More SQL

Relations as Bags
Grouping and Aggregation
Database Modification

Union, Intersection, and Difference

@ Union, intersection, and difference of
relations are expressed by the following
forms, each involving subqueries:

+ (subquery) UNION (subquery)
+ (subquery) INTERSECT (subquery)
* (subquery) EXCEPT (subquery)

Example °

€ From relations Likes(drinker, beer),
Sells(bar, beer, price) and
Frequents(drinker, bar), find the
drinkers and beers such that:
1. The drinker likes the beer, and

2. The drinker frequents at least one bar that
sells the beer.

Solution
The drinker frequents
(SELECT * FROM Likes) ber
INTERSECT
(SELECT drinker, beer
FROM Sells, Frequents %

WHERE Frequents.bar = Sells.bar
)i

Bag Semantics °

@ Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics.

* That is, duplicates are eliminated as the
operation is applied.

Motivation: Efficiency °

@ When doing projection in relational
algebra, it is easier to avoid eliminating
duplicates.

+ Just work tuple-at-a-time.

When doing intersection or difference,
it is most efficient to sort the relations
first.

+ At that point you may as well eliminate the
duplicates anyway.

6

Controlling Duplicate Elimination

@ Force the result to be a set by
SELECT DISTINCT . . .

@ Force the result to be a bag (i.e., don't

eliminate duplicates) by ALL, as in
... UNION ALL ...

Example: DISTINCT -

@ From Sells(bar, beer, price), find all the
different prices charged for beers:
SELECT DISTINCT price
FROM Sells;
@ Notice that without DISTINCT, each

price would be listed as many times as
there were bar/beer pairs at that price.

Example: ALL °

@ Using relations Frequents(drinker, bar) and
Likes(drinker, beer):
(SELECT drinker FROM Frequents)
EXCEPT ALL
(SELECT drinker FROM Likes);
#® Lists drinkers who frequent more bars than

they like beers, and does so as many times
as the difference of those counts.

Join Expressions °

@ SQL provides a number of expression
forms that act like varieties of join in
relational algebra.

+ But using bag semantics, not set
semantics.

@ These expressions can be stand-alone
queries or used in place of relations in a
FROM clause.

Products and Natural Joins °

@ Natural join is obtained by:
R NATURAL JOIN S;
@ Product is obtained by:
R CROSS JOIN S;
@®Example:
Likes NATURAL JOIN Serves;

@ Relations can be parenthesized subexpressions,
as well.

Theta Join @

@R JOIN S ON <condition> is a theta-join, using
<condition> for selection.

@ Example: using Drinkers(name, addr) and
Frequents(drinker, bar):
Drinkers JOIN Frequents ON
name = drinker;

gives us all (d, a, d, b) quadruples such that
drinker d lives at address a and frequents bar b.

12

Outerjoins °

€ R OUTER JOIN S is the core of an
outerjoin expression. It is modified by:
1. Optional NATURAL in front of OUTER.
2. Optional ON <condition> after JOIN.
3. Optional LEFT, RIGHT, or FULL before
OUTER.
@ LEFT = pad dangling tuples of R only.
@ RIGHT = pad dangling tuples of S only.
@ FULL = pad both; this choice is the default.

Aggregations °

4 SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column.

@ Also, COUNT(*) counts the number of
tuples.

Example: Aggregation °

@ From Sells(bar, beer, price), find the
average price of Bud:
SELECT AVG(price)
FROM Sells
WHERE beer = 'Bud’;

Eliminating Duplicates in an
Aggregation -

@ DISTINCT inside an aggregation causes
duplicates to be eliminated before the
aggregation.

@®Example: find the number of different prices
charged for Bud:

SELECT COUNT(DISTINCT price)
FROM Sells
WHERE beer = 'Bud’;

NULL’s Ignored in Aggregation °

@ NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column.

@ But if there are no non-NULL values in
a column, then the result of the
aggregation is NULL.

Example: Effect of NULL's

SELECT count(*) The number of bars
FROM Sells / that sell Bud.

WHERE beer = ‘Bud’; =

SELECT count(price) ;1het nulrlnge(rjoftbars
FROM Sells L e
WHERE beer = ‘Bud’; 2

Grouping ©

€ We may follow a SELECT-FROM-
WHERE expression by GROUP BY and a
list of attributes.

@ The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group.

Example: Grouping °

@ From Sells(bar, beer, price), find the
average price for each beer:

SELECT beer, AVG(price)
FROM Sells
GROUP BY beer;

Example: Grouping °

@ From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Bud at the bars they
frequent:

)) Compute
SELECT drinker, AVG(price) drinker-bar-
FROM Frequents, Sells b
WHERE beer = ‘Bud” AND then group
by drinker.
Frequents.bar = Sells.bar
GROUP BY drinker;)

Restriction on SELECT Lists
With Aggregation -

@ If any aggregation is used, then each
element of the SELECT list must be
either:

1. Aggregated, or
2. An attribute on the GROUP BY list.

Illegal Query Example °

© You might think you could find the bar
that sells Bud the cheapest by:

SELECT bar, MIN(price)
FROM Sells
WHERE beer = "Bud’;

@ But this query is illegal in SQL.

