this version of Kruskal’s algorithm takes only O(m) time.

9.5.5*: Suppose we find a minimal spanning tree T for a graph G. Let us then add
to G the edge {u, v} with weight w. Under what circumstances will T be a minimal
spanning tree of the new graph?
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9.5.6**: An Euler circuit for an undirected graph G is a path that starts and endsEuler circuit

at the same node and contains each edge of G exactly once.

a) Show that a connected, undirected graph has an Euler circuit if and only if
each node is of even degree.

b) Let G be an undirected graph with m edges in which every node is of even
degree. Give an O(m) algorithm to construct an Euler circuit for G.

✦
✦ ✦

✦
9.6 Depth-First Search

We shall now describe a graph-exploration method that is useful for directed graphs.
In Section 5.4 we discussed the preorder and postorder traversals of trees, where we
start at the root and recursively explore the children of each node we visit. We can
apply almost the same idea to any directed graph.6 From any node, we recursively
explore its successors.

However, we must be careful if the graph has cycles. If there is a cycle, we can
wind up calling the exploration function recursively around the cycle forever. For
instance, consider the graph of Fig. 9.26. Starting at node a, we might decide to
explore node b next. From b we might explore c first, and from c we could explore
b first. That gets us into an infinite recursion, where we alternate exploring from b
and c. In fact, it doesn’t matter in what order we choose to explore successors of
b and c. Either we shall get caught in some other cycle, or we eventually explore c
from b and explore b from c, infinitely.

a

b d

c e f

Fig. 9.26. An example directed graph.

There is a simple solution to our problem: We mark nodes as we visit them,
and never revisit marked nodes. Then, any node we can reach from our starting
node will be reached, but no previously visited node will be revisited. We shall see
that the time taken by this exploration takes time proportional to the number of
arcs explored.

6 Notice that a tree can be thought of as a special case of a directed graph, if we regard the
arcs of the tree as directed from parent to child. In fact, a tree is always an acyclic graph as
well.
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The search algorithm is called depth-first search because we find ourselves going
as far from the initial node (as “deep”) as fast as we can. It can be implemented
with a simple data structure. Again, let us assume that the type NODE is used
to name nodes and that this type is int. We represent arcs by adjacency lists.
Since we need a “mark” for each node, which can take on the values VISITED and
UNVISITED, we shall create an array of structures to represent the graph. These
structures will contain both the mark and the header for the adjacency list.

enum MARKTYPE {VISITED, UNVISITED};

typedef struct {

enum MARKTYPE mark;

LIST successors;

} GRAPH[MAX];

where LIST is an adjacency list, defined in the customary manner:

typedef struct CELL *LIST;

struct CELL {

NODE nodeName;

LIST next;

};

We begin by marking all the nodes UNVISITED. Recursive function dfs(u, G)

of Fig. 9.27 works on a node u of some externally defined graph G of type GRAPH.
At line (1) we mark u VISITED, so we don’t call dfs on it again. Line (2)

initializes p to point to the first cell on the adjacency list for node u. The loop of
lines (3) through (7) takes p down the adjacency list, considering each successor, v,
of u, in turn.

void dfs(NODE u, GRAPH G)

{

LIST p; /* runs down the adjacency list of u */

NODE v; /* the node in the cell pointed to by p */

(1) G[u].mark = VISITED;

(2) p = G[u].successors;

(3) while (p != NULL) {

(4) v = p->nodeName;

(5) if (G[v].mark == UNVISITED)

(6) dfs(v, G);

(7) p = p->next;

}

}

Fig. 9.27. The recursive depth-first search function.

Line (4) sets v to be the “current” successor of u. At line (5) we test whether
v has ever been visited before. If so, we skip the recursive call at line (6) and we
move p to the next cell of the adjacency list at line (7). However, if v has never been
visited, we start a depth-first search from node v, at line (6). Eventually, we finish
the call to dfs(v, G). Then, we execute line (7) to move p down u’s adjacency list
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and go around the loop.

✦ Example 9.18. Suppose G is the graph of Fig. 9.26, and, for specificity, assume
the nodes on each adjacency list are ordered alphabetically. Initially, all nodes are
marked UNVISITED. Let us call dfs(a).7 Node a is marked VISITED at line (1), and
at line (2) we initialize p to point to the first cell on a’s adjacency list. At line (4)
v is set to b, since b is the node in the first cell. Since b is currently unvisited, the
test of line (5) succeeds, and at line (6) we call dfs(b).

Now, we start a new call to dfs, with u = b, while the old call with u = a is
dormant but still alive. We begin at line (1), marking b VISITED. Since c is the first
node on b’s adjacency list, c becomes the value of v at line (4). Node c is unvisited,
so that we succeed at line (5) and at line (6) we call dfs(c).

A third call to dfs is now alive, and to begin dfs(c), we mark c VISITED

and set v to b at line (4), since b is the first, and only, node on c’s adjacency list.
However, b was already marked VISITED at line (1) of the call to dfs(b), so that
we skip line (6) and move p down c’s adjacency list at line (7). Since c has no more
successors, p becomes NULL, so that the test of line (3) fails, and dfs(c) is finished.

We now return to the call dfs(b). Pointer p is advanced at line (7), and it
now points to the second cell of b’s adjacency list, which holds node d. We set v to
d at line (4), and since d is unvisited, we call dfs(d) at line (6).

For the execution of dfs(d), we mark d VISITED. Then v is first set to c. But
c is visited, and so next time around the loop, v = e. That leads to the call dfs(e).
Node e has only c as a successor, and so after marking e VISITED, dfs(e) returns
to dfs(d). We next set v = f at line (4) of dfs(d), and call dfs(f). After marking
f VISITED, we find that f also has only c as a successor, and c is visited.

We are now finished with dfs(f). Since f is the last successor of d, we are
also finished with dfs(d), and since d is the last successor of b, we are done with
dfs(b) as well. That takes us back to dfs(a). Node a has another successor, d,
but that node is visited, and so we are done with dfs(a) as well.

Figure 9.28 summarizes the action of dfs on the graph of Fig. 9.26. We show the
stack of calls to dfs, with the currently active call at the right. We also indicate the
action taken at each step, and we show the value of the local variable v associated
with each currently live call, or show that p = NULL, indicating that there is no
active value for v. ✦

Constructing a Depth-First Search Tree

Because we mark nodes to avoid visiting them twice, the graph behaves like a tree
as we explore it. In fact, we can draw a tree whose parent-child edges are some of
the arcs of the graph G being searched. If we are in dfs(u), and a call to dfs(v)

results, then we make v a child of u in the tree. The children of u appear, from
left to right, in the order in which dfs was called on these children. The node upon
which the initial call to dfs was made is the root. No node can have dfs called on
it twice, since it is marked VISITED at the first call. Thus, the structure defined is
truly a tree. We call the tree a depth-first search tree for the given graph.

7 In what follows, we shall omit the second argument of dfs, which is always the graph G.
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dfs(a) Call dfs(b)
v = b

dfs(a) dfs(b) Call dfs(c)
v = b v = c

dfs(a) dfs(b) dfs(c) Skip; b already visited
v = b v = c v = b

dfs(a) dfs(b) dfs(c) Return
v = b v = c p =NULL

dfs(a) dfs(b) Call dfs(d)
v = b v = d

dfs(a) dfs(b) dfs(d) Skip; c already visited
v = b v = d v = c

dfs(a) dfs(b) dfs(d) Call dfs(e)
v = b v = d v = e

dfs(a) dfs(b) dfs(d) dfs(e) Skip; c already visited
v = b v = d v = e v = c

dfs(a) dfs(b) dfs(d) dfs(e) Return
v = b v = d v = e p =NULL

dfs(a) dfs(b) dfs(d) Call dfs(f)
v = b v = d v = f

dfs(a) dfs(b) dfs(d) dfs(f) Skip; c already visited
v = b v = d v = f v = c

dfs(a) dfs(b) dfs(d) dfs(f) Return
v = b v = d v = f p =NULL

dfs(a) dfs(b) dfs(d) Return
v = b v = d p =NULL

dfs(a) dfs(b) Return
v = b p =NULL

dfs(a) Skip; d already visited
v = d

dfs(a) Return
p =NULL

Fig. 9.28. Trace of calls made during depth-first search.
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✦ Example 9.19. The tree for the exploration of the graph in Fig. 9.26 that was
summarized in Fig. 9.28 is seen in Fig. 9.29. We show the tree arcs, representing the
parent-child relationship, as solid lines. Other arcs of the graph are shown as dotted
arrows. For the moment, we should ignore the numbers labeling the nodes. ✦

a

b

c d

e f

6

5

1
4

2 3

Fig. 9.29. One possible depth-first search tree for the graph of Fig. 9.26.

Classification of Arcs for a Depth-First Search Tree

When we build a depth-first search tree for a graph G, we can classify the arcs of G
into four groups. It should be understood that this classification is with respect to
a particular depth-first search tree, or equivalently, with respect to the particular
order for the nodes in each adjacency list that led to a particular exploration of G.
The four kinds of arcs are

1. Tree arcs, which are the arcs u → v such that dfs(v) is called by dfs(u).

2. Forward arcs, which are arcs u → v such that v is a proper descendant of u, but
not a child of u. For instance, in Fig. 9.29, the arc a → d is the only forward
arc. No tree arc is a forward arc.

3. Backward arcs, which are arcs u → v such that v is an ancestor of u in the tree
(u = v is permitted). Arc c → b is the only example of a backward arc in Fig.
9.29. Any loop, an arc from a node to itself, is classified as backward.

4. Cross arcs, which are arcs u → v such that v is neither an ancestor nor de-
scendant of u. There are three cross arcs in Fig. 9.29: d → c, e → c, and
f → c.

In Fig. 9.29, each of the cross arcs go from right to left. It is no coincidenceCross arcs go

from right to

left

that they do so. Suppose we had in some depth-first search tree a cross arc u → v
such that u was to the left of v. Consider what happens during the call to dfs(u).
By the time we finish dfs(u), we shall have considered the arc from u to v. If v
has not yet been placed in the tree, then it becomes a child of u in the tree. Since



SEC. 9.6 DEPTH-FIRST SEARCH 489

u

nodes
with
active
calls
to
dfs

Fig. 9.30. Part of the tree that is built when arc u → v is considered.

that evidently did not happen (for then v would not be to the right of u), it must
be that v is already in the tree when the arc u → v is considered.

However, Fig. 9.30 shows the parts of the tree that exist while dfs(u) is active.
Since children are added in left-to-right order, no proper ancestor of node u as yet
has a child to the right of u. Thus, v can only be an ancestor of u, a descendant of
u, or somewhere to the left of u. Thus, if u → v is a cross edge, v must be to the
left of u, not the right of u as we initially supposed.

The Depth-First Search Forest

We were quite fortunate in Example 9.19 that when we started at node a, we were
able to reach all the nodes of the graph of Fig. 9.26. Had we started at any other
node, we would not have reached a, and a would not appear in the tree. Thus, the
general method of exploring a graph is to construct a sequence of trees. We start
at some node u and call dfs(u). If there are nodes not yet visited, we pick one,
say v, and call dfs(v). We repeat this process as long as there are nodes not yet
assigned to any tree.

