CS145 L ecture Notes#5
Relational Database Design: FD's& BCNF

M otivation

e Automatic trandlation from E/R or ODL may not produce the best
relational design possible

e Sometimes database designers like to start directly with a relational
design, in which case the design could be really bad

Notation

e R, 5, ... denoterelations

e attrs(R) denotes the set of all attributesin R
e A, B, ... denote attributes

e X,Y, .. denote setsof attributes

Functional Dependencies

A functional dependency (FD) has the form X — Y, where X and Y are
sets of attributesin arelation R
e Formally, X — Y means that whenever two tuplesin R agree on all
the attributes of X', they must also agree on all the attributes of Y
Example: FD’sin St udent (SI D, SS#, name, CI D, grade)

Some FD’s are more interesting than others:
e Trivial FD: X — Y whereY isasubset of X
Example:
e Nontrivial FD: X — Y where Y isnot a subset of X
Example:
e Completely nontrivial FD: X — Y where Y and X do not overlap
Example:
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Once we declare that an FD holds for arelation R, this FD becomes a part
of the relation schema
~» Every instance of R must satisfy this FD
~+» This FD should better make sense in the real world!
A particular instance of R may coincidentally satisfy some FD
~» But this FD may not hold for R in general
Example: nane — SI Din St udent ?

FD’s are closely related to:
e Multiplicity of relationships
Example: Queens, Overlords, Zerglings

e Keys
Example: { SI D, Cl D } isakey of St udent

~» Another definition of key: A set of attributes K isakey for R if
(1) K — attrs(R); i.e., K isasuperkey
(2) No proper subset of K satisfies (1)

Closures of Attribute Sets

Given R, aset of FD’s F that holdsin R, and a set of attributes 7 in R:
e The closure of 7 with respect to F (denoted Z1) is the set of all
attributes that are functionally determined by 7
~» Yet another definition of key: A set of attributes K isakey for R if
(1) Kt = attrs(R); i.e., K isasuperkey
(2) No proper subset of K satisfies (1)
Question: Given R and F, what isthe closure of Z?
e Start with 7
e If X — YisagivenFD and X isalready inside the closure, then also
add Y to the closure
e Repeat until the closure cannot be changed
Example: {SI D, Cl D}* = attrs(St udent )
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Question: Given R and F, what are the keys of R?
e Brute-force approach: for every subset of attrs(R), compute its clo-
sures and seeiif it covers attrs(R)
~» Trick: start with small subsets; if X+ = attrs(R), no need to try any
superset of X
~» Trick: if A does not appear on the right-hand side of any FD, then
every key must contain A
Example: what are the keys of St udent ?

Closures of FD Sets

Given R and aset of FD’s F that holdsin R:
e Theclosureof Fin R (denoted 7 ) isthe set of all FD’sin R that are
logically implied by F
Question: Given R and F,is X — Y implied by F?
(Or,given Rand F,is X — Y inF*?)
e Method 1: compute X+ and check if it contains Y’
e Method 2: try to prove X — Y using Armstrong’s Axioms:
— Reflexivity: if Y C X, then X — Y
— Augmentation: if X — Y, then XZ — Y Z for any set 7
— Trangitivity: if X - YandY — Z,then X — 7
or using other rules that follow from the axioms:
— Splitting: if X - YZ,thenX - Y and X — Z
— Combining: if X - YadX — Z,thenX — YZ
Example: provethat SS#, Cl D — nane, gr ade
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Basis
When specifying FD’sfor arelation R:
e Obviously we do not want to list all FD’sthat holdin R
e Instead, it sufficesto specify aset of FD’s from which all other FD’s
will follow logicaly; this set of FD’sisabasisfor the FD’sin R
e Infact, we should specify aminimal basis
— Every FD inthe minimal basis is necessary; it cannot be proven
using other FD’s in the minimal basis
— Sounds tough, but in practice the minimality comes naturally
— There might be multiple minimal bases
Example: what isaminimal basisfor the FD’sin St udent ?

BCNF (Boyce-Codd Normal Form)

A relation R isin BCNF if:

e For every nontrivial FD X — Y in R, X isasuperkey
In other words:

e All FD’sfollow from the fact “key — everything”
Intuition:

e When an FD is not of the form “superkey — other attributes’, then
there is typically an attempt to cram too much into one relation; this
relation needs to be decomposed

Example: SI D — SS# isaBCNF violation
~+ the SI DISS# association is repeated multiple times

BCNF Decomposition Algorithm

e Start with the relation in question
e Repeat until no BCNF violation can be found in any of your relations:
— Find aBCNF violation X — Y in R
— Decompose R into two relations:
o Onewith X UY asitsattributes
(i.e., everything in the FD)
o Onewith X U (attrs(R) — X — YY) asits attributes
(i.e., left side of the FD plus everything not in the FD)
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Example:

St udent s( SI D, SS#, nane, Cl D, gr ade)
S| D— SS#

SS# — nane

SS# — Sl D

SI D,Cl D— gr ade

e Ingenera, you may need to decompose several times
e To check for BCNF violationsin R, we need to know:
— All keysof R
— A basisfor the FD’sthat hold in R
— Do we need to check any FD that is not in the basis but follows
from the basis?
~+ No. If thereis no BCNF violation in a basis, then thereis no
BCNF violation at al (why?)
o After thefirst iteration, the algorithm requires FD’s to be “ projected”
onto smaller relations
~» Be careful when deriving an FD basis for a smaller relation: don’'t
miss any FD that follows from the FD’s in the original relation (see
textbook for an exhaustive algorithm; can usually do it with common
sense though)
Example: SI D — nane
e An optimization: instead of decomposing on any BCNF violation
X — Y, decomposeon X — X
~» This strategy avoids excessive fragmentation
Example: decompose on SI D — SS#, nane instead of SI D — SS#

BCNF = Good Design?

e BCNF removes all redundancies caused by FD’s

e BCNF can decompose relations “too much” and complicate queries
and constraint enforcement
Example: if we decompose St udent on SI D — SS#, it will be
difficult to enforce SS# — nane*

e BCNF does not remove all redundanciesin general
Example: St udent (SI D, cl ub, ClI D) hasnoFD’s, but still re-
dundancy

*Actually this example is not good: it turns out that we can enforce SS# — nane
by enforcing SS# — Sl Dand SI D — name independently in two different relations.
For an example that makes more sense, stay tuned for the next lecture on the theory of
decomposition.
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