Real SQL Programming

Embedded SQL
Call-Level Interface
Java Database Connectivity

SQL in Real Programs °

@ We have seen only how SQL is used at
the generic query interface --- an
environment where we sit at a terminal
and ask queries of a database.

@ Reality is almost always different.

+ Programs in a conventional language like C
are written to access a database by “calls”
to SQL statements.

Host Languages °

€ Any conventional language can be a
host language, that is, a language in
which SQL calls are embedded.

@ The use of a host/SQL combination
allows us to do anything computable,
yet still get the very-high-level SQL
interface to the database.

Connecting SQL to the Host
Language -°
1. Embedded SQL is a standard for
combining SQL with seven languages.

2. CLI (Call-Level Interface) is a
different approach to connecting C to
an SQL database.

3. JDBC (Java Database Connectivity) is
a way to connect Java with an SQL
database.

Embedded SQL °

@ Key idea: Use a preprocessor to turn
SQL statements into procedure calls
that fit with the host-language code
surrounding.

@ All embedded SQL statements begin

with EXEC SQL, so the preprocessor can
find them easily.

Shared Variables

@ To connect SQL and the host-language
program, the two parts must share
some variables.

@ Declarations of shared variables are
bracketed by:

EXEC SQL BEGIN DECLARE SECTION;

Al d
neod <host-language declarations>

» EXEC SQL END DECLARE SECTION;

Use of Shared Variables °

@ 1n SQL, the shared variables must be
preceded by a colon.

* They may be used as constants provided
by the host-language program.

+ They may get values from SQL statements
and pass those values to the host-
language program.

@ 1n the host language, shared variables
behave like any other variable.

Example: Looking Up Prices °

@ We'll use C with embedded SQL to
sketch the important parts of a function
that obtains a beer and a bar, and looks
up the price of that beer at that bar.

@ Assumes database has our usual
Sells(bar, beer, price) relation.

Example: C Plus SQL ©

EXEC SQL BEGIN DECLARE SECTION; <
ote 21-char
char kheBar[Zl], theBeer[Zl]b\ arrays needed
float thePrice; gdﬁ?aﬁgs;'
EXEC SQL END DECLARE SECTION;
/* obtain values for theBar and theBeer */
EC SQL SELECT price INTO :thePrice
FROM Sells @
WHERE bar = theBar AND beer = theBeer;

/* do something with thePrice\K/\ SELECT-INTO
just like PSM o

m

Embedded Queries

¥ Embedded SQL has the same
limitations as PSM regarding queries:
+ You may use SELECT-INTO for a query
guaranteed to produce a single tuple.
+ Otherwise, you have to use a cursor.
« Small syntactic differences between PSM and

Embedded SQL cursors, but the key ideas are
identical.

Cursor Statements ©

@ Declare a cursor ¢ with:

EXEC SQL DECLARE ¢ CURSOR FOR <query>;
#Open and close cursor ¢ with:

EXEC SQL OPEN CURSOR c;

EXEC SQL CLOSE CURSOR c;

@ Fetch from cby:

EXEC SQL FETCH c INTO <variable(s)>;
+ Macro NOT FOUND is true if and only if the FETCH
fails to find a tuple.

11

Example -1 =

@ Let's write C + SQL to print Joe’s menu
--- the list of beer-price pairs that we
find in Sells(bar, beer, price) with bar =
Joe’s Bar.

@ A cursor will visit each Sells tuple that
has bar = Joe’s Bar.

Example — 2 (Declarations) °

EXEC SQL BEGIN DECLARE SECTION;
char theBeer[21]; float thePrice;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE ¢ CURSOR FOR
SELECT beer, price FROM Sells
WHERE bar = ‘Joe"s Bar’;

\ The cursor declaration goes
@ outside the declare-section

Example — 3 (Executable) -

EXEC SQL OPEN CURSOR c; e
of breaking
EXEC SQL FETCH ¢ 2
INTO :theBeer, :fhePrice;
|if (NOT FOUND) break;
/* format and print theBeer and thePrice */

¥
EXEC SQL CLOSE CURSOR ¢;

Need for Dynamic SQL °

@ Most applications use specific queries and
modification statements in their interaction with
the database.

+ Thus, we can compile the EXEC SQL ... statements
into specific procedure calls and produce an ordinary
host-language program that uses a library.

@ What if the program is something like a generic
query interface, that doesn't know what it needs
to do until it runs?

Dynamic SQL ©

@ Preparing a query:

EXEC SQL PREPARE <query-name>
FROM <text of the query>;

@ Executing a query:

EXEC SQL EXECUTE <query-name>;

@ "Prepare” = optimize query.

@ Prepare once, execute many times.

Example: A Generic Interface °

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_LENGTH];
EXEC SQL END DECLARE SECTION;
while(1) {
/* issue SQL> prompt */
/* read user’s query into array query */
EXEC SQL PREPARE|q [FROM :query;
EXEC SQL EXECUTE qis an SQL variable

} representing the optimized
) form of whatever statement
is typed into :query 7

Execute-Immediate °

@ If we are only going to execute the
query once, we can combine the
PREPARE and EXECUTE steps into one.

@ Use:
EXEC SQL EXECUTE IMMEDIATE <text>;

Example: Generic Interface Again
@
EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_LENGTH];
EXEC SQL END DECLARE SECTION;
while(1) {
[* issue SQL> prompt */
/* read user’s query into array
query */
EXEC SQL EXECUTE IMMEDIATE :query;
}

SQL/CLI °

Instead of using a preprocessor, we
can use a library of functions and call
them as part of an ordinary C program.

+ The library for C is called SQL/CLI = “Call-
Level Interface.”

