Multivalued Dependencies

Fourth Normal Form

1

A New Form of Redundancy •

- Multivalued dependencies (MVD's)
 express a condition among tuples of a
 relation that exists when the relation is
 trying to represent more than one
 many-many relationship.
- ◆ Then certain attributes become independent of one another, and their values must appear in all combinations.

1

Example •

Drinkers(name, addr, phones, beersLiked)

- ♦ A drinker's phones are independent of the beers they like.
- Thus, each of a drinker's phones appears with each of the beers they like in all combinations.
- This repetition is unlike redundancy due to FD's, of which name->addr is the only one.

3

Tuples Implied by Independence

If we have tuples:

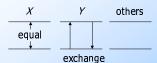
name	addr	phones	beersLiked
sue	a	p1	b1
sue	a	p2	b2
sue	a	p2	b1
sue	a	p1	b2

Then these tuples must also be in the relation.

Definition of MVD

◆ A multivalued dependency (MVD) X->-> Y is an assertion that if two tuples of a relation agree on all the attributes of X, then their components in the set of attributes Y may be swapped, and the result will be two tuples that are also in the relation.

5


Example

The name-addr-phones-beersLiked example illustrated the MVD name->->phones

and the MVD

name ->-> beersLiked.

Picture of MVD $X \rightarrow Y$

MVD Rules

- Every FD is an MVD.
 - If X-> Y, then swapping Y's between two tuples that agree on X doesn't change the tuples.
 - Therefore, the "new" tuples are surely in the relation, and we know *X*->-> *Y*.
- ♦ Complementation : If X ->-> Y, and Z is all the other attributes, then X ->-> Z.

8

Splitting Doesn't Hold

- Like FD's, we cannot generally split the left side of an MVD.
- ◆ But unlike FD's, we cannot split the right side either --- sometimes you have to leave several attributes on the right side.

Example

- Consider a drinkers relation:
 Drinkers(name, areaCode, phone, beersLiked, manf)
- A drinker can have several phones, with the number divided between areaCode and phone (last 7 digits).
- ◆A drinker can like several beers, each with its own manufacturer.

10

Example, Continued

Since the areaCode-phone combinations for a drinker are independent of the beersLiked-manf combinations, we expect that the following MVD's hold:

name ->-> areaCode phone name ->-> beersLiked manf

11

Example Data

Here is possible data satisfying these MVD's:

name	areaCode	phone	beersLiked	manf
Sue	650	555-1111	Bud	A.B.
Sue	650	555-1111	WickedAle	Pete's
Sue	415	555-9999	Bud	A.B.
Sue	415	555-9999	WickedAle	Pete's

But we cannot swap area codes or phones my themselves. That is, neither name ->-> areaCode nor name ->-> phone holds for this relation.

Fourth Normal Form •

- ◆ The redundancy that comes from MVD's is not removable by putting the database schema in BCNF.
- There is a stronger normal form, called 4NF, that (intuitively) treats MVD's as FD's when it comes to decomposition, but not when determining keys of the relation.

13

4NF Definition

- ◆ A relation R is in 4NF if whenever X->->Y is a nontrivial MVD, then X is a superkey.
 - "Nontrivial means that:
 - 1. Y is not a subset of X, and
 - 2. X and Y are not, together, all the attributes.
 - Note that the definition of "superkey" still depends on FD's only.

14

BCNF Versus 4NF *

- ◆ Remember that every FD X-> Y is also an MVD, X->-> Y.
- ◆Thus, if *R* is in 4NF, it is certainly in BCNF.
 - Because any BCNF violation is a 4NF violation.
- But R could be in BCNF and not 4NF, because MVD's are "invisible" to BCNF.

Decomposition and 4NF

- ◆ If X->-> Y is a 4NF violation for relation R, we can decompose R using the same technique as for BCNF.
 - 1. XY is one of the decomposed relations.
 - 2. All but Y X is the other.

16

Example •

Drinkers(<u>name</u>, addr, <u>phones</u>, <u>beersLiked</u>)

FD: name -> addr

MVD's: name ->-> phones

name ->-> beersLiked

- ◆Key is {name, phones, beersLiked}.
- All dependencies violate 4NF.

17

Example, Continued

- Decompose using name -> addr:
- Drinkers1(name, addr)
 - In 4NF, only dependency is name -> addr.
- 2. Drinkers2(<u>name</u>, <u>phones</u>, <u>beersLiked</u>)
 - Not in 4NF. MVD's name ->-> phones and name ->-> beersLiked apply. No FD's, so all three attributes form the key.

Example: Decompose Drinkers2 •

- ◆Either MVD name ->-> phones or name ->-> beersLiked tells us to decompose to:
 - Drinkers3(<u>name</u>, <u>phones</u>)
 - Drinkers4(<u>name</u>, <u>beersLiked</u>)