When all nodes have been assigned a tree, we list the trees, from left to right,
in the order of their construction. This list of trees is called the depth-first search

forest. In terms of the data types NODE and GRAPH defined earlier, we can explore an
entire externally defined graph G, starting the search on as many roots as necessary
by the function of Fig. 9.31. There, we assume that the type NODE is int, and MAX

is the number of nodes in G.

In lines (1) and (2) we initialize all nodes to be UNVISITED. Then, in the loop
of lines (3) to (5), we consider each node u in turn. When we consider u, if that
node has not yet been added to any tree, it will still be marked unvisited when we
make the test of line (4). In that case, we call dfs(u, G) at line (5) and explore
the depth-first search tree with root u. In particular, the first node always becomes
the root of a tree. However, if u has already been added to a tree when we perform
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void dfsForest(GRAPH G);

{

NODE u;

(1) for (u = 0; u < MAX; u++)

(2) G[u].mark = UNVISITED;

(3) for (u = 0; u < MAX; u++)

(4) if (G[u].mark == UNVISITED)

(5) dfs(u, G);

}

Fig. 9.31. Exploring a graph by exploring as many trees as necessary.

the test of line (4), then u will be marked VISITED, and so we do not create a tree
with root u.

✦ Example 9.20. Suppose we apply the above algorithm to the graph of Fig.
9.26, but let d be the node whose name is 0; that is, d is the first root of a tree
for the depth-first spanning forest. We call dfs(d), which constructs the first tree
of Fig. 9.32. Now, all nodes but a are visited. As u becomes each of the various
nodes in the loop of lines (3) to (5) of Fig. 9.31, the test of line (4) fails except
when u = a. Then, we create the one-node second tree of Fig. 9.32. Note that both
successors of a are marked VISITED when we call dfs(a), and so we do not make
any recursive calls from dfs(a). ✦

d

c e f

b

a

Fig. 9.32. A depth-first search forest.

When we present the nodes of a graph as a depth-first search forest, the notions
of forward, backward, and tree arcs apply as before. However, the notion of a cross
arc must be extended to include arcs that run from one tree to a tree to its left.
Examples of such cross arcs are a → b and a → d in Fig. 9.32.

The rule that cross arcs always go from right to left continues to hold. The
reason is also the same. If there were a cross arc u → v that went from one tree
to a tree to the right, then consider what happens when we call dfs(u). Since v
was not added to the tree being formed at the moment, it must already have been
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The Perfection of Depth-First Search

Regardless of the relationship between the numbers of nodes and arcs, the running
time of the depth-first exploration of a graph takes time proportional to the “size”
of the graph, that is, the sum of the numbers of nodes and arcs. Thus, depth-first
search is, to within a constant factor, as fast as any algorithm that “looks at” the
graph.

in some tree. But the trees to the right of u have not yet been created, and so v
cannot be part of one of them.

Running Time of the Depth-First Search Algorithm

Let G be a graph with n nodes and let m be the larger of the number of nodes and
the number of arcs. Then dfsForest of Fig. 9.31 takes O(m) time. The proof of
this fact requires a trick. When calculating the time taken by a call dfs(u), we
shall not count the time taken by any recursive calls to dfs at line (6) in Fig. 9.27,
as Section 3.9 suggested we should. Rather, observe that we call dfs(u) once for
each value of u. Thus, if we sum the cost of each call, exclusive of its recursive calls,
we get the total time spent in all the calls as a group.

Notice that the while-loop of lines (3) to (7) in Fig. 9.27 can take a variable
amount of time, even excluding the time spent in recursive calls to dfs, because
the number of successors of node u could be any number from 0 to n. Suppose we
let mu be the out-degree of node u, that is, the number of successors of u. Then
the number of times around the while-loop during the execution of dfs(u) is surely
mu. We do not count the execution of dfs(v, G) at line (6) when assessing the
running time of dfs(u), and the body of the loop, exclusive of this call, takes O(1)
time. Thus, the total time spent in the loop of lines (3) to (7), exclusive of time
spent in recursive calls is O(1 + mu); the additional 1 is needed because mu might
be 0, in which case we still take O(1) time for the test of (3). Since lines (1) and (2)
of dfs take O(1) time, we conclude that, neglecting recursive calls, dfs(u) takes
time O(1 + mu) to complete.

Now we observe that during the running of dfsForest, we call dfs(u) exactly
once for each value of u. Thus, the total time spent in all these calls is big-oh of
the sum of the times spent in each, that is, O

(
∑

u

(

1 + mu)
)

. But
∑

u mu is just
the number of arcs in the graph, that is, at most m,8 since each arc emanates from
some one node. The number of nodes is n, so that

∑

u 1 is just n. As n ≤ m, the
time taken by all the calls to dfs is thus O(m).

Finally, we must consider the time taken by dfsForest. This program, in Fig.
9.31, consists of two loops, each iterated n times. The bodies of the loops are easily
seen to take O(1) time, exclusive of the calls to dfs, and so the cost of the loops is
O(n). This time is dominated by the O(m) time of the calls to dfs. Since the time
for the dfs calls is already accounted for, we conclude that dfsForest, together
with all its calls to dfs, takes O(m) time.

8 In fact, the sum of the mu’s will be exactly m, except in the case that the number of nodes
exceeds the number of arcs; recall that m is the larger of the numbers of nodes and arcs.
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Postorder Traversals of Directed Graphs

Once we have a depth-first search tree, we could number its nodes in postorder.
However, there is an easy way to do the numbering during the search itself. We
simply attach the number to a node u as the last thing we do before dfs(u) com-
pletes. Then, a node is numbered right after all its children are numbered, just as
in a postorder numbering.

int k; /* counts visited nodes */

void dfs(NODE u, GRAPH G)

{

LIST p; /* points to cells of adjacency list of u */

NODE v; /* the node in the cell pointed to by p */

(1) G[u].mark = VISITED;

(2) p = G[u].successors;

(3) while (p != NULL) {

(4) v = p->nodeName;

(5) if (G[v].mark == UNVISITED)

(6) dfs(v, G);

(7) p = p->next;

}

(8) ++k;

(9) G[u].postorder = k;

}

void dfsForest(GRAPH G)

{

NODE u;

(10) k = 0;

(11) for (u = 0; u < MAX; u++)

(12) G[u].mark = UNVISITED;

(13) for (u = 0; u < MAX; u++)

(14) if (G[u].mark == UNVISITED)

(15) dfs(u, G);

}

Fig. 9.33. Procedure to number the nodes of a directed graph in postorder.

✦ Example 9.21. The tree of Fig. 9.29, which we constructed by depth-first
search of the graph in Fig. 9.26, has the postorder numbers labeling the nodes. If
we examine the trace of Fig. 9.28, we see that the first call to return is dfs(c), and
node c is given the number 1. Then, we visit d, then e, and return from the call
to e. Therefore, e’s number is 2. Similarly, we visit and return from f , which is
numbered 3. At that point, we have completed the call on d, which gets number 4.
That completes the call to dfs(b), and the number of b is 5. Finally, the original



SEC. 9.6 DEPTH-FIRST SEARCH 493

call to a returns, giving a the number 6. Notice that this order is exactly the one
we would get if we simply walked the tree in postorder. ✦

We can assign the postorder numbers to the nodes with a few simple modifica-
tions to the depth-first search algorithm we have written so far; these changes are
summarized in Fig. 9.33.

1. In the GRAPH type, we need an additional field for each node, called postorder.
For the graph G, we place the postorder number of node u in G[u].postorder.
This assignment is accomplished at line (9) of Fig. 9.33.

2. We use a global variable k to count nodes in postorder. This variable is defined
externally to dfs and dfsForest. As seen in Fig. 9.33, we initialize k to 0
in line (10) of dfsForest, and just before assigning a postorder number, we
increment k by 1 at line (8) in dfs.

Notice that as a result, when there is more than one tree in the depth-first search
forest, the first tree gets the lowest numbers, the next tree gets the next numbers
in order, and so on. For example, in Fig. 9.32, a would get the postorder number 6.

Special Properties of Postorder Numbers

The impossibility of cross arcs that go left to right tells us something interesting
and useful about the postorder numbers and the four types of arcs in a depth-first
presentation of a graph. In Fig. 9.34(a) we see three nodes, u, v, and w, in a depth-
first presentation of a graph. Nodes v and w are descendants of u, and w is to the
right of v. Figure 9.34(b) shows the duration of activity for the calls to dfs for each
of these nodes.

u

v w

(a) Three nodes in a depth-first tree.

Time of v Time of w

Time of u

(b) Active intervals for their calls to dfs.

Fig. 9.34. Relationship between position in tree and duration of calls.
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We can make several observations. First, the call to dfs on a descendant like v
is active for only a subinterval of the time during which the call on an ancestor, like
u, is active. In particular, the call to dfs(v) terminates before the call to dfs(u)

does. Thus, the postorder number of v must be less than the postorder number of
u whenever v is a proper descendant of u.

Second, if w is to the right of v, then the call to dfs(w) cannot begin until after
the call to dfs(v) terminates. Thus, whenever v is to the left of w, the postorder
number of v is less than that of w. Although not shown in Fig. 9.34, the same is
true even if v and w are in different trees of the depth-first search forest, with v’s
tree to the left of w’s tree.

We can now consider the relationship between the postorder numbers of u and
v for each arc u → v.

1. If u → v is a tree arc or forward arc, then v is a descendant of u, and so v
precedes u in postorder.

2. If u → v is a cross arc, then we know v is to the left of u, and again v precedes
u in postorder.

3. If u → v is a backward arc and v 6= u, then v is a proper ancestor of u, and so
v follows u in postorder. However, v = u is possible for a backward arc, since
a loop is a backward arc. Thus, in general, for backward arc u → v, we know
that the postorder number of v is at least as high as the postorder number of
u.

In summary, we see that in postorder, the head of an arc precedes the tail, unless
the arc is a backward arc; in which case the tail precedes or equals the head. Thus,
we can identify the backward arcs simply by finding those arcs whose tails are equal
to or less than their heads in postorder. We shall see a number of applications of
this idea in the next section.

EXERCISES

9.6.1: For the tree of Fig. 9.5 (see the exercises for Section 9.2), give two depth-first
search trees starting with node a. Give a depth-first search tree starting with node
d.

9.6.2*: No matter which node we start with in Fig. 9.5, we wind up with only one
tree in the depth-first search forest. Explain briefly why that must be the case for
this particular graph.

9.6.3: For each of your trees of Exercise 9.6.1, indicate which of the arcs are tree,
forward, backward, and cross arcs.

9.6.4: For each of your trees of Exercise 9.6.1, give the postorder numbers for the
nodes.

9.6.5*: Consider the graph with three nodes, a, b, and c, and the two arcs a → b
and b → c. Give all the possible depth-first search forests for this graph, considering
all possible starting nodes for each tree. What is the postorder numbering of the
nodes for each forest? Are the postorder numbers always the same for this graph?
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9.6.6*: Consider the generalization of the graph of Exercise 9.6.5 to a graph with n
nodes, a1, a2, . . . , an, and arcs a1 → a2, a2 → a3, . . . , an−1 → an. Prove by complete
induction on n that this graph has 2n−1 different depth-first search forests. Hint :
It helps to remember that 1 + 1 + 2 + 4 + 8 + · · · + 2i = 2i+1, for i ≥ 0.

