Introduction to SQL

Select-From-Where Statements
Meaning of queries
Subqueries

Why SQL? -

#SQL is a very-high-level language, in
which the programmer is able to avoid
specifying a lot of data-manipulation
details that would be necessary in
languages like C++.

@ What makes SQL viable is that its

queries are “optimized” quite well,
yielding efficient query executions.

S

Select-From-Where Statements

@ The principal form of a query is:

SELECT desired attributes

FROM one or more tables

WHERE condition about tuples of
the tables

Our Running Example ©

@ All our SQL queries will be based on the
following database schema.
+ Underline indicates key attributes.

Beers(name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Example °

@ Using Beers(name, manf), what beers are
made by Anheuser-Busch?

SELECT name
FROM Beers
WHEREmanf ='Anheuser - Busch’;

L)

Result of Query -

name
Bud

Bud Lite
Michelob

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Anheuser-Busch, such as Bud.

6

Meaning of Single-Relation Query

@ Begin with the relation in the FROM
clause.

@ Apply the selection indicated by the
WHERE clause.

@ Apply the extended projection indicated
by the SELECT clause.

Operational Semantics

@ To implement this algorithm think of a
tuple variable ranging over each tuple
of the relation mentioned in FROM.

@ Check if the “current” tuple satisfies the
WHERE clause.

@ If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple.

* In SELECT clauses °

@ When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation.”

@ Example using Beers(name, manf):
SELECT *
FROM Beers
WHEREmanf =’Anheuser - Busch’;

)

Result of Query: °

name manf

Bud Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

Now, the result has each of the attributes
of Beers.

Renaming Attributes °

@ If you want the result to have different
attribute names, use “"AS <new name>" to
rename an attribute.

@ Example based on Beers(name, manf):
SELECT name AS beer, manf
FROM Beers
WHEREmanf =’Anheuser - Busch’

11

Result of Query: °

beer manf

Bud Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

Expressions in SELECT Clauses °

@ Any expression that makes sense can
appear as an element of a SELECT clause.

®Example: from Sells(bar, beer, price):
SELECT bar, beer,
price * 120 AS pricelnYen
FROM Sells;

Result of Query -

bar beer priceInYen
Joe's Bud 300
Sue’s Miller 360

Another Example: Constant
Expressions e
@ From Likes(drinker, beer):

SELECT drinker,

'likes Bud’ AS whoLikesBud
FROM Likes
WHERE beer = 'Bud’;

Result of Query °

drinker | wholikesBud
Sally likes Bud
Fred likes Bud

Complex Conditions in WHERE
Clause -

@ From Sells(bar, beer, price), find the price
Joe’s Bar charges for Bud:

SELECT price

FROM Sells

WHERE bar = 'Joe’”s Bar’ AND
beer = 'Bud’;

Important Points

@ Two single quotes inside a string
represent the single-quote (apostrophe).

Conditions in the WHERE clause can use
AND, OR, NOT, and parentheses in the
usual way boolean conditions are built.

@ SQL is case-insensitive. In general,
upper and lower case characters are the
same, except inside quoted strings.

18

Patterns °

@ WHERE clauses can have conditions in
which a string is compared with a
pattern, to see if it matches.

® General form:
<Attribute> LIKE <pattern> or
<Attribute> NOT LIKE <pattern>

@ Pattern is a quoted string with % =
“any string”; _ = “any character.”

Example °

@ From Drinkers(name, addr, phone) find
the drinkers with exchange 555:

SELECT name
FROM Drinkers
WHERE phone LIKE ‘%555 -

NULL Values °

@ Tuples in SQL relations can have NULL
as a value for one or more components.

€ Meaning depends on context. Two
common cases:

* Missing value : e.g., we know Joe’s Bar has
some address, but we don't know what it is.

*» Inapplicable : e.g., the value of attribute
spouse for an unmarried person.

Comparing NULL's to Values °

@ The logic of conditions in SQL is really 3-
valued logic: TRUE, FALSE, UNKNOWN.

® When any value is compared with NULL,
the truth value is UNKNOWN.

€ But a query only produces a tuple in the
answer if its truth value for the WHERE
clause is TRUE (not FALSE or UNKNOWN).

22

Three-Valued Logic °

@ To understand how AND, OR, and NOT
work in 3-valued logic, think of TRUE =
1, FALSE = 0, and UNKNOWN = 5.

€ AND = MIN; OR = MAX, NOT(x) = 1-x.

®Example: o

TRUE AND (FALSE OR NOT(UNKNOWN))
= MIN(1, MAX(0, (1 - 2))) =
MIN(1, MAX(0, 2) = MIN(1, 2) = Va.

23

Surprising Example °

@ From the following Sells relation:

bar beer price
Joe’s Bar| Bud NULL
SELECT bar
FROM Sells
WHE%E price < 2.00 OR price >= 2.00;
UNKNOWN UNKNOWN

L)

UNKNOWN 2

Reason: 2-Valued Laws !=
3-Valued Laws =

@ Some common laws, like the
commutativity of AND, hold in 3-valued
logic.

