Relational Algebra

Operators
Expression Trees

What is an "Algebra"

- Mathematical system consisting of:
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.

2

What is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations.
- Operators are designed to do the most common things that we need to do with relations in a database.
 - The result is an algebra that can be used as a *query language* for relations.

Roadmap

- There is a core relational algebra that has traditionally been thought of as the relational algebra.
- ◆ But there are several other operators we shall add to the core in order to model better the language SQL --- the principal language used in relational database systems.

Core Relational Algebra

- Union, intersection, and difference.
 - Usual set operations, but require both operands have the same relation schema.
- Selection: picking certain rows.
- Projection: picking certain columns.
- Products and joins: compositions of relations.
- Renaming of relations and attributes.

Selection

- ightharpoonupR1 := SELECT_C(R2)
 - C is a condition (as in "if" statements) that refers to attributes of R2.
 - R1 is all those tuples of R2 that satisfy C.

Projection

- ◆R1 := PROJ, (R2)
 - L is a list of attributes from the schema of R2.
 - R1 is constructed by looking at each tuple of R2, extracting the attributes on list *L*, in the order specified, and creating from those components a tuple for R1.
 - Eliminate duplicate tuples, if any.

8

Example Relation Sells: price beer bar Joe's Bud 2.50 Joe's Miller 2.75 2.50 Sue's Bud Sue's Miller 3.00 $\begin{array}{c|c} \mathsf{Prices} := \mathsf{PROJ}_{\underline{\mathsf{beer}}, \mathsf{price}}(\mathsf{Sells}) \\ \hline \mathsf{beer} & \mathsf{price} \end{array}$ Bud 2.50 Miller 2.75 Miller 3.00

Product *

- ◆R3 := R1 * R2
 - Pair each tuple t1 of R1 with each tuple t2 of R2.
 - Concatenation t1t2 is a tuple of R3.
 - Schema of R3 is the attributes of R1 and R2, in order.
 - But beware attribute A of the same name in R1 and R2: use R1,A and R2,A.

10

Theta-Join

- ◆R3 := R1 JOIN_C R2
 - Take the product R1 * R2.
 - Then apply SELECT_C to the result.
- ◆ As for SELECT, *C* can be any boolean-valued condition.
 - Historic versions of this operator allowed only A theta B, where theta was =, <, etc.; hence the name "theta-join."

Natural Join

- A frequent type of join connects two relations by:
 - Equating attributes of the same name, and
 - Projecting out one copy of each pair of equated attributes.
- ◆Called *natural* join.
- ◆Denoted R3 := R1 JOIN R2.

14

Renaming •

- ◆The RENAME operator gives a new schema to a relation.
- ♦R1 := RENAME_{R1(A1,...,A η)}(R2) makes R1 be a relation with attributes A1,...,A η and the same tuples as R2.
- ◆Simplified notation: R1(A1,...,An) := R2.

16

Building Complex Expressions •

- Algebras allow us to express sequences of operations in a natural way.
 - Example: in arithmetic --- (x + 4)*(y 3).
- Relational algebra allows the same.
- Three notations, just as in arithmetic:
 - 1. Sequences of assignment statements.
 - 2. Expressions with several operators.
 - 3. Expression trees.

Sequences of Assignments •

- Create temporary relation names.
- Renaming can be implied by giving relations a list of attributes.
- ◆Example: R3 := R1 JOIN_C R2 can be written:

R4 := R1 * R2 R3 := SELECT_C(R4)

19

Expressions in a Single Assignment

- ◆ Example: the theta-join R3 := R1 JOIN_C R2 can be written: R3 := SELECT_C (R1 * R2)
- Precedence of relational operators:
 - Unary operators --- select, project, rename --- have highest precedence, bind first.
 - 2. Then come products and joins.
 - 3. Then intersection.
 - 4. Finally, union and set difference bind last.
- But you can always insert parentheses to force the order you desire.

20

Expression Trees

- Leaves are operands --- either variables standing for relations or particular, constant relations.
- ◆ Interior nodes are operators, applied to their child or children.

21

Example

◆Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

22

Example

- Using Sells(bar, beer, price), find the bars that sell two different beers at the same price.
- Strategy: by renaming, define a copy of Sells, called S(bar, beer1, price). The natural join of Sells and S consists of quadruples (bar, beer, beer1, price) such that the bar sells both beers at this price.

- An expression tree defines a schema for the relation associated with each interior node.
- Similarly, a sequence of assignments defines a schema for each relation on the left of the := sign.

26

Schema-Defining Rules 1

- For union, intersection, and difference, the schemas of the two operands must be the same, so use that schema for the result.
- Selection: schema of the result is the same as the schema of the operand.
- Projection: list of attributes tells us the schema.

27

Schema-Defining Rules 2 **

- Product: the schema is the attributes of both relations.
 - Use R.A, etc., to distinguish two attributes named A.
- Theta-join: same as product.
- ◆ Natural join: use attributes of both relations.
 - Shared attribute names are merged.
- Renaming: the operator tells the schema.

20

Relational Algebra on Bags *

- ◆ A *bag* is like a set, but an element may appear more than once.
 - Multiset is another name for "bag."
- Example: {1,2,1,3} is a bag. {1,2,3} is also a bag that happens to be a set.
- Bags also resemble lists, but order in a bag is unimportant.
 - Example: {1,2,1} = {1,1,2} as bags, but [1,2,1]!= [1,1,2] as lists.

29

Why Bags?

- SQL, the most important query language for relational databases is actually a bag language.
 - SQL will eliminate duplicates, but usually only if you ask it to do so explicitly.
- Some operations, like projection, are much more efficient on bags than sets.

