SQL/PSM

Procedures Stored in the Database
General-Purpose Programming

Stored Procedures °

@ An extension to SQL, called SQL/PSM,
or “persistent, stored modules,” allows
us to store procedures as database
schema elements.

@ The programming style is a mixture of
conventional statements (if, while, etc.)
and SQL.

@ Let's us do things we cannot do in SQL
alone.

Basic PSM Form °

CREATE PROCEDURE <name> (
<parameter list>)
<optional local declarations>
<body>;
@ Function alternative:
CREATE FUNCTION <name> (
<parameter list>) RETURNS <type>

of

Parameters in PSM @

@ Unlike the usual name-type pairs in
languages like C, PSM uses mode-
name-type triples, where the mode can
be:

+ IN = procedure uses value, does not
change value.

+ OUT = procedure changes, does not use.

+ INOUT = both.

Example: Stored Procedure °

@ Let's write a procedure that takes two
arguments 6 and p, and adds a tuple
to Sells that has bar = ‘Joe"s Bar’, beer
= b, and price = p.

* Used by Joe to add to his menu more
easily.

The Procedure °

CREATE PROCEDURE JoeMenu (
INb CHAR(ZO)I w—__ Parameters are both
IN p REAL read-only, not changed

@

)

INSERT INTO Sells e
VALUES("Joe”’s Bar’, b, p);~ 2single insertion

9

Invoking Procedures °

@ Use SQL/PSM statement CALL, with the
name of the desired procedure and
arguments.

¥ Example:

CALL JoeMenu('Moosedrool’, 5.00);

@ Functions used in SQL expressions
where a value of their return type is
appropriate.

Types of PSM statements -- 1 °

@ RETURN <expression> sets the return
value of a function.

+ Unlike C, etc., RETURN does not terminate
function execution.

@ DECLARE <name> <type> used to
declare local variables.

@®BEGIN . . . END for groups of statements.
+ Separate by semicolons.

Types of PSM Statements -- 2 °

@ Assignment statements:
SET <variable> = <expression>;
+ Example: SET b = ‘Bud’;
@ Statement labels: give a statement a
label by prefixing a name and a colon.

IF statements °

@ Simplest form:
IF <condition> THEN
<statements(s)>
END IF;
@ Add ELSE <statement(s)> if desired, as
IF...THEN...ELSE...END IF;
@ Add additional cases by ELSEIF <statements(s)>:
IF ... THEN ... ELSEIF ... ELSEIF ... ELSE ... END IF;

10

Example: IF °

@ Let's rate bars by how many customers
they have, based on
Frequents(drinker, bar).
+ <100 customers: ‘unpopular’.
+ 100-199 customers: ‘average'.
+ >= 200 customers: ‘popular’.

@ Function Rate(b) rates bar b.

Example: IF (continued) °
CREATE FUNCTION Rate (IN b CHAR(20))

RETURNS CHAR(10) sl
DECLARE cust INTEGER; / Barb
BEGIN

SET cust =|(SELECT COUNT(*) FROM Frequents
WHERE bar = b);

IF cust < 100 THEN RETURN ‘unpopular’
ELSEIF cust < 200 THEN RETURN ‘average’ \J
ELSE RETURN “popular”
END IF; Nested

° Return occurs here, not at IF statement
one of the RETURN statements

Loops °

9 Basic form:

LOOP <statements> END LOOP;
@ Exit from a loop by:

LEAVE <loop name>

@ The <loop name> is associated with a
loop by prepending the name and a
colon to the keyword LOOP.

Example: Exiting a Loop °
loopl: LOOP

LEAVE loop1; «—— Ifthis statement is executed . . .
L)

END LOOP;
Control winds up here
L))

Other Loop Forms °

@ WHILE <condition>
DO <statements>
END WHILE;
@ REPEAT <statements>
UNTIL <condition>
END REPEAT;

Queries °

@ General SELECT-FROM-WHERE
queries are not permitted in PSM.

@ There are three ways to get the effect
of a query:
1. Queries producing one value can be the

expression in an assignment.

2. Single-row SELECT . . . INTO.
3. Cursors.

Example: Assignment/Query °

@If p is a local variable and Sells(bar, beer,
price) the usual relation, we can get the price
Joe charges for Bud by:

SET p = (SELECT price FROM Sells
WHERE bar = 'Joe’’s Bar’ AND
beer = 'Bud’);

SELECT ...INTO =

€ An equivalent way to get the value of a query
that is guaranteed to return a single tuple is by
placing INTO <variable> after the SELECT
clause.
®Example:
SELECT price INTO p FROM Sells
WHERE bar = 'Joe’”s Bar’ AND
beer ='Bud’;

Cursors ©

@A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query.

@ Declare a cursor ¢ by:

DECLARE ¢ CURSOR FOR <query>;

Opening and Closing Cursors ©

@ To use cursor ¢, we must issue the
command:
OPEN c;

* The query of ¢ is evaluated, and c is set
to point to the first tuple of the result.

© When finished with ¢ issue command:
CLOSE c;

Fetching Tuples From a Cursor °

@ To get the next tuple from cursor c,

issue command:
FETCH c INTO x1, X2,...,x1;

®The x's are a list of variables, one for
each component of the tuples referred
toby c

@ c is automatically moved to the next
tuple.

Breaking Cursor Loops -1 °

@ The usual way to use a cursor is to
create a loop with a FETCH statement,
and do something with each tuple
fetched.

@ A tricky point is how we get out of the
loop when the cursor has no more
tuples to deliver.

Breaking Cursor Loops --2 °

@ Each SQL operation returns a status,
which is a 5-digit number.
+ For example, 00000 = “Everything OK,”
and 02000 = “Failed to find a tuple.”
@ 1n PSM, we can get the value of the
status in a variable called SQLSTATE.

Breaking Cursor Loops --3 °

@ We may declare a condition, which is a
boolean variable that is true if and only
if SQLSTATE has a particular value.

¥ Example: We can declare condition
NotFound to represent 02000 by:

DECLARE NotFound CONDITION FOR
SQLSTATE ‘020007,

Breaking Cursor Loops -4 °

@ The structure of a cursor loop is thus:
cursorLoop: LOOP

FETCH c INTO ... ;
IF NotFound THEN LEAVE cursorLoop;
END IF;

END LOOP;

Example: Cursor °

@ Let's write a procedure that examines
Sells(bar, beer, price), and raises by $1
the price of all beers at Joe’s Bar that
are under $3.

+ Yes, we could write this as a simple
UPDATE, but the details are instructive
anyway.

The Needed Declarations *

CREATE PROCEDURE J0eGouge() yeed to hoid
DECLARE theBeer CHAR(20); | beer-price pairs
. when fetching
DECLARE thePrice REAL; through cursor ¢
DECLARE NotFound CONDITION FOR ~ ©
SQLSTATE ‘02000";
DECLARE c CURSOR FOR
(SELECT beer, price FROM Sells -

WHERE bar = Joe"s Bar);

/ Returns Joe’s menu

The Procedure Body °

BEGIN
OPEN c; Check if the recent
FETCH failed to
menuLoop: LOOP gt

FETCH c INTO theBeer, thePrice; A

IF NotFound THEN LEAVE menulLoop END IF;

IF thePrice < 3.00 THEN
UPDATE Sells SET price = thePrice+1.00
WHERE bar = "Joe"s Bar’ AND beer = theBeer;

END IF; =
=t LOC.)P; If Joe charges less than $3 for
CLOSE ¢; @ the beer, raise it's price at

END; Joe’s Bar by $1.

