
1

On-Line Application Processing

Warehousing

Data Cubes

Data Mining

2

Overview

�Traditional database systems are tuned
to many, small, simple queries.

�Some new applications use fewer, more
time-consuming, analytic queries.

�New architectures have been developed
to handle analytic queries efficiently.

3

The Data Warehouse

�The most common form of data
integration.

� Copy sources into a single DB (warehouse)
and try to keep it up-to-date.

� Usual method: periodic reconstruction of
the warehouse, perhaps overnight.

� Frequently essential for analytic queries.

4

OLTP

�Most database operations involve On-
Line Transaction Processing (OTLP).

� Short, simple, frequent queries and/or
modifications, each involving a small
number of tuples.

� Examples: Answering queries from a Web
interface, sales at cash registers, selling
airline tickets.

5

OLAP

�On-Line Application Processing (OLAP,
or “analytic”) queries are, typically:

� Few, but complex queries --- may run for
hours.

� Queries do not depend on having an
absolutely up-to-date database.

6

OLAP Examples

1. Amazon analyzes purchases by its
customers to come up with an
individual screen with products of
likely interest to the customer.

2. Analysts at Wal-Mart look for items
with increasing sales in some region.

� Use empty trucks to move merchandise
between stores.

7

Common Architecture

�Databases at store branches handle
OLTP.

�Local store databases copied to a
central warehouse overnight.

�Analysts use the warehouse for OLAP.

8

Star Schemas

� A star schema is a common organization
for data at a warehouse. It consists of:

1. Fact table : a very large accumulation of
facts such as sales.

� Often “insert-only.”

2. Dimension tables : smaller, generally static
information about the entities involved in
the facts.

9

Example: Star Schema

�Suppose we want to record in a
warehouse information about every
beer sale: the bar, the brand of beer,
the drinker who bought the beer, the
day, the time, and the price charged.

�The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)

10

Example -- Continued

�The dimension tables include
information about the bar, beer, and
drinker “dimensions”:

Bars(bar, addr, license)

Beers(beer, manf)

Drinkers(drinker, addr, phone)

11

Visualization – Star Schema

Dimension Table (Beers) Dimension Table (etc.)

Dimension Table (Drinkers)Dimension Table (Bars)

Fact Table - Sales

Dimension Attrs. Dependent Attrs.

12

Dimensions and Dependent
Attributes

� Two classes of fact-table attributes:

1. Dimension attributes : the key of a
dimension table.

2. Dependent attributes : a value
determined by the dimension attributes
of the tuple.

13

Example: Dependent Attribute

�price is the dependent attribute of our
example Sales relation.

�It is determined by the combination of
dimension attributes: bar, beer, drinker,
and the time (combination of day and
time-of-day attributes).

14

Approaches to Building
Warehouses

1. ROLAP = “relational OLAP”: Tune a
relational DBMS to support star
schemas.

2. MOLAP = “multidimensional OLAP”:
Use a specialized DBMS with a model
such as the “data cube.”

15

MOLAP and Data Cubes

�Keys of dimension tables are the
dimensions of a hypercube.

� Example: for the Sales data, the four
dimensions are bar, beer, drinker, and
time.

�Dependent attributes (e.g., price)
appear at the points of the cube.

16

Visualization -- Data Cubes

price

bar

beer

drinker

17

Marginals

�The data cube also includes
aggregation (typically SUM) along the
margins of the cube.

�The marginals include aggregations
over one dimension, two dimensions,…

18

Visualization --- Data Cube w/Aggregation

price

bar

beer

drinker
SU

M
 o

ve
r

al
l D

rin
ke

rs

19

Example: Marginals

�Our 4-dimensional Sales cube includes
the sum of price over each bar, each
beer, each drinker, and each time unit
(perhaps days).

�It would also have the sum of price
over all bar-beer pairs, all bar-drinker-
day triples,…

20

Structure of the Cube

�Think of each dimension as having an
additional value *.

