The Relational Data Model

Functional Dependencies

Functional Dependencies 9

- ◆ X -> A is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on the attribute A.
 - Say "X-> A holds in R."
 - Notice convention: ...,X, Y, Z represent sets of attributes; A, B, C,... represent single attributes.
 - Convention: no set formers in sets of attributes, just ABC, rather than {A,B,C}.

2

Example 9

- Drinkers(name, addr, beersLiked, manf, favBeer).
- Reasonable FD's to assert:
 - 1. name -> addr
 - 2. name -> favBeer
 - 3. beersLiked -> manf

3

Example Data name addr beersLiked manf favBeer Spock Enterprise Wickedater Pete's Bud Because name -> addr Because name -> favBeer Because beersLiked -> manf

FD's With Multiple Attributes 9

- ◆No need for FD's with > 1 attribute on right.
 - But sometimes convenient to combine FD's as a shorthand.
 - Example: name -> addr and name -> favBeer become name -> addr favBeer
- > 1 attribute on left may be essential.
 - Example: bar beer -> price

Keys of Relations

- K is a key for relation R if:
 - 1. Set K functionally determines all attributes of R
 - 2. For no proper subset of K is (1) true.
- If *K* satisfies (1), but perhaps not (2), then *K* is a *superkey*.
- Note E/R keys have no requirement for minimality, as in (2) for relational keys.

Example •

- Consider relation Drinkers(name, addr, beersLiked, manf, favBeer).
- {name, beersLiked} is a superkey because together these attributes determine all the other attributes.
 - name -> addr favBeer
 - beersLiked -> manf

4

Example, Cont.

- {name, beersLiked} is a key because neither {name} nor {beersLiked} is a superkey.
 - name doesn't -> manf; beersLiked doesn't -> addr.
- ◆ In this example, there are no other keys, but lots of superkeys.
 - Any superset of {name, beersLiked}.

8

E/R and Relational Keys

- ◆Keys in E/R are properties of entities
- Keys in relations are properties of tuples.
- Usually, one tuple corresponds to one entity, so the ideas are the same.
- But --- in poor relational designs, one entity can become several tuples, so E/R keys and Relational keys are different.

Example Data

name	addr	beersLiked	manf	favBeer
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	Voyager	WickedAle	Pete's	WickedAle
Spock	Enterprise	Bud	A.B.	Bud

Relational key = name beersLiked

But in E/R, name is a key for Drinkers, and beersLiked is a key for Beers.

Note: 2 tuples for Janeway entity and 2 tuples for Bud entity.

10

Where Do Keys Come From?

- 1. We could simply assert a key *K*. Then the only FD's are *K*-> *A* for all atributes *A*, and *K* turns out to be the only key obtainable from the FD's.
- 2. We could assert FD's and deduce the keys by systematic exploration.
 - ♦ E/R gives us FD's from entity-set keys and many-one relationships.

FD's From "Physics"

- While most FD's come from E/R keyness and many-one relationships, some are really physical laws.
- ◆Example: "no two courses can meet in the same room at the same time" tells us: hour room -> course.

Inferring FD's: Motivation •

- In order to design relation schemas well, we often need to tell what FD's hold in a relation.
- We are given FD's $X_1 -> A_1$, $X_2 -> A_2$,..., $X_n -> A_n$, and we want to know whether an FD Y -> B must hold in any relation that satisfies the given FD's.
 - Example: If $A \rightarrow B$ and $B \rightarrow C$ hold, surely $A \rightarrow C$ holds, even if we don't say so.

13

Inference Test

- ◆To test if Y-> B, start assuming two tuples agree in all attributes of Y.
- Use the given FD's to infer that these tuples must also agree in certain other attributes.
- ◆If B is eventually found to be one of these attributes, then Y-> B is true; otherwise, the two tuples, with any forced equalities form a two-tuple relation that proves Y-> B does not follow from the given FD's.

14

Closure Test

- ◆An easier way to test is to compute the closure of Y, denoted Y+.
- \bullet Basis: $Y^+ = Y$.
- ◆Induction: Look for an FD's left side X that is a subset of the current Y⁺. If the FD is X-> A, add A to Y⁺.

15

Finding All Implied FD's

- Motivation: "normalization," the process where we break a relation schema into two or more schemas.
- ◆Example: ABCD with FD's AB -> C, C-> D, and D-> A.
 - Decompose into ABC, AD. What FD's hold in ABC?
 - Not only AB -> C, but also C-> A!

17

Basic Idea

- ◆To know what FD's hold in a projection, we start with given FD's and find all FD's that follow from given ones.
- ◆Then, restrict to those FD's that involve only attributes of the projected schema.

Simple, Exponential Algorithm

- 1. For each set of attributes X, compute X^+ .
- 2. Add $X \rightarrow A$ for all A in $X^+ X$.
- 3. However, drop $XY \rightarrow A$ whenever we discover $X \rightarrow A$.
 - lack Because XY->A follows from X->A.
- 4. Finally, use only FD's involving projected attributes.

19

A Few Tricks

- Never need to compute the closure of the empty set or of the set of all attributes.
- ◆If we find X+ = all attributes, don't bother computing the closure of any supersets of X.

20

Example •

- ◆ ABC with FD's A -> B and B -> C. Project onto AC.
 - A+=ABC; yields A->B, A->C.
 We do not need to compute AB+ or AC+.
 - $B^+=BC$; yields B->C
 - C+=C; yields nothing.
 - BC+=BC; yields nothing.

21

Example, Continued

- ◆ Resulting FD's: *A* -> *B*, *A* -> *C*, and *B* -> *C*.
- ◆Projection onto *AC*: *A* -> *C*.
 - Only FD that involves a subset of {A,C}.

22

A Geometric View of FD's

- Imagine the set of all instances of a particular relation.
- ◆ That is, all finite sets of tuples that have the proper number of components.
- Each instance is a point in this space.

An FD is a Subset of Instances .

- ◆ For each FD X-> A there is a subset of all instances that satisfy the FD.
- We can represent an FD by a region in the space.
- Trivial FD: an FD that is represented by the entire space.
 - Example: A -> A.

25

Representing Sets of FD's

- ◆ If each FD is a set of relation instances, then a collection of FD's corresponds to the intersection of those sets.
 - Intersection = all instances that satisfy all of the FD's.

27

Implication of FD's

- ♦ If an FD Y -> B follows from FD's X_1 -> A_1 ,..., X_n -> A_n , then the region in the space of instances for Y -> B must include the intersection of the regions for the FD's X_i -> A_i .
 - That is, every instance satisfying all the FD's X_i -> A_i surely satisfies Y-> B.
 - But an instance could satisfy Y-> B, yet not be in this intersection.

