PL/SQL

Oracle’s Version of Triggers and
PSM

PL/SQL ©

@ Oracle uses a variant of SQL/PSM which
it calls PL/SQL.

@ PL/SQL not only allows you to create
and store procedures or functions, but
it can be run from the generic query
interface, like any SQL statement.

@ Triggers are a part of PL/SQL.

Trigger Differences °

¢ Compared with SQL standard triggers,
Oracle has the following differences:

Differences in order of elements.

Action is a PL/SQL statement.

New/old tuples referenced automatically.

Strong constraints on trigger actions
designed to make certain you can't fire
off an infinite sequence of triggers.

ERNCIRIORS

Order of Oracle Trigger Elements

CREATE TRIGGER

Event, e.g., AFTER INSERT ...
FOR EACH ROW, if desired.
Condition.

Action.

A dot and the word “run”. These cause
the trigger to be installed in the database.

CHRCINERCONND.

4

New/Old Tuples °

@ Instead of a REFERENCING clause,
Oracle assumes that new tuples are
referred to as “new” and old tuples by
“old.”

@ Also, for statement-level triggers:
“newtable” and “oldtable”.

@ 1In actions, but not in conditions, you
must prefix “new,” etc., by a colon.

Example: BeerTrig °

@ Recall our example BeerTrig, which
inserted a beer name into Beers
whenever a tuple was inserted into Sells
with a beer that was not mentioned in
Beers.

@®Here's the Oracle version of that same
trigger.

BeerTrig in Oracle SQL °

CREATE OR REPLACE TRIGGER BeerTrig

AFTER INSERT ON Sells Note position @
WHEN NOT IN
(SELECT name FROM Beers)))

BEGIN

INSERT INTO BEERS({name) VALUES(:new.beet);
2L Needed to store TS
. trigger as an Notice “new"” is understood.
run [element of the Also, colon used only in
@ database the action. 7

Another Example °

@ Recall PriceTrig, which stores in the
relation Ripoffbars(bar) the name of
any bar that raises the price of any beer
by more than $1.

@®Here's the Oracle version.

PriceTrig in Oracle °

CREATE OR REPLACE TRIGGER PriceTrig
AFTER UPDATE OF price ON Sells
FOR EACH ROW
WHEN (new.price > old.price + 1.00)
BEGIN
INSERT INTO RipoffBars VALUES(:new.bar);
END;

run

Oracle Limitation on Relations
Affected °

@ Each trigger is on some one relation R,
mentioned in the event.

@ The SQL standard puts no constraint on
which relations, including R, can be
modified in the action.

@ As a result, infinite sequences of
triggered events are possible.

Example: Infinite Triggering °

@ Let R(x) be a unary relation that is a
set of integers.

@ Easy to write a trigger with event
INSERT ON R, that as action, inserts
/+1 if / was the integer that awakened
the trigger.

@ Results in a never-ending sequence of
inserts.

Oracle Limitation °

@ Oracle is overly conservative about
what relations can be changed when
the event is on R.

@ R surely must not be subject to any
modification in the action.
@ But much trickier: any relation that is

linked to R by a chain of foreign-key
constraints may not be changed either.

Example: Foreign-Key Chains °

@ Suppose R.a is a foreign key,
referencing S.b.

@ Also, T.c is a foreign key referencing
S.b.

®Then in a trigger on relation R, neither
7 nor S may be modified.

PL/SQL ©

In addition to stored procedures, one
can write a PL/SQL statement that looks
like the body of a procedure, but is
executed once, like any SQL statement
typed to the generic interface.

+ Oracle calls the generic interface “sqlplus.”
* PL/SQL is really the “plus.”

Form of PL/SQL Statements °

DECLARE
<declarations>
BEGIN
<statements>
END;
run
@ The DECLARE section is optional.

Form of PL/SQL Procedure -

CREATE OR REPLACE PROCEDURE
<name> (<argum_ents>) Nalies S
<optional declarations>
BEGIN
<PL/SQL statements>
END;

Needed to store L)

e procedure in database

run

PL/SQL Declarations and
Assignments -

@ The word DECLARE does not appear in
front of each local declaration.
+ Just use the variable name and its type.

