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On-Line Application Processing

Warehousing

Data Cubes

Data Mining
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Overview

�Traditional database systems are tuned 
to many, small, simple queries.

�Some new applications use fewer, more 
time-consuming, analytic queries.

�New architectures have been developed 
to handle analytic queries efficiently.
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The Data Warehouse

�The most common form of data 
integration.

� Copy sources into a single DB (warehouse) 
and try to keep it up-to-date.

� Usual method: periodic reconstruction of 
the warehouse, perhaps overnight.

� Frequently essential for analytic queries.
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OLTP

�Most database operations involve On-
Line Transaction Processing (OTLP).

� Short, simple, frequent queries and/or 
modifications, each involving a small 
number of tuples.

� Examples: Answering queries from a Web 
interface, sales at cash registers, selling 
airline tickets.
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OLAP

�On-Line Application Processing (OLAP, 
or “analytic”) queries are, typically:

� Few, but complex queries --- may run for 
hours.

� Queries do not depend on having an 
absolutely up-to-date database.
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OLAP Examples

1. Amazon analyzes purchases by its 
customers to come up with an 
individual screen with products of 
likely interest to the customer.

2. Analysts at Wal-Mart look for items 
with increasing sales in some region.

� Use empty trucks to move merchandise 
between stores.
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Common Architecture

�Databases at store branches handle 
OLTP.

�Local store databases copied to a 
central warehouse overnight.

�Analysts use the warehouse for OLAP.
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Star Schemas

� A star schema is a common organization 
for data at a warehouse.  It consists of:

1. Fact table : a very large accumulation of 
facts such as sales.

� Often “insert-only.”

2. Dimension tables : smaller, generally static 
information about the entities involved in 
the facts.
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Example: Star Schema

�Suppose we want to record in a 
warehouse information about every 
beer sale: the bar, the brand of beer, 
the drinker who bought the beer, the 
day, the time, and the price charged.

�The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)
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Example -- Continued

�The dimension tables include 
information about the bar, beer, and 
drinker “dimensions”:

Bars(bar, addr, license)

Beers(beer, manf)

Drinkers(drinker, addr, phone)
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Visualization – Star Schema

Dimension Table (Beers) Dimension Table (etc.)

Dimension Table (Drinkers)Dimension Table (Bars)

Fact Table - Sales

Dimension Attrs. Dependent Attrs.
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Dimensions and Dependent 
Attributes

� Two classes of fact-table attributes:

1. Dimension attributes : the key of a 
dimension table.

2. Dependent attributes : a value 
determined by the dimension attributes 
of the tuple.
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Example: Dependent Attribute

�price is the dependent attribute of our 
example Sales relation.

�It is determined by the combination of 
dimension attributes: bar, beer, drinker, 
and the time (combination of day and 
time-of-day attributes).
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Approaches to Building 
Warehouses

1. ROLAP = “relational OLAP”: Tune a 
relational DBMS to support star 
schemas.

2. MOLAP = “multidimensional OLAP”: 
Use a specialized DBMS with a model 
such as the “data cube.”
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MOLAP and Data Cubes

�Keys of dimension tables are the 
dimensions of a hypercube.

� Example: for the Sales data, the four 
dimensions are bar, beer, drinker, and 
time.

�Dependent attributes (e.g., price) 
appear at the points of the cube.



16

Visualization -- Data Cubes 
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Marginals

�The data cube also includes 
aggregation (typically SUM) along the 
margins of the cube.

�The marginals include aggregations 
over one dimension, two dimensions,…
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Visualization --- Data Cube w/Aggregation
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Example: Marginals

�Our 4-dimensional Sales cube includes 
the sum of price over each bar, each 
beer, each drinker, and each time unit 
(perhaps days).

�It would also have the sum of price
over all bar-beer pairs, all bar-drinker-
day triples,…
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Structure of the Cube

�Think of each dimension as having an 
additional value *.

