
CS145 Lecture Notes #3

Database Design Using ODL

ODL Basics

ODL Object Definition Language
Can be used like E/R as a design language
Can also be direct input to OODBMS
Specified by ODMG (Object Database Management Group)
Comes with a query language called OQL (Object Query Language):
more on OQL in the second half of the course

ODL Class Declarations

Class declarations: schema (defines types of objects and their relationships)
Objects of classes: data
A class declaration includes:

attribute declarations:
attribute type name;
relationship declarations:
relationship rangeType name

inverse inverseRelationshipName;
other declarations: method, key, inheritance, etc.

Example: Student and OracleAccount Example data:
interface Student

attribute integer SID;

attribute string name;

attribute string address;

relationship OracleAccount account

inverse OracleAccount::owner;

interface OracleAccount

attribute string login;

attribute integer quota;

relationship Student owner

inverse Student::account;

Jun Yang 1 CS145 Spring 1999



All relationships are binary!
Relationships have inverses
Things from another class are indicated by prefixing
otherClassName::
Relationships not necessarily implemented by pointers:
design is logical, not physical

ODL Type System

Allowable attribute types:

(1) Basic types: integer, float, string, Enum
Example: student type

(2) Struct built from (1)
Example: address

(3) Set, Bag, List, Array of (1) or (2)
Example: set of addresses

Allowable relationship types:

(1) Interface types

(2) Set, Bag, List, Array of (1)
Example: students take courses

Multiplicity of Relationships

If class C is the “many” in a relationship:
the relationship to C has type Set<C>

If class C is the “one” in a relationship:
the relationship to C has type C

Many-many: students take courses
Many-one: courses are taught by instructors

One-one: students and their oracle accounts

Jun Yang 2 CS145 Spring 1999



Multiway Relationships in ODL?

No such things; let’s hack!
Remember the E/R trick of using a connecting entity set and n binary rela-
tionship sets to model a n-ary relationship set? Essentially the same trick—
introduce a connecting class
Example: students, courses, TA’s enrollment

Keys in ODL

Like E/R:
A key is set of attributes whose values uniquely identify an object in
a class

Unlike E/R:
Keys are completely unnecessary in ODL because “object identity”
(OID) serves to distinguish objects
Some classes don’t even have attributes, let alone keys (e.g., a con-
necting class)
Multiple keys can be specified

Syntax:
interface Student (key SID) ...

interface Student (key (name, address)) ...

interface Student (key SID, (name, address)) ...

Subclasses in ODL

Follow name of subclass by colon and its superclass:
interface GradStudent:Student ...

GradStudent objects acquire all attributes and relationships of the Stu-
dent class

Jun Yang 3 CS145 Spring 1999



Difference in subclass viewpoints:
In ODL, an object is in exactly one class

it inherits properties of its superclass(es)
In E/R, an entity has “representation” in all classes to which it logi-
cally belongs

its properties are the union of the properties of these classes
This distinction matters later, when we convert ODL and E/R to rela-
tions

Example:

Jun Yang 4 CS145 Spring 1999