@ There is no word SET in assignments,
and := is used in place of =.
+ Example: x :=y;

PL/SQL Procedure Parameters °

@ There are several differences in the
forms of PL/SQL argument or local-
variable declarations, compared with
the SQL/PSM standard:

1. Order is name-mode-type, not mode-
name-type.

2. INOUT is replaced by IN OUT in PL/SQL.

3. Several new types.

PL/SQL Types °

#In addition to the SQL types, NUMBER
can be used to mean INT or REAL, as
appropriate.

@ You can refer to the type of attribute x of
relation R by R.x%TYPE.

+ Useful to avoid type mismatches.

+ Also, R%ROWTYPE is a tuple whose
components have the types of R’s attributes.

19

Example:JoeMenu °

@ Recall the procedure JoeMenu(b,p) that
adds beer b at price pto the beers sold
by Joe (in relation Sells).

@ Here is the PL/SQL version.

Procedure JoeMenu in PL/SQL °

CREATE OR REPLACE PROCEDURE JoeMenu (
b IN|Sells.beer%TYPE,

p IN|Sells.price%TYPE Notice these types
) AS have to be suitable 4

BEGIN e
INSERT INTO Sells
VALUES (Joe”s Bar’, b, p);

END;

run 2

PL/SQL Branching Statements °

@ Like IF ... in SQL/PSM, but:
@ Use ELSIF in place of ELSEIF.

@Viz.: IF ... THEN ... ELSIF ... ELSIF ...
ELSE ... END IF;

PL/SQL Loops

@ LOOP ... END LOOP as in SQL/PSM.
@ Instead of LEAVE ..., PL/SQL uses
EXIT WHEN <condition>

® And when the condition is that cursor ¢
has found no tuple, we can write
c%NOTFOUND as the condition.

PL/SQL Cursors

@ The form of a PL/SQL cursor
declaration is:

CURSOR <name> IS <query>;
@ To fetch from cursor c, say:
FETCH c INTO <variable(s)>;

Example: JoeGouge() in PL/SQL °

@ Recall JoeGouge() sends a cursor
through the Joe’s-Bar portion of Sells,
and raises by $1 the price of each beer
Joe’s Bar sells, if that price was initially
under $3.

Example: JoeGouge() Declarations

CREATE OR REPLACE PROCEDURE
JoeGouge () AS
theBeer Sells.beer%TYPE;
thePrice Sells.price%TYPE;
CURSOR c IS
SELECT beer, price FROM Sells
WHERE bar = 'Joe’’s Bar’;

Example: JoeGouge Body °

BEGIN
OPEN c;
LOOP How PL/SQL
FETCH c INTO theBeer, thePrice; fggs"s e
[EXIT WHEN c%NOTFOUND;
IF thePrice < 3.00 THEN
UPDATE Sells SET price = thePrice + 1.00;]
WHERE bar = "Joe"s Bar” AND beer = theBeer;

ENDAL: Note this is a SET clause
END LOOP; ? in an UPDATE, not an assignment.
CLOSE c; PL/SQL uses := for assignments.
END; 27

Tuple-Valued Variables

@ PL/SQL allows a variable x to have a
tuple type.

€ X R%ROWTYPE gives x the type of R’s
tuples.

@ R could be either a relation or a cursor.

®x.a gives the value of the component
for attribute a in the tuple x.

Example: Tuple Type °

@ Here is the declarations of JoeGouge(), using
a variable bp whose type is beer-price pairs,
as returned by cursor ¢

CREATE OR REPLACE PROCEDURE
JoeGouge () AS
CURSOR c IS
SELECT beer, price FROM Sells
WHERE bar = 'Joe”s Bar’;
bp c%ROWTYPE;

JoeGouge Body Using bp °

BEGIN
OPEN ¢;
LooP
FETCH ¢ INTO bp;
EXIT WHEN c%NOTFOUND;
IF|bp.price|< 3.00 THEN

UPDATE-Sells SET price =+ 1.00;
WHERE bar =Joe”s Bar’ AN?"beer tbp.beer;
END IF;

END LOOP; Components of bp are
£ @ obtained with a dot and
Ress the attribute name

END; 30