9.6.7*: Suppose we start with a graph G and add a new node x that is a predecessor
of all other nodes in G. If we run dfsForest of Fig. 9.31 on the new graph, starting
at node x, then a single tree results. If we then delete x from this tree, several trees
may result. How do these trees relate to the depth-first search forest of the original
graph G?

9.6.8**: Suppose we have a directed graph G, from whose representation we have
just constructed a depth-first spanning forest F by the algorithm of Fig. 9.31. Let
us now add the arc u → v to G to form a new graph H , whose representation is
exactly that of G, except that node v now appears somewhere on the adjacency
list for node u. If we now run Fig. 9.31 on this representation of H , under what
circumstances will the same depth-first forest F be constructed? That is, when will
the tree arcs for H are exactly the same as the tree arcs for G?

✦
✦ ✦

✦
9.7 Some Uses of Depth-First Search

In this section, we see how depth-first search can be used to solve some problems
quickly. As previously, we shall here use n to represent the number of nodes of a
graph, and we shall use m for the larger of the number of nodes and the number of
arcs; in particular, we assume that n ≤ m is always true. Each of the algorithms
presented takes O(m) time, on a graph represented by adjacency lists. The first
algorithm determines whether a directed graph is acyclic. Then for those graphs
that are acyclic, we see how to find a topological sort of the nodes (topological sort-
ing was discussed in Section 7.10; we shall review the definitions at the appropriate
time). We also show how to compute the transitive closure of a graph (see Section
7.10 again), and how to find connected components of an undirected graph faster
than the algorithm given in Section 9.4.

Finding Cycles in a Directed Graph

During a depth-first search of a directed graph G, we can assign a postorder number
to all the nodes in O(m) time. Recall from the last section that we discovered the
only arcs whose tails are equal to or less than their heads in postorder are the
backward arcs. Whenever there is a backward arc, u → v, in which the postorder
number of v is at least as large as the postorder number of u, there must be a cycle
in the graph, as suggested by Fig. 9.35. The cycle consists of the arc from u to v,
and the path in the tree from v to its descendant u.

The converse is also true; that is, if there is a cycle, then there must be a
backward arc. To see why, suppose there is a cycle, say v1 → v2 → · · · → vk → v1,
and let the postorder number of node vi be pi, for i = 1, 2, . . . , k. If k = 1, that is,
the cycle is a single arc, then surely v1 → v1 is a backward arc in any depth-first
presentation of G.

If k > 1, suppose that none of the arcs v1 → v2, v2 → v3, and so on, up to
vk−1 → vk are backward. Then each head precedes each tail in postorder, and
so the postorder numbers p1, p2, . . . , pk form a decreasing sequence. In particular,
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v

u

Fig. 9.35. Every backward arc forms a cycle with tree arcs.

pk < p1. Then consider the arc vk → v1 that completes the cycle. The postorder
number of its tail, which is pk, is less than the postorder number of its head, p1,
and so this arc is a backward arc. That proves there must be some backward arc
in any cycle.

As a result, after computing the postorder numbers of all nodes, we simply
examine all the arcs, to see if any has a tail less than or equal to its head, in
postorder. If so, we have found a backward arc, and the graph is cyclic. If there is
no such arc, the graph is acyclic. Figure 9.36 shows a function that tests whether an
externally defined graph G is acyclic, using the data structure for graphs described
in the previous section. It also makes use of the function dfsForest defined in Fig.
9.33 to compute the postorder numbers of the nodes of G.

BOOLEAN testAcyclic(GRAPH G)

{

NODE u, v; /* u runs through all the nodes */

LIST p; /* p points to each cell on the adjacency list

for u; v is a node on the adjacency list */

(1) dfsForest(G);

(2) for (u = 0; u < MAX; u++) {

(3) p = G[u].successors;

(4) while (p != NULL) {

(5) v = p->nodeName;

(6) if (G[u].postorder <= G[v].postorder)

(7) return FALSE;

(8) p = p->next;

}

}

(9) return TRUE;

}

Fig. 9.36. Function to determine whether a graph G is acyclic.
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After calling dfsForest to compute postorder numbers at line (1), we examine
each node u in the loop of lines (2) through (8). Pointer p goes down the adjacency
list for u, and at line (5), v in turn becomes each successor of u. If at line (6) we
find that u equals or precedes v in postorder, then we have found a backward arc
u → v, and we return FALSE at line (7). If we find no such backward arc, we return
TRUE at line (9).

Running Time of the Acyclicity Test

As before, let n be the number of nodes of graph G and let m be the larger of
the number of nodes and the number of arcs. We already know that the call to
dfsForest at line (1) of Fig. 9.36 takes O(m) time. Lines (5) to (8), the body of
the while-loop, evidently take O(1) time. To get a good bound on the time for the
while-loop itself, we must use the trick that was used in the previous section to
bound the time of depth-first search. Let mu be the out-degree of node u. Then
we go around the loop of lines (4) to (8) mu times. Thus, the time spent in lines
(4) to (8) is O(1 + mu).

Line (3) only takes O(1) time, and so the time spent in the for-loop of lines
(2) to (8) is O

(
∑

u(1 + mu)
)

. As observed in the previous section, the sum of 1 is
O(n), and the sum of mu is m. Since n ≤ m, the time for the loop of lines (2) to
(8) is O(m). That is the same as the time for line (1), and line (9) takes O(1) time.
Thus, the entire acyclicity test takes O(m) time. As for depth-first search itself, the
time to detect cycles is, to within a constant factor, just the time it takes to look
at the entire graph.

Topological Sorting

Suppose we know that a directed graph G is acyclic. As for any graph, we may find
a depth-first search forest for G and thereby determine a postorder for the nodes of
G. Suppose (v1, v2, . . . , vn) is a list of the nodes of G in the reverse of postorder;
that is, v1 is the node numbered n in postorder, v2 is numbered n−1, and in general,
vi is the node numbered n − i + 1 in postorder.

The order of the nodes on this list has the property that all arcs of G go forward
in the order. To see why, suppose vi → vj is an arc of G. Since G is acyclic, there
are no backward arcs. Thus, for every arc, the head precedes the tail. That is, vj

precedes vi in postorder. But the list is the reverse of postorder, and so vi precedes
vj on the list. That is, every tail precedes the corresponding head in the list order.

An order for the nodes of a graph G with the property that for every arc of G
the tail precedes the head is called a topological order, and the process of findingTopological

order such an order for the nodes is called topological sorting. Only acyclic graphs have a
topological order, and as we have just seen, we can produce a topological order for
an acyclic graph O(m) time, where m is the larger of the number of nodes and arcs,
by performing a depth-first search. As we are about to give a node its postorder
number, that is, as we complete the call to dfs on that node, we push the node
onto a stack. When we are done, the stack is a list in which the nodes appear in
postorder, with the highest at the top (front). That is the reverse postorder we
desire. Since the depth-first search takes O(m) time, and pushing the nodes onto a
stack takes only O(n) time, the whole process takes O(m) time.
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Applications of Topological Order and Cycle Finding

There are a number of situations in which the algorithms discussed in this section
will prove useful. Topological ordering comes in handy when there are constraints
on the order in which we do certain tasks, which we represent by nodes. If we draw
an arc from u to v whenever we must do task u before v, then a topological order is
an order in which we can perform all the tasks. An example in Section 7.10 about
putting on shoes and socks illustrated this type of problem.

A similar example is the calling graph of a nonrecursive collection of functions,
in which we wish to analyze each function after we have analyzed the functions it
calls. As the arcs go from caller to called function, the reverse of a topological order,
that is, the postorder itself, is an order in which we can analyze the function, making
sure that we only work on a function after we have worked on all the functions it
calls.

In other situations, it is sufficient to run the cycle test. For example, a cycle
in the graph of task priorities tells us there is no order in which all the tasks can
be done, and a cycle in a calling graph tells us there is recursion.

✦ Example 9.22. In Fig. 9.37(a) is an acyclic graph, and in Fig. 9.37(b) is the
depth-first search forest we get by considering the nodes in alphabetic order. We
also show in Fig. 9.37(b) the postorder numbers that we get from this depth-first
search. If we list the nodes highest postorder number first, we get the topological
order (d, e, c, f, b, a). The reader should check that each of the eight arcs in Fig.
9.37(a) has a tail that precedes its head according to this list. There are, incidentally,
three other topological orders for this graph, such as (d, c, e, b, f, a). ✦

The Reachability Problem

A natural question to ask about a directed graph is, given a node u, which nodes
can we reach from u by following arcs? We call this set of nodes the reachable setReachable set

for node u. In fact, if we ask this reachability question for each node u, then we
know for which pairs of nodes (u, v) there is a path from u to v.

The algorithm for solving reachability is simple. If we are interested in node
u, we mark all nodes UNVISITED and call dfs(u). We then examine all the nodes
again. Those marked VISITED are reachable from u, and the others are not. If we
then wish to find the nodes reachable from another node v, we set all the nodes to
UNVISITED again and call dfs(v). This process may be repeated for as many nodes
as we like.

✦ Example 9.23. Consider the graph of Fig. 9.37(a). If we start our depth-first
search from node a, we can go nowhere, since there are no arcs out of a. Thus,
dfs(a) terminates immediately. Since only a is visited, we conclude that a is the
only node reachable from a.

If we start with b, we can reach a, but that is all; the reachable set for b is
{a, b}. Similarly, from c we reach {a, b, c, f}, from d we reach all the nodes, from e
we reach {a, b, e, f}, and from f we can reach only {a, f}.

For another example, consider the graph of Fig. 9.26. From a we can reach all
the nodes. From any node but a, we can reach all the nodes except a. ✦
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(a) A directed acyclic graph.

a b c d

ef

1 2 4 6

53

(b) A depth-first search forest.

Fig. 9.37. Topologically sorting an acyclic graph.

Running Time of the Reachability Test

Let us assume we have a directed graph G with n nodes and m arcs. We shall
also assume G is represented by the data type GRAPH of the previous section. First,
suppose we want to find the reachable set for a node u. Initializing the nodes
to be UNVISITED takes O(n) time. The call to dfs(u, G) takes O(m) time, and
examining the nodes again to see which are visited takes O(n) time. While we
examine the nodes, we could also create a list of those nodes that are reachable
from u, still taking only O(n) time. Thus, finding the reachable set for one node
takes O(m) time.

Now suppose we want the reachable sets for all n nodes. We may repeat the
algorithm n times, once for each node. Thus, the total time is O(nm).

Finding Connected Components by Depth-First Search

In Section 9.4, we gave an algorithm for finding the connected components of an
undirected graph with n nodes, and with m equal to the larger of the number of
nodes and edges, in O(m log n) time. The tree structure we used to merge com-
ponents is of interest in its own right; for example, we used it to help implement
Kruskal’s minimal spanning tree algorithm. However, we can find connected com-
ponents more efficiently if we use depth-first search. As we shall see, O(m) time
suffices.

The idea is to treat the undirected graph as if it were a directed graph with each
edge replaced by arcs in both directions. If we represent the graph by adjacency
lists, then we do not even have to make any change to the representation. Now
construct the depth-first search forest for the directed graph. Each tree in the
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Transitive Closure and Reflexive-Transitive Closure

Let R be a binary relation on a set S. The reachability problem can be viewed as
computing the reflexive-transitive closure of R, which is usually denoted R*. The
relation R* is defined to be the set of pairs (u, v) such that there is a path of length
zero or more from node u to node v in the graph represented by R.