�A point with one or more *’s in its
coordinates aggregates over the
dimensions with the *’s.

�Example: Sales(”Joe’s Bar”, ”Bud”, *, *)
holds the sum, over all drinkers and all
time, of the Bud consumed at Joe’s.

21

Drill-Down

�Drill-down = “de-aggregate” = break
an aggregate into its constituents.

�Example: having determined that Joe’s
Bar sells very few Anheuser-Busch
beers, break down his sales by
particular A.-B. beer.

22

Roll-Up

�Roll-up = aggregate along one or more
dimensions.

�Example: given a table of how much
Bud each drinker consumes at each bar,
roll it up into a table giving total
amount of Bud consumed by each
drinker.

23

Example: Roll Up and Drill Down

403138Blue
Chalk

423650Nut-

House

303345Joe’s

Bar

MaryBobJim

$ of Anheuser-Busch by drinker/bar

112100133

MaryBobJim

$ of A-B / drinker

Roll up
by Bar

354048Bud
Light

373145M’lob

402940Bud

MaryBobJim

$ of A-B Beers / drinker

Drill down
by Beer

24

Data Mining

� Data mining is a popular term for
queries that summarize big data sets
in useful ways.

� Examples:

1. Clustering all Web pages by topic.

2. Finding characteristics of fraudulent
credit-card use.

25

Course Plug

�Winter 2007-8: Anand Rajaraman and
Jeff Ullman are offering CS345A Data
Mining.

� MW 4:15-5:30, Herrin, T185.

26

Market-Basket Data

�An important form of mining from
relational data involves market baskets
= sets of “items” that are purchased
together as a customer leaves a store.

�Summary of basket data is frequent
itemsets = sets of items that often
appear together in baskets.

27

Example: Market Baskets

� If people often buy hamburger and
ketchup together, the store can:

1. Put hamburger and ketchup near each
other and put potato chips between.

2. Run a sale on hamburger and raise the
price of ketchup.

28

Finding Frequent Pairs

�The simplest case is when we only
want to find “frequent pairs” of items.

�Assume data is in a relation
Baskets(basket, item).

�The support threshold s is the
minimum number of baskets in which a
pair appears before we are interested.

29

Frequent Pairs in SQL

SELECT b1.item, b2.item

FROM Baskets b1, Baskets b2

WHERE b1.basket = b2.basket

AND b1.item < b2.item

GROUP BY b1.item, b2.item

HAVING COUNT(*) >= s;

Look for two
Basket tuples
with the same
basket and
different items.
First item must
precede second,
so we don’t
count the same
pair twice.

Create a group for
each pair of items
that appears in at
least one basket.

Throw away pairs of items
that do not appear at least
s times.

30

A-Priori Trick – (1)

�Straightforward implementation
involves a join of a huge Baskets
relation with itself.

�The a-priori algorithm speeds the
query by recognizing that a pair of
items {i, j } cannot have support s
unless both {i } and {j } do.

31

A-Priori Trick – (2)

�Use a materialized view to hold only
information about frequent items.

INSERT INTO Baskets1(basket, item)

SELECT * FROM Baskets

WHERE item IN (

SELECT item FROM Baskets

GROUP BY item

HAVING COUNT(*) >= s

);

Items that
appear in at
least s baskets.

32

A-Priori Algorithm

1. Materialize the view Baskets1.

2. Run the obvious query, but on
Baskets1 instead of Baskets.

� Computing Baskets1 is cheap, since it
doesn’t involve a join.

� Baskets1 probably has many fewer
tuples than Baskets.
� Running time shrinks with the square of

the number of tuples involved in the join.

33

Example: A-Priori

� Suppose:

1. A supermarket sells 10,000 items.

2. The average basket has 10 items.

3. The support threshold is 1% of the baskets.

� At most 1/10 of the items can be
frequent.

� Probably, the minority of items in one
basket are frequent -> factor 4 speedup.

