The Relational Data Model

Functional Dependencies

Functional Dependencies °

@ X-> Ais an assertion about a relation R that
whenever two tuples of R agree on all the
attributes of X, then they must also agree on
the attribute A.

+ Say “X-> Aholds in R."

+ Notice convention: ...,X, ¥, Z represent sets of
attributes; 4, B, G... represent single attributes.

+ Convention: no set formers in sets of attributes,
just ABC, rather than {A4,5,C}.

Example -

@ Drinkers(name, addr, beersLiked,
manf, favBeer).
€ Reasonable FD’s to assert:
1. name -> addr
2. name -> favBeer
3. beerslLiked -> manf

Example Data °

name addr beersLiked | manf favBeer

Spock Enterprise

Janeway Voyager Q WickedAle
WigkedAle

Janeway Voyager
Because name - > addr Because name - > favBeer

L) )
Because beersLiked - > manf

L)

FD’s With Multiple Attributes °

@ No need for FD’s with > 1 attribute on
right.
+ But sometimes convenient to combine FD’s
as a shorthand.

+ Example: name -> addr and name ->
favBeer become name -> addr favBeer

€ > 1 attribute on left may be essential.
+ Example: bar beer -> price

Keys of Relations °

® K is a key for relation R if:
1. Set K functionally determines all attributes of R
2. For no proper subset of Kis (1) true.
+ If K satisfies (1), but perhaps not (2), then
K is a superkey.
+ Note E/R keys have no requirement for
minimality, as in (2) for relational keys.




Example °

@ Consider relation Drinkers(name, addr,
beersLiked, manf, favBeer).

€ {name, beersLiked} is a superkey
because together these attributes
determine all the other attributes.
¢ name -> addr favBeer
¢+ beersLiked -> manf

Example, Cont. ©

®{name, beersLiked} is a key because
neither {name} nor {beersLiked} is a
superkey.
+ name doesn't -> manf; beersLiked doesn’t

-> addr.

@ In this example, there are no other
keys, but lots of superkeys.
+ Any superset of {name, beersLiked}.

E/R and Relational Keys °

®Keys in E/R are properties of entities
@ Keys in relations are properties of tuples.

@ Usually, one tuple corresponds to one entity,
so the ideas are the same.

@ But --- in poor relational designs, one entity
can become several tuples, so E/R keys and
Relational keys are different.

Example Data °

name

addr beersLiked | manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle | Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

Relational key = name beersLiked

But in E/R, name is a key for Drinkers, and beersLiked is a key
for Beers.

Note: 2 tuples for Janeway entity and 2 tuples for Bud entity.

Where Do Keys Come From? °

1. We could simply assert a key K. Then
the only FD's are K-> A for all
atributes A4, and K'turns out to be the
only key obtainable from the FD’s.

2. We could assert FD’s and deduce the
keys by systematic exploration.

@ E/R gives us FD’s from entity-set keys
and many-one relationships.

FD’s From “Physics” =

@ While most FD’s come from E/R
keyness and many-one relationships,
some are really physical laws.

¥ Example: “no two courses can meet in
the same room at the same time” tells
us: hour room - > course




Inferring FD’s: Motivation °

@ In order to design relation schemas
well, we often need to tell what FD’s
hold in a relation.

@& We are given FD's X; -> A, X, -> A,,...,
X,-> A,, and we want to know
whether an FD Y-> B must hold in any
relation that satisfies the given FD's.

+ Example: If A-> Band B-> C hold, surely
A-> C holds, even if we don't say so.
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Inference Test °

@ To test if Y-> B, start assuming two tuples
agree in all attributes of Y.

@ Use the given FD’s to infer that these tuples
must also agree in certain other attributes.

@If B is eventually found to be one of these
attributes, then Y-> Bis true; otherwise, the
two tuples, with any forced equalities form a
two-tuple relation that proves Y-> Bdoes
not follow from the given FD's.

Closure Test °

@ An easier way to test is to compute the
closure of Y, denoted Y'+.

®Basis: Y+ =Y.

@ Induction: Look for an FD’s left side X
that is a subset of the current Y+. If
the FD is X-> A, add Ato Y.

new Y%

Finding All Implied FD's °

# Motivation: “normalization,” the process
where we break a relation schema into
two or more schemas.

¢ Example: ABCD with FD’s AB->C,
C->D, and D->A.

* Decompose into ABG, AD. What FD’s hold in
ABC?
* Not only AB->C but also C->A'!

Basic Idea ®

@ To know what FD’s hold in a projection,
we start with given FD’s and find all
FD’s that follow from given ones.

@ Then, restrict to those FD’s that involve
only attributes of the projected schema.




Simple, Exponential Algorithm °

1. For each set of attributes X, compute
X+

2. Add X->Aforall Ain X+ - X

3. However, drop XY ->A whenever we
discover X->A.
@ Because XY ->A follows from X->A.

4. Finally, use only FD's involving
projected attributes.

A Few Tricks @

@ Never need to compute the closure of
the empty set or of the set of all
attributes.

@ If we find X* = all attributes, don't
bother computing the closure of any
supersets of X

Example °

® ABCwith FD's A->B and B->C
Project onto AC.
* A*=ABC; yields A->B, A->C.
» We do not need to compute A8+ or AC*.
¢ B*=BC; yields B->C.
¢ C*=_; yields nothing.
¢ BC*=BC; yields nothing.

Example, Continued °

@ Resulting FD's: A->B A->(, and
B->C

@ Projection onto AC: A->C
+ Only FD that involves a subset of {4,C}.

A Geometric View of FD's

®Imagine the set of all instances of a
particular relation.

@ That is, all finite sets of tuples that
have the proper number of
components.

® Each instance is a point in this space.

Example: R(A,B) °

{12, G4}

{51}

{(1,2), (3,4), (1,3)}




An FD is a Subset of Instances °

@ For each FD X-> A there is a subset
of all instances that satisfy the FD.

€ We can represent an FD by a region in
the space.

@ Trivial FD: an FD that is represented
by the entire space.
¢ Example: A-> A

Example: A -> B for R(A,B) °

{L2), G4}

A->B
{1}

{(1,2), (3,4), (1,3)}

Representing Sets of FD's  °

@ If each FD is a set of relation instances,
then a collection of FD's corresponds to
the intersection of those sets.

+ Intersection = all instances that satisfy all
of the FD’s.

)

Example

Instances satisfying
A->B, B->C, and
CD->A

Implication of FD's °

@If an FD Y-> B follows from FD's
X, -> Ay, X, -> A,, then the region in
the space of instances for Y-> B must
include the intersection of the regions
for the FD’s X;-> A;.
* That is, every instance satisfying all the
FD’s X;-> A, surely satisfies ¥V'-> B.
+ But an instance could satisfy Y-> B, yet
not be in this intersection.

1)

Example