Another relation that is very similar is R+, the transitive closure of R, which is
defined to be the set of pairs (u, v) such that there is a path of length one or more
from u to v in the graph represented by R. The distinction between R* and R+ is
that (u, u) is always in R* for every u in S, whereas (u, u) is in R+ if and only if
there is a cycle of length one or more from u to u. To compute R+ from R*, we
just have to check whether or not each node u has some entering arc from one of its
reachable nodes, including itself; if it does not, we remove u from its own reachable
set.

forest is one connected component of the undirected graph.

To see why, first note that the presence of an arc u → v in the directed graph
indicates that there is an edge {u, v}. Thus, all the nodes of a tree are connected.

Now we must show the converse, that if two nodes are connected, then they are
in the same tree. Suppose there were a path in the undirected graph between two
nodes u and v that are in different trees. Say the tree of u was constructed first.
Then there is a path in the directed graph from u to v, which tells us that v, and
all the nodes on this path, should have been added to the tree with u. Thus, nodes
are connected in the undirected graph if and only if they are in the same tree; that
is, the trees are the connected components.

✦ Example 9.24. Consider the undirected graph of Fig. 9.4 again. One possible
depth-first search forest we might construct for this graph is shown in Fig. 9.38.
Notice how the three depth-first search trees correspond to the three connected
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Honolulu

PearlCity

Wahiawa

Laie Maili

Kaneohe

Lahaina

Kahului

Keokea Hana

Kona

Kamuela

Hilo

Fig. 9.38. The depth-first search forest divides an undirected graph
into connected components.

components. ✦

EXERCISES

9.7.1: Find all the topological orders for the graph of Fig. 9.37.

9.7.2*: Suppose R is a partial order on domain D. We can represent R by its
graph, where the nodes are the elements of D and there is an arc u → v whenever
uRv and u 6= v. Let (v1, v2, . . . , vn) be a topological ordering of the graph of R.
Let T be the relation defined by viTvj whenever i ≤ j. Show that

a) T is a total order, and

b) The pairs in R are a subset of the pairs in T ; that is, T is a total order containing
the partial order R.

9.7.3: Apply depth-first search to the graph of Fig. 9.21 (after converting it to a
symmetric directed graph), to find the connected components.

9.7.4: Consider the graph with arcs a → c, b → a, b → c, d → a, and e → c.

a) Test the graph for cycles.
b) Find all the topological orders for the graph.
c) Find the reachable set of each node.

9.7.5*: In the next section we shall consider the general problem of finding shortest
paths from a source node s. That is, we want for each node u the length of the
shortest path from s to u if one exists. When we have a directed, acyclic graph, the
problem is easier. Give an algorithm that will compute the length of the shortest
path from node s to each node u (infinity if no such path exists) in a directed,
acyclic graph G. Your algorithm should take O(m) time, where m is the larger of
the number of nodes and arcs of G. Prove that your algorithm has this running
time. Hint : Start with a topological sort of G, and visit each node in turn. On
visiting a node u, calculate the shortest distance from s to u in terms of the already
calculated shortest distances to the predecessors of u.
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9.7.6*: Give algorithms to compute the following for a directed, acyclic graph G.
Your algorithms should run in time O(m), where m is the larger of the number of
nodes and arcs of G, and you should prove that this running time is all that your
algorithm requires. Hint : Adapt the idea of Exercise 9.7.5.

a) For each node u, find the length of the longest path from u to anywhere.

b) For each node u, find the length of the longest path to u from anywhere.

c) For a given source node s and for all nodes u of G, find the length of the longest

path from s to u.

d) For a given source node s and for all nodes u of G, find the length of the longest
path from u to s.

e) For each node u, find the length of the longest path through u.

✦
✦ ✦

✦
9.8 Dijkstra’s Algorithm for Finding Shortest Paths

Suppose we have a graph, which could be either directed or undirected, with labels
on the arcs (or edges) to represent the “length” of that arc. An example is Fig.
9.4, which showed the distance along certain roads of the Hawaiian Islands. It
is quite common to want to know the minimum distance between two nodes; for
example, maps often include tables of driving distance as a guide to how far one can
travel in a day, or to help determine which of two routes (that go through different
intermediate cities) is shorter. A similar kind of problem would associate with each
arc the time it takes to travel along that arc, or perhaps the cost of traveling that
arc. Then the minimum “distance” between two nodes would correspond to the
traveling time or the fare, respectively.

In general, the distance along a path is the sum of the labels of that path. The
minimum distance from node u to node v is the minimum of the distance of anyMinimum

distance path from u to v.

✦ Example 9.25. Consider the map of Oahu in Fig. 9.10. Suppose we want to
find the minimum distance from Maili to Kaneohe. There are several paths we
could choose. One useful observation is that, as long as the labels of the arcs are
nonnegative, the minimum-distance path need never have a cycle. For we could
skip that cycle and find a path between the same two nodes, but with a distance
no greater than that of the path with the cycle. Thus, we need only consider

1. The path through Pearl City and Honolulu.

2. The path through Wahiawa, Pearl City, and Honolulu.

3. The path through Wahiawa and Laie.

4. The path through Pearl City, Wahiawa, and Laie.

The distances of these paths are 44, 51, 67, and 84, respectively. Thus, the minimum
distance from Maili to Kaneohe is 44. ✦
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If we wish to find the minimum distance from one given node, called the source

node, to all the nodes of the graph, one of the most efficient techniques to use isSource node

a method called Dijkstra’s algorithm, the subject of this section. It turns out that
if all we want is the distance from one node u to another node v, the best way is
to run Dijkstra’s algorithm with u as the source node and stop when we deduce
the distance to v. If we want to find the minimum distance between every pair of
nodes, there is an algorithm that we shall cover in the next section, called Floyd’s
algorithm, that sometimes is preferable to running Dijkstra’s algorithm with every
node as a source.

The essence of Dijkstra’s algorithm is that we discover the minimum distance
from the source to other nodes in the order of those minimum distances, that is,
closest nodes first. As Dijkstra’s algorithm proceeds, we have a situation like that
suggested in Fig. 9.39. In the graph G there are certain nodes that are settled, thatSettled node

is, their minimum distance is known; this set always includes s, the source node.
For the unsettled nodes v, we record the length of the shortest special path, whichSpecial path

is a path that starts at the source node, travels only through settled nodes, then at
the last step jumps out of the settled region to v.

s

settled
nodes

v

special
path

Graph G

Fig. 9.39. Intermediate stage during the execution of Dijkstra’s algorithm.

We maintain a value dist(u) for every node u. If u is a settled node, then
dist(u) is the length of the shortest path from the source to u. If u is not settled,
then dist(u) is the length of the shortest special path from the source to u. Initially,
only the source node s is settled, and dist(s) = 0, since the path consisting of s
alone surely has distance 0. If there is an arc from s to u, then dist(u) is the label
of that arc. Notice that when only s is settled, the only special paths are the arcs
out of s, so that dist(u) should be the label of the arc s → u if there is one. We
shall use a defined constant INFTY, that is intended to be larger than the distance
along any path in the graph G. INFTY serves as an “infinite” value and indicates
that no special paths have yet been discovered. That is, initially, if there is no arc
s → u, then dist(u) = INFTY.

Now suppose we have some settled and some unsettled nodes, as suggested by
Fig. 9.39. We find the node v that is unsettled, but has the smallest dist value of
any unsettled node. We “settle” v by
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1. Accepting dist(v) as the minimum distance from s to v.

2. Adjusting the value of dist(u), for all nodes u that remain unsettled, to account
for the fact that v is now settled.

The adjustment required by step (2) is the following. We compare the old value
of dist(u) with the sum of dist(v) and label of the arc v → u, and if the latter sum
is smaller, we replace dist(u) by that sum. If there is no arc v → u, then we do not
adjust dist(u).

✦ Example 9.26. Consider the map of Oahu in Fig. 9.10. That graph is undi-
rected, but we shall assume edges are arcs in both directions. Let the source be
Honolulu. Then initially, only Honolulu is settled and its distance is 0. We can set
dist(PearlCity) to 13 and dist(Kaneohe) to 11, but other cities, having no arc from
Honolulu, are given distance INFTY. The situation is shown in the first column of
Fig. 9.40. The star on distances indicates that the node is settled.

ROUND

CITY (1) (2) (3) (4) (5)

Honolulu 0* 0* 0* 0* 0*

PearlCity 13 13 13* 13* 13*

Maili INFTY INFTY 33 33 33*

Wahiawa INFTY INFTY 25 25* 25*

Laie INFTY 35 35 35 35

Kaneohe 11 11* 11* 11* 11*

VALUES OF dist

Fig. 9.40. Stages in the execution of Dijkstra’s algorithm.

Among the unsettled nodes, the one with the smallest distance is now Kaneohe,
and so this node is settled. There are arcs from Kaneohe to Honolulu and Laie.
The arc to Honolulu does not help, but the value of dist(Kaneohe), which is 11,
plus the label of the arc from Kaneohe to Laie, which is 24, totals 35, which is less
than “infinity,” the current value of dist(Laie). Thus, in the second column, we
have reduced the distance to Laie to 35. Kaneohe is now settled.

In the next round, the unsettled node with the smallest distance is Pearl City,
with a distance of 13. When we make Pearl City settled, we must consider the
neighbors of Pearl City, which are Maili and Wahiawa. We reduce the distance to
Maili to 33 (the sum of 13 and 20), and we reduce the distance to Wahiawa to 25
(the sum of 13 and 12). The situation is now as in column (3).

Next to be settled is Wahiawa, with a distance of 25, least among the currently
unsettled nodes. However, that node does not allow us to reduce the distance to
any other node, and so column (4) has the same distances as column (3). Similarly,
we next settle Maili, with a distance of 33, but that does not reduce any distances,
leaving column (5) the same as column (4). Technically, we have to settle the last
node, Laie, but the last node cannot affect any other distances, and so column (5)
gives the shortest distances from Honolulu to all six cities. ✦
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Why Dijkstra’s Algorithm Works

In order to show that Dijkstra’s algorithm works, we must assume that the labels
of arcs are nonnegative.9 We shall prove by induction on k that when there are k
settled nodes,

a) For each settled node u, dist(u) is the minimum distance from s to u, and the
shortest path to u consists only of settled nodes.

b) For each unsettled node u, dist(u) is the minimum distance of any special path
from s to u (INFTY if no such path exists).

s

w

settled
nodes

u

v

Graph G

Fig. 9.41. Hypothetical shorter path to v, through w and u.

BASIS. For k = 1, s is the only settled node. We initialize dist(s) to 0, which
satisfies (a). For every other node u, we initialize dist(u) to be the label of the arc
s → u if it exists, and INFTY if not. Thus, (b) is satisfied.

INDUCTION. Now assume (a) and (b) hold after k nodes have been settled, and
let v be the (k + 1)st node settled. We claim that (a) still holds, because dist(v)
is the least distance of any path from s to v. Suppose not. By part (b) of the
inductive hypothesis, when k nodes are settled, dist(v) is the minimum distance
of any special path to v, and so there must be some shorter nonspecial path to v.
As suggested in Fig. 9.41, this path must leave the settled nodes at some node w
(which could be s), and go to some unsettled node u. From there, the path could
meander in and out of the settled nodes, until it finally arrives at v.