+ Embedded SQL's preprocessor will
translate the EXEC SQL ... statements into
CLI or similar calls, anyway.

Data Structures °

€ C connects to the database by structs
of the following types:
1. Environments : represent the DBMS
installation.
2. Connections : logins to the database.
3. Statements : records that hold SQL
statements to be passed to a connection.

4. Descriptions : records about tuples from a
query or parameters of a statement.

Environments, Connections,
and Statements -

@ Function SQLAllocHandle(T,1,0) is used to
create these structs, which are called
environment, connection, and statement
handles.

* T = type, e.g., SQL_HANDLE_STMT.
= input handle = struct at next higher level
(statement < connection < environment).
+ O = (address of) output handle.

Example: SQLAllocHandle =

SQLAllocHandle(SQL_HANDLE_STMT,
myCon, &myStat);

#® myCon is a previously created
connection handle.

@ myStat is the name of the statement
handle that will be created.

Preparing and Executing °

@ SQLPrepare(H, S, L) causes the string
S, of length L, to be interpreted as an
SQL statement, optimized, and the
executable statement is placed in
statement handle H.

@ SQLExecute(H) causes the SQL
statement represented by statement
handle ~ to be executed.

Example: Prepare and Execute

SQLPrepare(myStat, "SELECT beer, price
FROM Sells WHERE bar = Joe”’s Bar’ ”,

'

SQLExecute(myStat);

This constant says the second argument
is a “null-terminated string”; i.e., figure out
the length by counting characters.

Dynamic Execution °

@ If we will execute a statement S only
once, we can combine PREPARE and
EXECUTE with:

SQLExecuteDirect(H,S,L);

+ As before, H is a statement handle and L
is the length of string S.

Fetching Tuples °

@ When the SQL statement executed is a
query, we need to fetch the tuples of the
result.

+ That is, a cursor is implied by the fact we
executed a query, and need not be declared.

@ SQLFetch(H) gets the next tuple from
the result of the statement with handle
H.

Accessing Query Results

¢ When we fetch a tuple, we need to
put the components somewhere.

@ Thus, each component is bound to a
variable by the function SQLBindCol.
+ This function has 6 arguments, of which
we shall show only 1, 2, and 4:
1. 1 = handle of the query statement.
2. 2 = column number.
3. 4 = address of the variable.

Example: Binding -

@ Suppose we have just done
SQLExecute(myStat), where myStat is
the handle for query

SELECT beer, price FROM Sells

WHERE bar = Joe"s Bar’

@ Bind the result to theBeer and thePrice:
SQLBindCol(myStat, 1, , &theBeer, ,);
SQLBindCol(myStat, 2, , &thePrice, ,);

Example: Fetching =

@ Now, we can fetch all the tuples of the
answer by:

while (SQLFetch(myStat) !'=[SQL_NO_DATA
{

/* do something with theBeer and

thePrice */
CLI macro representing

} @ SQLSTATE = 02000 = “failed
to find a tuple.”

30

)

JDBC -

9 Java Database Connectivity (JDBC) is a
library similar to SQL/CLI, but with Java
as the host language.

IDBC/CLI differences are often related
to the object-oriented style of Java, but
there are other differences.

Environments, Connections,
and Statements -

@ The same progression from environments
to connections to statements that we saw
in CLI appears in JDBC.

@ A connection object is obtained from the
environment in a somewhat
implementation-dependent way.

¢ We'll start by assuming we have myCon,
a connection object.

32

Statements °

€ IDBC provides two classes:

1. Statement = an object that can accept a
string that is an SQL statement and can
execute such a string.

2. PreparedStatement = an object that has
an associated SQL statement ready to
execute.

Creating Statements °

@ The Connection class has methods to create
Statements and PreparedStatements.

Statement statl = myCon.createStatement();

PreparedStatement stat2 = IEEIES
concatenates
myCon.createStatement(strings.
"SELECT beer,\price FROM Sells” 5
"WHERE bar = {Joe/s Bar’ ”
); createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement. 34

Executing SQL Statements °

€ JDBC distinguishes queries from
maodifications, which it calls “updates.”

@ Statement and PreparedStatement
each have methods executeQuery and
executeUpdate.

+ For Statements, these methods have one
argument: the query or modification to be
executed.

* For PreparedStatements: no argument.

Example: Update °

@ statl is a Statement.
@ We can use it to insert a tuple as:
statl.executeUpdate(
"INSERT INTO Sells” +
"VALUES(‘Brass Rail’, ‘Bud’, 3.00)”

)

Example: Query °

@ stat2 is a PreparedStatement holding
the query "SELECT beer, price FROM
Sells WHERE bar = ‘Joe"’s Bar’ “.

@ executeQuery returns an object of class
ResultSet --- we'll examine it later.

€ The query:
ResultSet Menu = stat2.executeQuery();

Accessing the ResultSet

€ An object of type ResultSet is
something like a cursor.
@ Method Next() advances the “cursor” to
the next tuple.
+ The first time Next() is applied, it gets the
first tuple.
+ If there are no more tuples, Next() returns
the value FALSE.

Accessing Components of Tuples

@ When a ResultSet is referring to a
tuple, we can get the components of
that tuple by applying certain methods
to the ResultSet.

@ Method getX (/), where X is some
type, and i is the component number,
returns the value of that component.

+ The value must have type X.

Example: Accessing Componentg

@ Menu is the ResultSet for the query “"SELECT
beer, price FROM Sells WHERE bar = ‘Joe"s Bar"'.

@ Access the beer and price from each tuple by:
while (Menu.Next()) {

theBeer = Menu. getString (1);

thePrice = Menu. getFloat (2);

/* do something with theBeer and
thePrice */