@ But others do not; example: the “law of
excluded middle,” p OR NOT p = TRUE.

+ When p = UNKNOWN, the left side is
MAX(2, (1—12)) = Y2 1= 1.

Multirelation Queries ©

@ Interesting queries often combine data
from more than one relation.

@ We can address several relations in one
query by listing them all in the FROM
clause.

@ Distinguish attributes of the same name
by “<relation>.<attribute>"

Example -

@ Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked by at
least one person who frequents Joe’s Bar.

SELECT beer

FROM Likes, Frequents

WHERE bar = 'Joe’”s Bar’ AND
Frequents.drinker = Likes.drinker;

Formal Semantics @

@ Almost the same as for single-relation

queries:

1. Start with the product of all the relations
in the FROM clause.

2. Apply the selection condition from the
WHERE clause.

3. Project onto the list of attributes and
expressions in the SELECT clause.

Operational Semantics

#Imagine one tuple-variable for each
relation in the FROM clause.

+ These tuple-variables visit each
combination of tuples, one from each
relation.

@ If the tuple-variables are pointing to
tuples that satisfy the WHERE clause,
send these tuples to the SELECT clause.

29

Example °
drinker bar drinker | beer
tvl tv2
\ Sally Bud e
Sally . Joe's
'\)
check)
for Joe Likes &)
Frequents

check these to output

are equal
30

Explicit Tuple-Variables

@ Sometimes, a query needs to use two
copies of the same relation.

@ Distinguish copies by following the
relation name by the name of a tuple-
variable, in the FROM clause.

@ 1t's always an option to rename
relations this way, even when not
essential.

Example -

@ From Beers(name, manf), find all pairs
of beers by the same manufacturer.
+ Do not produce pairs like (Bud, Bud).

* Produce pairs in alphabetic order, e.g.
(Bud, Miller), not (Miller, Bud).

SELECT bl.name, b2.name

FROM Beers b1, Beers b2

WHERE bl.manf =b2. manf AND
bl.name < b2.name;

Subqueries °

@ A parenthesized SELECT-FROM-WHERE
statement (subguery) can be used as a
value in a number of places, including
FROM and WHERE clauses.

@®Example: in place of a relation in the
FROM clause, we can place another
query, and then query its result.

+ Better use a tuple-variable to name tuples
of the result.

Subqueries That Return One Tuple

@ If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value.

+ Usually, the tuple has one component.

* Also typically, a single tuple is guaranteed
by keyness of attributes.

+ A run-time error occurs if there is no tuple
or more than one tuple.

Example °

@ From Sells(bar, beer, price), find the
bars that serve Miller for the same price

Joe charges for Bud.
€ Two queries would surely work:
1. Find the price Joe charges for Bud.
2. Find the bars that serve Miller at that price.

L)

Query + Subquery Solution

SELECT bar
FROM Sells
WHERE beer = ‘Miller” AND
price = (SELECT price
e st FROM Sells
:,et;l.:g lege WHERE bar = Joe"s Bar’
) AND beer = 'Bud’);

The IN Operator °

@ <tuple> IN <relation> is true if and
only if the tuple is a member of the
relation.

* <tuple> NOT IN <relation> means the
opposite.

@ IN-expressions can appear in WHERE
clauses.

@ The <relation> is often a subquery.

Example -°

@ From Beers(name, manf) and Likes(drinker,
beer), find the name and manufacturer of each
beer that Fred likes.

SELECT *
FROM Beers
WHERE name IN ((SELECT beer

The set of FROM Ll keS
e | WHERE drnker = Fred);

@
38

The Exists Operator -«

@ EXISTS(<relation>) is true if and only
if the <relation> is not empty.

@ Being a boolean-valued operator,
EXISTS can appear in WHERE clauses.

@ Example: From Beers(name, manf),
find those beers that are the unique
beer by their manufacturer.

Example Query with EXISTS °

Notice scope rule: manf refers
@ to closest nested FROM with
a relation having that attribute.

SELECT name
FROM Beers b1l
WHERE NOT EXISTS(

Set of SELECT * .
EEE}; FROM Beers 7 ggtﬂcig;e
manfas | WHERE manf = b1, og:fgo !
b name <> bl.name); °

same) Z

beer

The Operator ANY °

@ x = ANY(<relation>) is a boolean
condition meaning that x equals at least one
tuple in the relation.

@ Similarly, = can be replaced by any of the
comparison operators.

®Example: x >= ANY(<relation>) means x
is not smaller than all tuples in the relation.

+ Note tuples must have one component only.

41

The Operator ALL °

@ Similarly, x <> ALL(<relation>) is
true if and only if for every tuple £ in
the relation, xis not equal to &

+ That is, xis not a member of the relation.

@ The <> can be replaced by any
comparison operator.

@ Example: x >= ALL(<relation>)
means there is no tuple larger than x in
the relation.

42

Example °

@ From Sells(bar, beer, price), find the
beer(s) sold for the highest price.
SELECT beer :
FROM Sells s

less than any price.

FROM Sells);

43