However, v was chosen to be the (k + 1)st node settled, which means that at
this time, dist(u) could not be less than dist(v), or else we would have selected u
as the (k + 1)st node. By (b) of the inductive hypothesis, dist(u) is the minimum
length of any special path to u. But the path from s to w to u in Fig. 9.41 is a
special path, so that its distance is at least dist(u). Thus, the supposed shorter

9 When labels are allowed to be negative, we can find graphs for which Dijkstra’s algorithm
gives incorrect answers.
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path from s to v through w and u has a distance that is at least dist(v), because
the initial part from s to u already has distance dist(u), and dist(u) ≥ dist(v).10

Thus, (a) holds for k + 1 nodes, that is, (a) continues to hold when we include v
among the settled nodes.

Now we must show that (b) holds when we add v to the settled nodes. Consider
some node u that remains unsettled when we add v to the settled nodes. On the
shortest special path to u, there must be some penultimate (next-to-last) node; this
node could either be v or some other node w. The two possibilities are suggested
by Fig. 9.42.

s v

w

settled
nodes

u

Graph G

Fig. 9.42. What is the penultimate node on the shortest special path to u?

First, suppose the penultimate node is v. Then the length of the path from s
to v to u suggested in Fig. 9.42 is dist(v) plus the label of the arc v → u.

Alternatively, suppose the penultimate node is some other node w. By induc-
tive hypothesis (a), the shortest path from s to w consists only of nodes that were
settled prior to v, and therefore, v does not appear on the path. Thus, the length of
the shortest special path to u does not change when we add v to the settled nodes.

Now recall that when we settle v, we adjust each dist(u) to be the smaller of
the old value of dist(u) and dist(v) plus the label of arc v → u. The former covers
the case that some w other than v is the penultimate node, and the latter covers
the case that v is the penultimate node. Thus, part (b) also holds, and we have
completed the inductive step.

Data Structures for Dijkstra’s Algorithm

We shall now present an efficient implementation of Dijkstra’s algorithm making
use of the balanced partially ordered tree structure of Section 5.9.11 We use two
arrays, one called graph to represent the graph, and the other called potNodes

10 Note that the fact that the labels are nonnegative is vital; if not, the portion of the path
from u to v could have a negative distance, resulting in a shorter path to v.

11 Actually, this implementation is only best when the number of arcs is somewhat less than
the square of the number of nodes, which is the maximum number of arcs there can be. A
simple implementation for the dense case is discussed in the exercises.
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to represent the partially ordered tree. The intent is that to each graph node u
there corresponds a partially ordered tree node a that has priority equal to dist(u).
However, unlike Section 5.9, we shall organize the partially ordered tree by least
priority rather than greatest. (Alternatively, we could take the priority of a to be
−dist(u).) Figure 9.43 illustrates the data structure.

dist succs. toPOT

graph

a

0

u

n − 1

u

1

a

n

potNodes

Fig. 9.43. Data structure to represent a graph for Dijkstra’s algorithm.

We use NODE for the type of graph nodes. As usual, we shall name nodes with
integers starting at 0. We shall use the type POTNODE for the type of nodes in the
partially ordered tree. As in Section 5.9, we shall assume that the nodes of the
partially ordered tree are numbered starting at 1 for convenience. Thus, both NODE

and POTNODE are synonyms for int.

The data type GRAPH is defined to be

typedef struct {

float dist;

LIST successors;

POTNODE toPOT;

} GRAPH[MAX];

Here, MAX is the number of nodes in the graph, and LIST is the type of adjacency
lists consisting of cells of type CELL. Since we need to include labels, which we take
to be floating-point numbers, we shall declare as the type CELL

typedef struct CELL *LIST;

struct CELL {

NODE nodeName;

float nodeLabel;

LIST next;

};

We declare the data type POT to be an array of graph nodes
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typedef NODE POT[MAX+1];

We can now define the principal data structures:

GRAPH graph;

POT potNodes;

POTNODE last;

The array of structures graph contains the nodes of the graph, the array potNodes

contains the nodes of the partially ordered tree, and the variable last indicates the
current end of the partially ordered tree, which resides in potNodes[1..last].

Intuitively, the structure of the partially ordered tree is represented by the
positions in the array potNodes, as usual for a partially ordered tree. The elements
of this array let us tell the priority of a node by referring back to the graph itself.
In particular, we place in potNodes[a] the index u of the graph node represented.
The dist field, graph[u].dist, gives the priority of node a in the partially ordered
tree.

Auxiliary Functions for Dijkstra’s Algorithm

We need a number of auxiliary functions to make our implementation work. The
most fundamental is the function swap that swaps two nodes of the partially ordered
tree. The matter is not quite as simple as it was in Section 5.9. Here, the field toPOT

of graph must continue to track the value in the array potNodes, as was suggested
by Fig. 9.43. That is, if the value graph[u].toPOT is a, then it must also be the
case that potNodes[a] has value u.

The code for swap is shown in Fig. 9.44. It takes as arguments a graph G and
a partially ordered tree P, as well as two nodes a and b of that partially ordered
tree. We leave it to the reader to check that the function exchanges the values in
entries a and b of the partially ordered tree and also exchanges the toPOT fields of
the corresponding graph nodes.

void swap(POTNODE a, POTNODE b, GRAPH G, POT P)

{

NODE temp; /* used to swap POT nodes */

temp = P[b];

P[b] = P[a];

P[a] = temp;

G[P[a]].toPOT = a;

G[P[b]].toPOT = b;

}

Fig. 9.44. Function to swap two nodes of the partially ordered tree.

We shall need to bubble nodes up and down the partially ordered tree, as we
did in Section 5.9. The major difference is that here, the value in an element of
the array potNodes is not the priority. Rather, that value takes us to a node of
graph, and in the structure for that node we find the field dist, which gives us
the priority. We therefore need an auxiliary function priority that returns dist

for the appropriate graph node. We shall also assume for this section that smaller
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priorities rise to the top of the partially ordered tree, rather than larger priorities
as in Section 5.9.

Figure 9.45 shows the function priority and functions bubbleUp and bubble-

Down that are simple modifications of the functions of the same name in Section 5.9.
Each takes a graph G and a partially ordered tree P as arguments. Function bub-

bleDown also needs an integer last that indicates the end of the current partially
ordered tree in the array P.

float priority(POTNODE a, GRAPH G, POT P)

{

return G[P[a]].dist;

}

void bubbleUp(POTNODE a, GRAPH G, POT P)

{

if ((a > 1) &&

(priority(a, G, P) < priority(a/2, G, P))) {

swap(a, a/2, G, P);

bubbleUp(a/2, G, P);

}

}

void bubbleDown(POTNODE a, GRAPH G, POT P, int last)

{

POTNODE child;

child = 2*a;

if (child < last &&

priority(child+1, G, P) < priority(child, G, P))

++child;

if (child <= last &&

priority(a, G, P) > priority(child, G, P)) {

swap(a, child, G, P);

bubbleDown(child, G, P, last);

}

}

Fig. 9.45. Bubbling nodes up and down the partially ordered tree.

Initialization

We shall assume that the adjacency list for each graph node has already been
created and that a pointer to the adjacency list for graph node u appears in
graph[u].successors. We shall also assume that node 0 is the source node. If we
take the graph node i to correspond to node i+1 of the partially ordered tree, then
the array potNodes is appropriately initialized as a partially ordered tree. That is,
the root of the partially ordered tree represents the source node of the graph, to
which we give priority 0, and to all other nodes we give priority INFTY, our “infinite”
defined constant.
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Initializing with an Exception

Notice that at line (2) of Fig 9.46, we set dist[1] to INFTY, along with all the other
distances. Then at line (5), we correct this distance to 0. That is more efficient than
testing each value of i to see if it is the exceptional case. True, we could eliminate
line (5) if we replaced line (2) by

if (i == 0)

G[i].dist = 0;

else

G[i].dist = INFTY;

but that would not only add to the code, it would increase the running time, since
we would have to do n tests and n assignments, instead of n + 1 assignments and
no tests, as we did in lines (2) and (5) of Fig. 9.46.

As we shall see, on the first round of Dijkstra’s algorithm, we select the source
node to “settle,” which will create the condition we regard as our starting point in
the informal introduction, where the source node is settled and dist[u] is noninfi-
nite only when there is an arc from the source to u. The initialization function is
shown in Fig. 9.46. As with previous functions in this section, initialize takes as
arguments the graph and the partially ordered tree. It also takes a pointer pLast to
the integer last, so it can initialize it to MAX , the number of nodes in the graph.
Recall that last will indicate the last position in the array for the partially ordered
tree that is currently in use.

void initialize(GRAPH G, POT P, int *pLast);

{

int i; /* we use i as both a graph and a tree node */

(1) for (i = 0; i < MAX; i++) {

(2) G[i].dist = INFTY;

(3) G[i].toPOT = i+1;

(4) P[i+1] = i;

}

(5) G[0].dist = 0;

(6) (*pLast) = MAX;

}

Fig. 9.46. Initialization for Dijkstra’s algorithm.

Note that the indexes of the partially ordered tree are 1 through MAX , while
for the graph, they are 0 through MAX − 1. Thus, in lines (3) and (4) of Fig. 9.46,
we have to make node i of the graph correspond initially to node i+1 of the partially
ordered tree.
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Implementation of Dijkstra’s Algorithm

Figure 9.47 shows the code for Dijkstra’s algorithm, using all the functions we
have previously written. To execute Dijkstra’s algorithm on the graph graph with
partially ordered tree potNodes and with integer last to indicate the end of the
partially ordered tree, we initialize these variables and then call

Dijkstra(graph, potNodes, &last)

The function Dijkstra works as follows. At line (1) we call initialize. The
remainder of the code, lines (2) through (13), is a loop, each iteration of which
corresponds to one round of Dijkstra’s algorithm, where we pick one node v and
settle it. The node v picked at line (3) is always the one whose corresponding tree
node is at the root of the partially ordered tree. At line (4), we take v out of the
partially ordered tree, by swapping it with the current last node of that tree. Line
(5) actually removes v by decrementing last. Then line (6) restores the partially
ordered tree property by calling bubbleDown on the node we just placed at the root.
In effect, unsettled nodes appear below last and settled nodes are at last and above.

void Dijkstra(GRAPH G, POT P, int *pLast)

{

NODE u, v; /* v is the node we select to settle */

LIST ps; /* ps runs down the list of successors of v;

u is the successor pointed to by ps */

(1) initialize(G, P, pLast);

(2) while ((*pLast) > 1) {

(3) v = P[1];

(4) swap(1, *pLast, G, P);

(5) --(*pLast);

(6) bubbleDown(1, G, P, *pLast);

(7) ps = G[v].successors;

(8) while (ps != NULL) {

(9) u = ps->nodeName;

(10) if (G[u].dist > G[v].dist + ps->nodeLabel) {

(11) G[u].dist = G[v].dist + ps->nodeLabel;

(12) bubbleUp(G[u].toPOT, G, P);

}

(13) ps = ps->next;

}

}

}

Fig. 9.47. The main function for Dijkstra’s algorithm.