�A point with one or more *’s in its 
coordinates aggregates over the 
dimensions with the *’s.

�Example: Sales(”Joe’s Bar”, ”Bud”, *, *) 
holds the sum, over all drinkers and all 
time, of the Bud consumed at Joe’s. 
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Drill-Down

�Drill-down = “de-aggregate” = break 
an aggregate into its constituents.

�Example: having determined that Joe’s 
Bar sells very few Anheuser-Busch 
beers, break down his sales by 
particular A.-B. beer.
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Roll-Up

�Roll-up = aggregate along one or more 
dimensions.

�Example: given a table of how much 
Bud each drinker consumes at each bar, 
roll it up into a table giving total 
amount of Bud consumed by each 
drinker. 



23

Example: Roll Up and Drill Down

403138Blue 
Chalk

423650Nut-

House

303345Joe’s

Bar

MaryBobJim

$ of Anheuser-Busch by drinker/bar

112100133

MaryBobJim

$ of A-B / drinker

Roll up
by Bar

354048Bud 
Light

373145M’lob

402940Bud

MaryBobJim

$ of A-B Beers / drinker

Drill down
by Beer
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Data Mining

� Data mining is a popular term for 
queries that summarize big data sets 
in useful ways.

� Examples:

1. Clustering all Web pages by topic.

2. Finding characteristics of fraudulent 
credit-card use.
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Course Plug

�Winter 2007-8: Anand Rajaraman and 
Jeff Ullman are offering CS345A Data 
Mining.

� MW 4:15-5:30, Herrin, T185.
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Market-Basket Data

�An important form of mining from 
relational data involves market baskets
= sets of “items” that are purchased 
together as a customer leaves a store.

�Summary of basket data is frequent 
itemsets = sets of items that often 
appear together in baskets.
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Example: Market Baskets

� If people often buy hamburger and 
ketchup together, the store can:

1. Put hamburger and ketchup near each 
other and put potato chips between.

2. Run a sale on hamburger and raise the 
price of ketchup.
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Finding Frequent Pairs

�The simplest case is when we only 
want to find “frequent pairs” of items.

�Assume data is in a relation 
Baskets(basket, item).

�The support threshold s is the 
minimum number of baskets in which a 
pair appears before we are interested.
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Frequent Pairs in SQL

SELECT b1.item, b2.item

FROM Baskets b1, Baskets b2

WHERE b1.basket = b2.basket

AND b1.item < b2.item

GROUP BY b1.item, b2.item

HAVING COUNT(*) >= s;

Look for two
Basket tuples
with the same
basket and
different items.
First item must
precede second,
so we don’t
count the same
pair twice.

Create a group for
each pair of items
that appears in at
least one basket.

Throw away pairs of items
that do not appear at least
s times.
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A-Priori Trick – (1)

�Straightforward implementation 
involves a join of a huge Baskets 
relation with itself.

�The a-priori algorithm speeds the 
query by recognizing that a pair of 
items {i, j } cannot have support s
unless both {i } and {j } do.



31

A-Priori Trick – (2)

�Use a materialized view to hold only 
information about frequent items.

INSERT INTO Baskets1(basket, item)

SELECT * FROM Baskets

WHERE item IN (

SELECT item FROM Baskets

GROUP BY item

HAVING COUNT(*) >= s

);

Items that
appear in at
least s baskets.
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A-Priori Algorithm

1. Materialize the view Baskets1.

2. Run the obvious query, but on 
Baskets1 instead of Baskets.

� Computing Baskets1 is cheap, since it 
doesn’t involve a join.

� Baskets1 probably has many fewer 
tuples than Baskets.
� Running time shrinks with the square of 

the number of tuples involved in the join.
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Example: A-Priori

� Suppose:

1. A supermarket sells 10,000 items.

2. The average basket has 10 items.

3. The support threshold is 1% of the baskets.

� At most 1/10 of the items can be 
frequent.

� Probably, the minority of items in one 
basket are frequent -> factor 4 speedup.