+ Why? Note bar is neither aggregated nor
on the GROUP BY list.

HAVING Clauses ®

@ HAVING <condition> may follow a
GROUP BY clause.

@ If so, the condition applies to each

group, and groups not satisfying the
condition are eliminated.

Requirements on HAVING
Conditions °

€ These conditions may refer to any
relation or tuple-variable in the FROM
clause.

€ They may refer to attributes of those
relations, as long as the attribute makes
sense within a group; i.e., it is either:
1. A grouping attribute, or
2. Aggregated.

Example: HAVING -

@ From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Pete's.

Solution °

Beer groups with at least

SELECT beer, AVG(pI’iCG) 3 non-NULL bars and also

beer groups where the

FROM Sells manufacturer is Pete’s.
GROUP BY beer g ¢
HAVING COUNT(bar) >= 3 OR
beer IN|(SELECT name fBac::ethrerga;;-
FROM Beers 1 Petes.

WHERE manf = ‘Pete”s’) 2

Database Modifications ®

€ A modification command does not
return a result as a query does, but it
changes the database in some way.
@ There are three kinds of modifications:
1. Insert a tuple or tuples.
2. Delete a tuple or tuples.

3. Update the value(s) of an existing tuple
or tuples.

Insertion -

@ To insert a single tuple:
INSERT INTO <relation>
VALUES (<list of values>);

@®Example: add to Likes(drinker, beer)
the fact that Sally likes Bud.

INSERT INTO Likes
VALUES('Sally’, 'Bud’);

Specifying Attributes in INSERT

€ We may add to the relation name a list of
attributes.

¥ There are two reasons to do so:

1. We forget the standard order of attributes for
the relation.

2. We don't have values for all attributes, and
we want the system to fill in missing
components with NULL or a default value.

Example: Specifying Attributes °

@ Another way to add the fact that Sally
likes Bud to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)
VALUES('Bud’, 'Sally’);

Inserting Many Tuples °

€@ We may insert the entire result of a
query into a relation, using the form:

INSERT INTO <relation>
(<subquery>);

Example: Insert a Subquery °

@ Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Sally’s “potential buddies,” i.e.,
those drinkers who frequent at least
one bar that Sally also frequents.

Th_e other ’ Pairs of Drinker
drinker Sol ution @ tupleswherethe
) first is for Sally,
the second is for
. someone else,
INSERT, INTO PotBuddies Rl B e oh

the same.

(SELECT d2.drinker|
FROM Frequents d1, Frequents d2
WHERE d1.drinker = ‘Sally’ AND
d2.drinker <> 'Sally” AND
dl.bar = d2.bar

)

Deletion °

@ To delete tuples satisfying a condition
from some relation:

DELETE FROM <relation>
WHERE <condition>;

Example: Deletion °

@ Delete from Likes(drinker, beer) the
fact that Sally likes Bud:
DELETE FROM Likes
WHERE drinker = 'Sally’ AND
beer = '‘Bud’;

Example: Delete all Tuples =

@ Make the relation Likes empty:

DELETE FROM Likes;

¥ Note no WHERE clause needed.

Example: Delete Many Tuples °

@ Delete from Beers(name, manf) all

beers for which there is another beer by

the same manufacturer. z .

eers with the same

DELETE FROM Beers b ?3#;?;:?;;2‘1
WHERE EXISTS (/ o
SELECT name FROM Beers | wmronen
WHERE manf = b.manf AND

name <> b.name);

L)

Semantics of Deletion --1 °

@ Suppose Anheuser-Busch makes only
Bud and Bud Lite.

@ Suppose we come to the tuple 6 for
Bud first.

@ The subquery is nonempty, because of
the Bud Lite tuple, so we delete Bud.

¢ Now, When b is the tuple for Bud Lite,
do we delete that tuple too?

39

Semantics of Deletion -- 2 °

@ The answer is that we do delete Bud
Lite as well.

@ The reason is that deletion proceeds
in two stages:

1. Mark all tuples for which the WHERE
condition is satisfied in the original
relation.

2. Delete the marked tuples.

Updates °

@ To change certain attributes in certain
tuples of a relation:

UPDATE <relation>
SET <list of attribute assignments>
WHERE <condition on tuples>;

41

Example: Update °

@ Change drinker Fred’s phone number to
555-1212:

UPDATE Drinkers
SET phone ='555 -1212’
WHERE name = 'Fred’;

Example: Update Several Tuples

()
@ Make $4 the maximum price for beer:
UPDATE Sells
SET price = 4.00
WHERE price > 4.00;

43