At line (7) we begin updating distances to reflect the fact that v is now settled.
Pointer p is initialized to the beginning of the adjacency list for node v. Then in the
loop of lines (8) to (13), we consider each successor u of v. After setting variable
u to one of the successors of v at line (9), we test at line (10) whether the shortest
special path to u goes through v. That is the case whenever the old value of dist(u),
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represented in this data structure by G[u].dist, is greater than the sum of dist(v)
plus the label of the arc v → u. If so, then at line (11), we set dist(u) to its new,
smaller value, and at line (12) we call bubbleUp, so, if necessary, u can rise in the
partially ordered tree to reflect its new priority. The loop completes when at line
(13) we move p down the adjacency list of v.

Running Time of Dijkstra’s Algorithm

As in previous sections, we shall assume that our graph has n nodes and that m
is the larger of the number of arcs and the number of nodes. We shall analyze the
running time of each of the functions, in the order they were described. First, swap
clearly takes O(1) time, since it consists only of assignment statements. Likewise,
priority takes O(1) time.

Function bubbleUp is recursive, but its running time is O(1) plus the time of a
recursive call on a node that is half the distance to the root. As we argued in Section
5.9, there are at most log n calls, each taking O(1) time, for a total of O(log n) time
for bubbleUp. Similarly, bubbleDown takes O(log n) time.

Function initialize takes O(n) time. That is, the loop of lines (1) to (4) is
iterated n times, and its body takes O(1) time per iteration. That gives O(n) time
for the loop. Lines (5) and (6) each contribute O(1), which we may neglect.

Now let us turn our attention to function Dijkstra in Fig. 9.47. Let mv be
the out-degree of node v, or equivalently, the length of v’s adjacency list. Begin by
analyzing the inner loop of lines (8) to (13). Each of lines (9) to (13) take O(1)
time, except for line (12), the call to bubbleUp, which we argued takes O(log n)
time. Thus, the body of the loop takes O(log n) time. The number of times around
the loop equals the length of the adjacency list for v, which we referred to as
mv. Thus the running time of the loop of lines (8) through (13) may be taken
as O(1 + mv log n); the term 1 covers the case where v has no successors, that is,
mv = 0, yet we still do the test of line (8).

Now consider the outer loop of lines (2) through (13). We already accounted
for lines (8) to (13). Line (6) takes O(log n) for a call to bubbleDown. The other
lines of the body take O(1) each. The body thus takes time O

(

(1 + mv) log n
)

.

The outer loop is iterated exactly n − 1 times, as last ranges from n down to
2. The term 1 in 1 + mv thus contributes n − 1, or O(n). However, the mv term
must be summed over each node v, since all nodes (but the last) are chosen once to
be v. Thus, the contribution of mv summed over all iterations of the outer loop is
O(m), since

∑

v mv ≤ m. We conclude that the outer loop takes time O(m log n).
The additional time for line (1), the call to initialize, is only O(n), which we may
neglect. Our conclusion is that Dijkstra’s algorithm takes time O(m log n), that is,
at most a factor of log n more than the time taken just to look at the nodes and
arcs of the graph.

EXERCISES

9.8.1: Find the shortest distance from Detroit to the other cities, according to the
graph of Fig. 9.21 (see the exercises for Section 9.4). If a city is unreachable from
Detroit, the minimum distance is “infinity.”
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9.8.2: Sometimes, we wish to count the number of arcs traversed getting from one
node to another. For example, we might wish to minimize the number of transfers
needed in a plane or bus trip. If we label each arc 1, then a minimum-distance
calculation will count arcs. For the graph in Fig. 9.5 (see the exercises for Section
9.2), find the minimum number of arcs needed to reach each node from node a.

Australopithecus Afarensis AF
Australopithecus Africanus AA
Homo Habilis HH
Australopithecus Robustus AR
Homo Erectus HE
Australopithecus Boisei AB
Homo Sapiens HS

(a) Species and abbreviations.

SPECIES 1 SPECIES 2 TIME

AF HH 1.0

AF AA 0.8

HH HE 1.2

HH AB 0.5

HH AR 0.3

AA AB 0.4

AA AR 0.6

AB HS 1.7

HE HS 0.8

(b) Species 1 precedes species 2 by time.

Fig. 9.48. Relationships between hominid species.

9.8.3: In Fig. 9.48(a) are seven species of hominids and their convenient abbrevia-
tions. Certain of these species are known to have preceded others because remains
have been found in the same place separated by layers indicating that time had
elapsed. The table in Fig. 9.48(b) gives triples (x, y, t) that mean species x has
been found in the same place as species y, but x appeared t millions of years before
y.

a) Draw a directed graph representing the data of Fig. 9.48, with arcs from the
earlier species to the later, labeled by the time difference.

b) Run Dijkstra’s algorithm on the graph from (a), with AF as the source, to find
the shortest time by which each of the other species could have followed AF.

9.8.4*: The implementation of Dijkstra’s algorithm that we gave takes O(m log n)
time, which is less than O(n2) time, except in the case that the number of arcs is
close to n2, its maximum possible number. If m is large, we can devise another
implementation, without a priority queue, where we take O(n) time to select the
winner at each round, but only O(mu) time, that is, time proportional to the
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number of arcs out of the settled node u, to update dist. The result is an O(n2)
time algorithm. Develop the ideas suggested here, and write a C program for this
implementation of Dijkstra’s algorithm.

9.8.5**: Dijkstra’s algorithm does not always work if there are negative labels
on some arcs. Give an example of a graph with some negative labels for which
Dijkstra’s algorithm gives the wrong answer for some minimum distance.

9.8.6**: Let G be a graph for which we have run Dijkstra’s algorithm and settled
the nodes in some order. Suppose we add to G an arc u → v with a weight of 0, to
form a new graph G′. Under what conditions will Dijkstra’s algorithm run on G′

settle the nodes in the same order as for G?

9.8.7*: In this section we took the approach of linking the arrays representing the
graph G and the partially ordered tree by storing integers that were indices into the
other array. Another approach is to use pointers to array elements. Reimplement
Dijkstra’s algorithm using pointers instead of integer indices.

✦
✦ ✦

✦
9.9 Floyd’s Algorithm for Shortest Paths

If we want the minimum distances between all pairs of nodes in a graph with n
nodes, with nonnegative labels, we can run Dijkstra’s algorithm with each of the n
nodes as source. Since one run of Dijkstra’s algorithm takes O(m log n) time, where
m is the larger of the number of nodes and number of arcs, finding the minimum
distances between all pairs of nodes this way takes O(mn log n) time. Moreover,
if m is close to its maximum, n2, we can use an O(n2)-time implementation of
Dijkstra’s algorithm discussed in Exercise 9.8.4, which when run n times gives us
an O(n3)-time algorithm to find the minimum distances between each pair of nodes.

There is another algorithm for finding the minimum distances between all pairs
of nodes, called Floyd’s algorithm. This algorithm takes O(n3) time, and thus is in
principle no better than Dijkstra’s algorithm, and worse than Dijkstra’s algorithm
when the number of arcs is much less than n2. However, Floyd’s algorithm works
on an adjacency matrix, rather than adjacency lists, and it is conceptually much
simpler than Dijkstra’s algorithm.

The essence of Floyd’s algorithm is that we consider in turn each node u of
the graph as a pivot. When u is the pivot, we try to take advantage of u as anPivot

intermediate node between all pairs of nodes, as suggested in Fig. 9.49. For each
pair of nodes, say v and w, if the sum of the labels of arcs v → u and u → w, which
is d + e in Fig. 9.49, is less than the current label, f , of the arc from v to w, then
we replace f by d + e.

A fragment of code implementing Floyd’s algorithm is shown in Fig. 9.50. As
before, we assume nodes are named by integers starting at 0. We use NODE as the
type of nodes, but we assume this type is integers or an equivalent enumerated type.
We assume there is an n× n array arc, such that arc[v][w] is the label of the arc
v → w in the given graph. However, on the diagonal we have arc[v][v] = 0 for
all nodes v, even if there is an arc v → v. The reason is that the shortest distance
from a node to itself is always 0, and we do not wish to follow any arcs at all. If
there is no arc from v to w, then we let arc[v][w] be INFTY, a special value that is
much greater than any other label. There is a similar array dist that, at the end,
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Fig. 9.49. Using node u as a pivot to improve
the distances between some pairs of nodes.

NODE u, v, w;

(1) for (v = 0; v < MAX; v++)

(2) for (w = 0; w < MAX; w++)

(3) dist[v][w] = arc[v][w];

(4) for (u = 0; u < MAX; u++)

(5) for (v = 0; v < MAX; v++)

(6) for (w = 0; w < MAX; w++)

(7) if (dist[v][u] + dist[u][w] < dist[v][w])

(8) dist[v][w] = dist[v][u] + dist[u][w];

Fig. 9.50. Floyd’s algorithm.

holds the minimum distances; dist[v][w] will become the minimum distance from
node v to node w.

Lines (1) to (3) initialize dist to be arc. Lines (4) to (8) form a loop in which
each node u is taken in turn to be the pivot. For each pivot u, in a double loop on
v and w, we consider each pair of nodes. Line (7) tests whether it is shorter to go
from v to w through u than directly, and if so, line (8) lowers dist[v][w] to the
sum of the distances from v to u and from u to w.

✦ Example 9.27. Let us work with the graph of Fig. 9.10 from Section 9.3, using
the numbers 0 through 5 for the nodes; 0 is Laie, 1 is Kaneohe, and so on. Figure
9.51 shows the arc matrix, with label INFTY for any pair of nodes that do not have
a connecting edge. The arc matrix is also the initial value of the dist matrix.

Note that the graph of Fig. 9.10 is undirected, so the matrix is symmetric; that
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Warshall’s Algorithm

Sometimes, we are only interested in telling whether there exists a path between two
nodes, rather than what the minimum distance is. If so, we can use an adjacency
matrix where the type of elements is BOOLEAN (int), with TRUE (1) indicating the
presence of an arc and FALSE (0) its absence. Similarly, the elements of the dist

matrix are of type BOOLEAN, with TRUE indicating the existence of a path and FALSE

indicating that no path between the two nodes in question is known. The only
modification we need to make to Floyd’s algorithm is to replace lines (7) and (8) of
Fig. 9.50 by

(7) if (dist[v][w] == FALSE)

(8) dist[v][w] = dist[v][u] && dist[u][w];

These lines will set dist[v][w] to TRUE, if it is not already TRUE, whenever both
dist[v][u] and dist[u][w] are TRUE.

The resulting algorithm, called Warshall’s algorithm, computes the reflexive
and transitive closure of a graph of n nodes in O(n3) time. That is never better
than the O(nm) time that the method of Section 9.7 takes, where we used depth-first
search from each node. However, Warshall’s algorithm uses an adjacency matrix
rather than lists, and if m is near n2, it may actually be more efficient than multiple
depth-first searches because of the simplicity of Warshall’s algorithm.

is, arc[v][w] = arc[w][v]. If the graph were directed, this symmetry might not
be present, but Floyd’s algorithm takes no advantage of symmetry, and thus works
for directed or undirected graphs.

0 1 2 3 4 5

0 0 24 INFTY INFTY INFTY 28

1 24 0 11 INFTY INFTY INFTY

2 INFTY 11 0 13 INFTY INFTY

3 INFTY INFTY 13 0 20 12

4 INFTY INFTY INFTY 20 0 15

5 28 INFTY INFTY 12 15 0

Fig. 9.51. The arc matrix, which is the initial value of the dist matrix.