Operations on Bags *

- Selection applies to each tuple, so its effect on bags is like its effect on sets.
- Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.
- Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.

31

Example: Bag Selection

R(A, B) 1 2 5 6 1 2 S(B, C 3 4 7 8

SELECT_{A+B<5} (R) = $\begin{bmatrix} A & B \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$

Example: Bag Projection

R(A, B) 1 2 5 6 1 2 S(B, C 3 4 7 8

 $PROJECT_{A}(R) = \begin{bmatrix} A \\ 1 \\ 5 \\ 1 \end{bmatrix}$

33

Example: Bag Product

R(A, B) 1 2 5 6 1 2 (B, C) 3 4 7 8

R * S = A R.B S.B C 1 2 3 4 1 2 7 8 5 6 3 4 5 6 7 8 1 2 3 4

Example: Bag Theta-Join

R(A, B 1 2 5 6 1 2 S(B, C) 3 4 7 8

R JOIN $_{R,B < S,B}$ S =

Α	R.B	S.B	С		
1	2	3 7	4		
1	2 2 6 2 2	7	8 8 4		
1 5	6	7	8		
1	2	3	4		
1	2	7	8		

Bag Union

- Union, intersection, and difference need new definitions for bags.
- ◆ An element appears in the union of two bags the sum of the number of times it appears in each bag.
- ◆Example: {1,2,1} UNION {1,1,2,3,1} = {1,1,1,1,1,2,2,3}

Bag Intersection

- An element appears in the intersection of two bags the minimum of the number of times it appears in either.
- ◆Example: {1,2,1} INTER {1,2,3} = {1,2}.

37

Bag Difference

- ♦ An element appears in the difference A B of bags as many times as it appears in A, minus the number of times it appears in B.
 - But never less than 0 times.
- ♦ Example: $\{1,2,1\}$ $\{1,2,3\}$ = $\{1\}$.

38

Beware: Bag Laws != Set Laws 9

- Not all algebraic laws that hold for sets also hold for bags.
- ◆ For one example, the commutative law for union (R UNION S = S UNION R) does hold for bags.
 - Since addition is commutative, adding the number of times x appears in R and S doesn't depend on the order of R and S.

39

An Example of Inequivalence

- ◆ Set union is *idempotent*, meaning that S UNION S = S.
- ◆ However, for bags, if x appears n times in S, then it appears 2n times in S UNION S.
- ♦ Thus S UNION S! = S in general.

40

The Extended Algebra

- 1. DELTA = eliminate duplicates from bags.
- 2. TAU = sort tuples.
- 3. Extended projection: arithmetic, duplication of columns.
- 4. GAMMA = grouping and aggregation.
- 5. OUTERJOIN: avoids "dangling tuples" = tuples that do not join with anything.

11

Duplicate Elimination

- ◆R1 := DELTA(R2).
- R1 consists of one copy of each tuple that appears in R2 one or more times.

Example: Duplicate Elimination •

$$DELTA(R) = \begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

43

Sorting

- ◆R1 := TAU, (R2).
 - L is a list of some of the attributes of R2.
- ◆R1 is the list of tuples of R2 sorted first on the value of the first attribute on *L*, then on the second attribute of *L*, and so on.
 - Break ties arbitrarily.
- ◆TAU is the only operator whose result is neither a set nor a bag.

M

Example: Sorting

 $TAU_B(R) = [(5,2), (1,2), (3,4)]$

45

Extended Projection

- Using the same PROJ_L operator, we allow the list L to contain arbitrary expressions involving attributes, for example:
 - 1. Arithmetic on attributes, e.g., A+B.
 - 2. Duplicate occurrences of the same attribute.

46

Example: Extended Projection •

$$R = \begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$PROJ_{A+B,A,A}(R) = A+B A1 A2$$
 $3 1 1$
 $7 3 3$

Aggregation Operators

- Aggregation operators are not operators of relational algebra.
- Rather, they apply to entire columns of a table and produce a single result.
- ◆The most important examples: SUM, AVG, COUNT, MIN, and MAX.

Example: Aggregation

SUM(A) = 7 COUNT(A) = 3 MAX(B) = 4 AVG(B) = 3

49

Grouping Operator

- R1 := GAMMA_L (R2). L is a list of elements that are either:
 - 1. Individual (*grouping*) attributes.
 - AGG(A), where AGG is one of the aggregation operators and A is an attribute.

50

Applying GAMMA₂(R)

- Group R according to all the grouping attributes on list L.
 - That is, form one group for each distinct list of values for those attributes in R.
- Within each group, compute AGG(A) for each aggregation on list L.
- Result has grouping attributes and aggregations as attributes. One tuple for each list of values for the grouping attributes and their group's aggregations.

51

Example: Grouping/Aggregation

9

R =	Α	В	C
	1	2	3
	4	5	6
	1	2	5
			/////

 $GAMMA_{A,B,AVG(C)}(R) = ??$

First, group R:

A B C
1 2 3
1 2 5
4 5 6

Then, average C within groups:

Α	В	AVG(C)			
1	2	4			
4	5	6			

51

Outerjoin

- ♦ Suppose we join R JOIN $_C$ S.
- ◆A tuple of *R* that has no tuple of *S* with which it joins is said to be *dangling*.
 - Similarly for a tuple of S.
- Outerjoin preserves dangling tuples by padding them with a special NULL symbol in the result.

53

Example: Outerjoin

(1,2) joins with (2,3), but the other two tuples are dangling.

R OUTERJOIN S = A B C
1 2 3
4 5 NULL
NULL 6 7