The first pivot is u = 0. Since the sum of INFTY and anything is INFTY, the only
pair of nodes v and w, neither of which is u, for which dist[v][u] + dist[u][w] is
less than INFTY is v = 1 and w = 5, or vice versa.12 Since dist[1][5] is INFTY at
this time, we replace dist[1][5] by the sum of dist[1][0] + dist[0][5] which
is 52. Similarly, we replace dist[5][1] by 52. No other distances can be improved
with pivot 0, which leaves the dist matrix of Fig. 9.52.

12 If one of v and w is the u, it is easy to see dist[v][w] can never be improved by going
through u. Thus, we can ignore pairs of the form (v, u) or (u, w) when searching for pairs
whose distance is improved by going through the pivot u.
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0 1 2 3 4 5

0 0 24 INFTY INFTY INFTY 28

1 24 0 11 INFTY INFTY 52

2 INFTY 11 0 13 INFTY INFTY

3 INFTY INFTY 13 0 20 12

4 INFTY INFTY INFTY 20 0 15

5 28 52 INFTY 12 15 0

Fig. 9.52. The matrix dist after using 0 as the pivot.

Now we make node 1 the pivot. In the current dist, shown in Fig. 9.52, node 1
has noninfinite connections to 0 (distance 24), 2 (distance 11), and 5 (distance 52).
We can combine these edges to reduce the distance between nodes 0 and 2 from
INFTY to 24+11 = 35. Also, the distance between 2 and 5 is reduced to 11+52 = 63.
Note that 63 is the distance along the path from Honolulu, to Kaneohe, to Laie, to
Wahiawa, not the shortest way to get to Wahiawa, but the shortest way that only
goes through nodes that have been the pivot so far. Eventually, we shall find the
shorter route through Pearl City. The current dist matrix is shown in Fig. 9.53.

0 1 2 3 4 5

0 0 24 35 INFTY INFTY 28

1 24 0 11 INFTY INFTY 52

2 35 11 0 13 INFTY 63

3 INFTY INFTY 13 0 20 12

4 INFTY INFTY INFTY 20 0 15

5 28 52 63 12 15 0

Fig. 9.53. The matrix dist after using 1 as the pivot.

Now we make 2 be the pivot. Node 2 currently has noninfinite connections to
0 (distance 35), 1 (distance 11), 3 (distance 13), and 5 (distance 63). Among these
nodes, the distance between 0 and 3 can be improved to 35 + 13 = 48, and the
distance between 1 and 3 can be improved to 11+ 13 = 24. Thus, the current dist
matrix is shown in Fig. 9.54.

Next, node 3 becomes the pivot. Figure 9.55 shows the current best distance
between 3 and each of the other nodes.13 By traveling through node 3, we can make
the following improvements in distances.

13 The reader should compare Fig. 9.55 with Fig. 9.49. The latter shows how to use a pivot
node in the general case of a directed graph, where the arcs in and out of the pivot may have
different labels. Fig. 9.55 takes advantage of the symmetry in the example graph, letting us
use edges between node 3 and the other nodes to represent both arcs into node 3, as on the
left of Fig. 9.49, and arcs out of 3, as on the right of Fig. 9.49.
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0 1 2 3 4 5

0 0 24 35 48 INFTY 28

1 24 0 11 24 INFTY 52

2 35 11 0 13 INFTY 63

3 48 24 13 0 20 12

4 INFTY INFTY INFTY 20 0 15

5 28 52 63 12 15 0

Fig. 9.54. The matrix dist after using 2 as the pivot.

1. Between 1 and 5, the distance is reduced to 36.

2. Between 2 and 5, the distance is reduced to 25.

3. Between 0 and 4, the distance is reduced to 68.

4. Between 1 and 4, the distance is reduced to 44.

5. Between 2 and 4, the distance is reduced to 33.

The current dist matrix is shown in Fig. 9.56.

3

0

1

24

5
48

24

1320

12

Fig. 9.55. Current best distances to node 4.

0 1 2 3 4 5

0 0 24 35 48 68 28

1 24 0 11 24 44 36

2 35 11 0 13 33 25

3 48 24 13 0 20 12

4 68 44 33 20 0 15

5 28 36 25 12 15 0

Fig. 9.56. The matrix dist after using 3 as the pivot.
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The use of 4 as a pivot does not improve any distances. When 5 is the pivot,
we can improve the distance between 0 and 3, since in Fig. 9.56,

dist[0][5] + dist[5][3] = 40

which is less than dist[0][3], or 48. In terms of cities, that corresponds to discov-
ering that it is shorter to go from Laie to Pearl City via Wahiawa than via Kaneohe
and Honolulu. Similarly, we can improve the distance between 0 and 4 to 43, from
68. The final dist matrix is shown in Fig. 9.57. ✦

0 1 2 3 4 5

0 0 24 35 40 43 28

1 24 0 11 24 44 36

2 35 11 0 13 33 25

3 40 24 13 0 20 12

4 43 44 33 20 0 15

5 28 36 25 12 15 0

Fig. 9.57. The final dist matrix.

Why Floyd’s Algorithm Works

As we have seen, at any stage during Floyd’s algorithm the distance from node v
to node w will be the distance of the shortest of those paths that go through only
nodes that have been the pivot. Eventually, all nodes get to be the pivot, and
dist[v][w] holds the minimum distance of all possible paths.

We define a k-path from a node v to a node w to be a path from v to w such thatk-path

no intermediate node is numbered higher than k. Note that there is no constraint
that v or w be k or less.

An important special case is when k = −1. Since nodes are assumed numbered
starting at 0, a (−1)-path can have no intermediate nodes at all. It can only be
either an arc or a single node that is both the beginning and end of a path of length
0.

Figure 9.58 suggests what a k-path looks like, although the end points, v and
w, can be above or below k. In that figure, the height of the line represents the
numbers of the nodes along the path from v to w.

✦ Example 9.28. In Fig. 9.10, the path 0, 1, 2, 3 is a 2-path. The intermediate
nodes, 1 and 2, are each 2 or less. This path is also a 3-path, a 4-path, and a
5-path. It is not a 1-path, however, because the intermediate node 2 is greater than
1. Similarly, it is not a 0-path or a (−1)-path. ✦

As we assume nodes are numbered 0 to n − 1, a (−1)-path cannot have any
intermediate nodes at all, and thus must be an arc or a single node. An (n−1)-path
is any path at all, since there can be no intermediate node numbered higher than
n− 1 in any path of a graph with nodes numbered 0 through n− 1. We shall prove
by induction on k the statement
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v

w

nodes numbered
higher than k

nodes numbered
lower than k

Fig. 9.58. A k-path cannot have nodes higher than k, except (possibly) at the ends.

STATEMENT S(k): If labels of arcs are nonnegative, then just before we set u to
k + 1 in the loop of lines (4) to (8) of Fig. 9.50, dist[v][w] is the length of
the shortest k-path from v to w, or INFTY if there is no such path.

BASIS. The basis is k = −1. We set u to 0 just before we execute the body of the
loop for the first time. We have just initialized dist to be arc in lines (1) to (3).
Since the arcs and the paths consisting of a node by itself are the only (−1)-paths,
the basis holds.

INDUCTION. Assume S(k), and consider what happens to dist[v][w] during the
iteration of the loop with u = k + 1. Suppose P is a shortest (k + 1)-path from v
to w. There are two cases, depending on whether P goes through node k + 1.

1. If P is a k-path, that is, P does not actually go through node k + 1, then by
the inductive hypothesis, dist[v][w] already equals the length of P after the
kth iteration. We cannot change dist[u][v] during the round with k + 1 as
pivot, because there are no shorter (k + 1)-paths.

2. If P is a (k + 1)-path, we can assume that P only goes through node k + 1
once, because cycles can never decrease distances (recall we require all labels
to be nonnegative). Thus, P is composed of a k-path Q from v to node k + 1,
followed by a k-path R from node k +1 to w, as suggested in Fig. 9.59. By the
inductive hypothesis, dist[v][k+1] and dist[k+1][w] will be the lengths of
paths Q and R, respectively, after the kth iteration.

v k + 1 w
k-path Q k-path R

Fig. 9.59. A (k + 1)-path P can be broken into two k-paths, Q followed by R.

Let us begin by observing that dist[v][k+1] and dist[k+1][w] cannot be
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changed in the (k +1)st iteration. The reason is that all arc labels are nonnegative,
and so all lengths of paths are nonnegative; thus the test of line (7) in Fig. 9.50
must fail when u (i.e., node k + 1) is one of v or w.

Thus, when we apply the test of line (7) for arbitrary v and w, with u = k +1,
the values of dist[v][k+1] and dist[k+1][w] have not changed since the end of
the kth iteration. That is to say, the test of line (7) compares the length of the
shortest k-path, with the sum of the lengths of the shortest k-paths from v to k +1
and from k + 1 to w. In case (1), where path P does not go through k + 1, the
former will be the shorter, and in case (2), where P does go through k + 1, the
latter will be the sum of the lengths of the paths Q and R in Fig. 9.59, and will be
the shorter.

We conclude that the (k + 1)st iteration sets dist[v][w] to the length of the
shortest (k + 1)-path, for all nodes v and w. That is the statement S(k + 1), and
so we conclude the induction.

To finish our proof, we let k = n − 1. That is, we know that after finishing all
n iterations, dist[v][w] is the minimum distance of any (n − 1)-path from v to
w. But since any path is an (n − 1)-path, we have shown that dist[v][w] is the
minimum distance along any path from v to w.

EXERCISES

9.9.1: Assuming all arcs in Fig. 9.5 (see the exercises for Section 9.2) have label 1,
use Floyd’s algorithm to find the length of the shortest path between each pair of
nodes. Show the distance matrix after pivoting with each node.

9.9.2: Apply Warshall’s algorithm to the graph of Fig. 9.5 to compute its reflexive
and transitive closure. Show the reachability matrix after pivoting with each node.

9.9.3: Use Floyd’s algorithm to find the shortest distances between each pair of
cities in the graph of Michigan in Fig. 9.21 (see the exercises for Section 9.4).

9.9.4: Use Floyd’s algorithm to find the shortest possible time between each of the
hominid species in Fig. 9.48 (see the exercises for Section 9.8).

9.9.5: Sometimes we want to consider only paths of one or more arcs, and exclude
single nodes as paths. How can we modify the initialization of the arc matrix so
that only paths of length 1 or more will be considered when finding the shortest
path from a node to itself?

9.9.6*: Find all the acyclic 2-paths in Fig. 9.10.

9.9.7*: Why does Floyd’s algorithm not work when there are both positive and
negative costs on the arcs?

9.9.8**: Give an algorithm to find the longest acyclic path between two given
nodes.

9.9.8**: Suppose we run Floyd’s algorithm on a graph G. Then, we lower the label
of the arc u → v to 0, to construct the new graph G′. For what pairs of nodes s and
t will dist[s][t] be the same at each round when Floyd’s algorithm is applied to
G and G′?
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✦
✦ ✦

✦
9.10 An Introduction to Graph Theory

Graph theory is the branch of mathematics concerned with properties of graphs.
In the previous sections, we have presented the basic definitions of graph theory,
along with some fundamental algorithms that computer scientists have developed to
calculate key properties of graphs efficiently. We have seen algorithms for computing
shortest paths, spanning trees, and depth-first-search trees. In this section, we shall
present a few more important concepts from graph theory.

Complete Graphs

An undirected graph that has an edge between every pair of distinct nodes is called
a complete graph. The complete graph with n nodes is called Kn. Figure 9.60 shows
the complete graphs K1 through K4.

n1

n1

n2

n1

n2 n3

n1 n2

n3 n4

K1 K2 K3 K4

Fig. 9.60. The first four complete graphs.

The number of edges in Kn is n(n− 1)/2, or
(

n

2

)

. To see why, consider an edge
{u, v} of Kn. For u we can pick any of the n nodes; for v we can pick any of the
remaining n− 1 nodes. The total number of choices is therefore n(n− 1). However,
we count each edge twice that way, once as {u, v} and a second time as {v, u}, so
that we must divide the total number of choices by 2 to get the correct number of
edges.

There is also a notion of a complete directed graph. This graph has an arcComplete

directed graph from every node to every other node, including itself. A complete directed graph
with n nodes has n2 arcs. Figure 9.61 shows the complete directed graph with 3
nodes and 9 arcs.

n1

n2 n3

Fig. 9.61. The complete directed graph with three nodes.
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Planar Graphs

An undirected graph is said to be planar if it is possible to place its nodes on a
plane and then draw its edges as continuous lines so that no two edges cross.

✦ Example 9.29. The graph K4 was drawn in Fig. 9.60 in such a way that its
two diagonal edges crossed. However, K4 is a planar graph, as we can see by the
drawing in Fig. 9.62. There, by redrawing one of the diagonals on the outside, we
avoid having any two edges cross. We say that Fig. 9.62 is a plane presentationPlane

presentation of the graph K4, while the drawing in Fig. 9.60 is a nonplane presentation of K4.
Note that it is permissible to have edges that are not straight lines in a plane
presentation. ✦

n1 n2

n3 n4

Fig. 9.62. A plane presentation of K4.

In Figure 9.63 we see what are in a sense the two simplest nonplanar graphs,
that is, graphs that do not have any plane presentation. One is K5, the completeNonplanar

graph graph with five nodes. The other is sometimes called K3,3; it is formed by taking
two groups of three nodes and connecting each node of one group to each node of
the other group, but not to nodes of the same group. The reader should try to
redraw each of these graphs so that no two edges cross, just to get a feel for why
they are not planar.

n1

n2 n3

n4 n5

n1

n2

n3

n4

n5

n6

K5 K3,3

Fig. 9.63. The two simplest nonplanar graphs.

A famous theorem by Kuratowski states every nonplanar graph contains a
“copy” of at least one of these two graphs. We must be a little careful in interpretingKuratowski’s

theorem the notion of a copy, however, since to see a copy of K5 or K3,3 in an arbitrary
nonplanar graph G, we may have to associate some edges in the graphs of Fig. 9.63
with paths in the graph G.
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Applications of Planarity

Planarity has considerable importance in computer science. For example, many
graphs or similar diagrams need to be presented on a computer screen or on paper.
For clarity, it is desirable to make a plane presentation of the graph, or if the graph
is not planar, to make as few crossings of edges as possible.

The reader may observe that in Chapter 13 we draw some fairly complex dia-
grams of circuits, which are really graphs whose nodes are gates and junction points
of wires, and whose edges are the wires. Since these circuits are not planar in gen-
eral, we had to adopt a convention in which wires were allowed to cross without
connecting, and a dot signals a connection of wires.

A related application concerns the design of integrated circuits. Integrated
circuits, or “chips,” embody logical circuits such as those discussed in Chapter 13.
They do not require that the logical circuit be inscribed in a plane presentation,
but there is a similar limitation that allows us to assign edges to several “levels,”
often three or four levels. On one level, the graph of the circuit must have a plane
presentation; edges are not allowed to cross. However, edges on different levels may
cross.

Graph Coloring

The problem of graph coloring for a graph G is to assign a “color” to each node
so that no two nodes that are connected by an edge are assigned the same color.Chromatic

number We may then ask how many distinct colors are required to color a graph in this
sense. The minimum number of colors needed for a graph G is called the chromatic

number of G, often denoted χ(G). A graph that can be colored with no more than
k colors is called k-colorable.k-colorability

✦ Example 9.30. If a graph is complete, then its chromatic number is equal to
the number of nodes; that is, χ(Kn) = n. In proof, we cannot color two nodes u
and v with the same color, because there is surely an edge between them. Thus,
each node requires its own color. Kn is k-colorable for each k ≥ n, but Kn is not
k-colorable if k < n. Note that we say, for instance, that K4 is 5-colorable, even
though it is impossible to use all five colors on the four-node graph K4. However,
formally a graph is k-colorable if it can be colored with k or fewer colors, not only
if it is colorable with exactly k colors.

As another example, the graph K3,3 shown in Fig. 9.63 has chromatic number
2. For example, we can color the three nodes in the group on the left red and color
the three nodes on the right blue. Then all edges go between a red and a blue node.
K3,3 is an example of a bipartite graph, which is another name for a graph that canBipartite graph

be colored with two colors. All such graphs can have their nodes divided into two
groups such that no edge runs between members of the same group.

As a final example, the chromatic number for the six-node graph of Fig. 9.64
is 4. To see why, note that the node in the center cannot have the same color as
any other node, since it is connected to all. Thus, we reserve a color for it, say, red.
We need at least two other colors for the ring of nodes, since neighbors around the
ring cannot get the same color. However, if we try alternating colors — say, blue
and green — as we did in Fig. 9.64, then we run into a problem that the fifth node
has both blue and green neighbors, and therefore needs a fourth color, yellow, in
our example. ✦
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Fig. 9.64. A graph with chromatic number 4.

Applications of Graph Coloring

Finding a good graph coloring is another problem that has many uses in computer
science. For example, in our introduction to the first chapter, we considered as-
signing courses to time slots so that no pair of courses in the same time slot had a
student taking both courses. The motivation was to schedule final exams so that
no student had to take two exams at the same time. We drew a graph whose
nodes were the courses, with an edge between two courses if they had a student in
common.

The question of how many time slots we need in which to schedule exams can
thus be posed as the question of what is the chromatic number of this graph. All
nodes of the same color can be scheduled at the same time since they have no edges
between any two of them. Conversely, if we have a schedule that does not cause
conflicts for any student, then we can color all the courses scheduled at the same
time with the same color, and thus produce a graph coloring with as many colors
as there are exam periods.

In Chapter 1 we discussed a heuristic based on finding maximal independent
sets to schedule the exams. That is a reasonable heuristic for finding a good coloring
of a graph as well. One might expect that one could try all possible colorings for a
graph as small as the five-node graph in Fig. 1.1, and indeed that is true. However,
the number of possible colorings of a graph grows exponentially with the number of
nodes, and it is not feasible to consider all possible colorings for significantly larger
graphs, in our search for the least possible number of colors.

Cliques

A clique in an undirected graph G is a set of nodes such that there is in G an edgek-clique

between every pair of nodes in the set. A clique of k nodes is called a k-clique. The
size of the largest clique in a graph is called the clique number of that graph.Clique number

✦ Example 9.31. As a simple example, every complete graph Kn is a clique
consisting of all n nodes. In fact, Kn has a k-clique for all k ≤ n, but no k-clique
if k > n.

The graph of Fig. 9.64 has cliques of size three, but no greater. The 3-cliques
are each shown as triangles. There cannot be a 4-clique in this graph, because it
would have to include some of the nodes in the ring. Each ring node is connected
to only three other nodes, so the 4-clique would have to include some node v on the
ring, its neighbors on the ring, and the central node. However, the neighbors of v
on the ring do not have an edge between them, so we do not have a 4-clique. ✦
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As an example application of cliques, suppose we represented conflicts among
courses not as in Fig. 1.1, but rather by putting an edge between two nodes if they
did not have a student enrolled in both courses. Thus, two courses connected by an
edge could have their exams scheduled at the same time. We could then look for
maximal cliques, that is, cliques that were not subsets of larger cliques, and scheduleMaximal clique

the exams for a maximal clique of courses at the same period.

EXERCISES

9.10.1: For the graph of Fig. 9.4,

a) What is the chromatic number?
b) What is the clique number?
c) Give an example of one largest clique.

9.10.2: What are the chromatic numbers of the undirected versions of the graphs
shown in (a) Fig. 9.5 and (b) Fig. 9.26? (Treat arcs as edges.)

9.10.3: Figure 9.5 is not presented in a plane manner. Is the graph planar? That
is, can you redraw it so there are no crossing edges?

9.10.4*: Three quantities associated with an undirected graph are its degree (max-
imum number of neighbors of any node), its chromatic number, and its clique num-
ber. Derive inequalities that must hold between these quantities. Explain why they
must hold.

9.10.5**: Design an algorithm that will take any graph of n nodes, with m the
larger of the number of nodes and edges, and in O(m) time will tell whether the
graph is bipartite (2-colorable).

9.10.6*: We can generalize the graph of Fig. 9.64 to have a central node and k
nodes in a ring, each node connected only to its neighbors around the ring and to
the central node. As a function of k, what is the chromatic number of this graph?

9.10.7*: What can you say about the chromatic number of unordered, unrooted
trees (as discussed in Section 9.5)?

9.10.8**: Let Ki,j be the graph formed by taking a group of i nodes and a group
of j nodes and placing an edge from every member of one group to every member
of the other group. We observed that if i = j = 3, then the resulting graph is not
planar. For what values of i and j is the graph Ki,j planar?

✦
✦ ✦

✦
9.11 Summary of Chapter 9

The table of Fig. 9.65 summarizes the various problems we have addressed in this
chapter, the algorithms for solving them, and the running time of the algorithms.
In this table, n is the number of nodes in the graph and m is the larger of the
number of nodes and the number of arcs/edges. Unless otherwise noted, we assume
graphs are represented by adjacency lists.

In addition, we have introduced the reader to most of the key concepts of graph
theory. These include
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PROBLEM ALGORITHM(S) RUNNING TIME

Minimal spanning tree Kruskal’s O(m log n)

Detecting cycles Depth-first search O(m)

Topological order Depth-first search O(m)

Single-source Depth-first search O(m)
reachability

Connected components Depth-first search O(m)

Transitive closure n depth-first searches O(mn)

Single-source Dijkstra’s with POT implementation O(m log n)
shortest path Dijkstra’s with implementation O(n2)

of Exercise 9.8.4

All-pairs shortest n uses of Dijkstra with O(mn log n)
path POT implementation

n uses of Dijkstra with O(n3)
implementation of Exercise 9.8.4

Floyd’s, with adjacency matrix O(n3)

Fig. 9.65. A summary of graph algorithms.

✦ Paths and shortest paths

✦ Spanning trees

✦ Depth-first search trees and forests

✦ Graph coloring and the chromatic number

✦ Cliques and clique numbers

✦ Planar graphs.

✦
✦ ✦

✦
9.12 Bibliographic Notes for Chapter 9

For additional material on graph algorithms, see Aho, Hopcroft, and Ullman [1974,
1983]. Depth-first search was first used to create efficient graph algorithms by
Hopcroft and Tarjan [1973]. Dijkstra’s algorithm is from Dijkstra [1959], Floyd’s
algorithm from Floyd [1962], Kruskal’s algorithm from Kruskal [1956], and War-
shall’s algorithm from Warshall [1962].

Berge [1962] covers the mathematical theory of graphs. Lawler [1976], Pa-
padimitriou and Steiglitz [1982], and Tarjan [1983] present advanced graph opti-
mization techniques.
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