Datalog

Logical Rules
Recursion
SQL-99 Recursion

Logic As a Query Language °

@ If-then logical rules have been used in
many systems.
* Most important today: EII (Enterprise

Information Integration).

@ Nonrecursive rules are equivalent to the
core relational algebra.

@ Recursive rules extend relational
algebra --- have been used to add
recursion to SQL-99.

A Logical Rule =

@ Our first example of a rule uses the
relations Frequents(drinker,bar),
Likes(drinker,beer), and
Sells(bar,beer,price).

@ The rule is a query asking for “happy”
drinkers --- those that frequent a bar
that serves a beer that they like.

Anatomy of a Rule °
Happy(d Frequents(d,bar) AND
L|k beer) AND Sells(bar,beer,p
\

Head = “consequent,” - Body = “antecedent” =
: L))
a single subgoal AND of subgoals.

@ Read this
symbol “if”

Subgoals Are Atoms °

@®An atom is a predicate, or relation
name with variables or constants as
arguments.

@ The head is an atom; the body is the
AND of one or more atoms.

@ Convention: Predicates begin with a
capital, variables begin with lower-case.

Example: Atom °

-(I&K

The predicate Arguments are
= name of a variables
relation

Interpreting Rules °

@ A variable appearing in the head is
called distinguished ; otherwise it is
nondistinguished.

®Rule meaning: The head is true of the
distinguished variables if there exist
values of the nondistinguished variables
that make all subgoals of the body true.

Example: Interpretation °

Happy(d) <- Frequents(dbar) AND
es(§been) AND Sefs(br peeip)

o Dis!:inguished o Norjdistinguished
variable variables

Interpretation: drinker d is happy if there exist a

@ bar, a beer, and a price p such that d frequents
the bar, likes the beer, and the bar sells the beer
at price p.

8

Arithmetic Subgoals °

#1n addition to relations as predicates, a
predicate for a subgoal of the body can
be an arithmetic comparison.

+ We write such subgoals in the usual way,
e.g.. x< J

Example: Arithmetic ©

@A beer is “cheap” if there are at least
two bars that sell it for under $2.

Cheap(beer) <- Sells(bar1,beer,p1) AND
Sells(bar2,beer,p2) AND p1 < 2.00
AND p2 < 2.00 AND barl <> bar2

Negated Subgoals °

®We may put NOT in front of a subgoal,
to negate its meaning.
@ Example: Think of Arc(a,b) as arcs in a
graph.
+ S(x,y) says the graph is not transitive from
x to y; i.e., there is a path of length 2
from x to y, but no arc from x to y.
S(x,y) <- Arc(x,z) AND Arc(z,y)
AND NOT Arc(x,y)

Safe Rules @

¢ Aruleis safe if:
1. Each distinguished variable,
2. Each variable in an arithmetic subgoal,
3. Each variable in a negated subgoal,
also appears in a nonnegated,
relational subgoal.
¢ We allow only safe rules.

Example: Unsafe Rules °

€ Each of the following is unsafe and
not allowed:
1. S(x) <- R(y)
2. S(x) <- R(x) AND NOT R(y)
3. S(x) <-R(y) AND x <y
@ In each case, an infinity of x's can
satisfy the rule, even if R is a finite
relation.

Algorithms for Applying Rules °

¢ Two approaches:

1. Variable-based : Consider all possible
assignments to the variables of the body.
If the assignment makes the body true,
add that tuple for the head to the result.

2. Tuple-based : Consider all assignments of
tuples from the non-negated, relational
subgoals. If the body becomes true, add
the head’s tuple to the result.

14

Example: Variable-Based --- 1 °

S(x,y) <- Arc(x,z) AND Arc(z,y)
AND NOT Arc(x,Y)
@ Arc(1,2) and Arc(2,3) are the only
tuples in the Arc relation.

€ Only assignments to make the first
subgoal Arc(x,z) true are:
L =il z=72
2. x=2;2=3

Example: Variable-Based; x=1, z=2

S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y)
12 23 13

/

3 is the only value of ythat makes all

three subgoals true.

o Makes S(1,3) a tuple
of the answer

Example: Variable-Based; x=2, z=3

S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y)

2 23 3 I 2
No value of y
Thus, no contribution makes Arc(3,y)
to the head tuples; true.
S ={(13)} 2

Tuple-Based Assignment °

@ Start with the non-negated, relational
subgoals only.

@ Consider all assignments of tuples to these
subgoals.

+ Choose tuples only from the corresponding
relations.

@ If the assigned tuples give a consistent value
to all variables and make the other subgoals
true, add the head tuple to the result.

Example: Tuple-Based °

S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y)

Arc(1,2), Arc(2,3)

@ Four possible assignments to first two
subgoals:

Arc(x,z) Arc(z,y) Only assignment
1,2) 1,2) with consistent
14 I - - .
2 (L2 (2.3) e
2,3) 1,2) NOT Arc(x,y) true,
2,3) 2,3) add S(1,3) to

result.

19

Datalog Programs °

® A Datalog program is a collection of
rules.
@ In a program, predicates can be either

1. EDB = Extensional Database = stored
table.

2. IDB = Intensional Database = relation
defined by rules.

+ Never both! No EDB in heads.

Evaluating Datalog Programs °

@ As long as there is no recursion, we can
pick an order to evaluate the IDB
predicates, so that all the predicates in
the body of its rules have already been
evaluated.

@ If an IDB predicate has more than one

rule, each rule contributes tuples to its
relation.

Example: Datalog Program °

@ Using EDB Sells(bar, beer, price) and
Beers(name, manf), find the
manufacturers of beers Joe doesn't sell.

JoeSells(b) <- Sells("Joe"s Bar’, b, p)
Answer(m) <- Beers(b,m)
AND NOT JoeSells(b)

Expressive Power of Datalog -

@ Without recursion, Datalog can express
all and only the queries of core
relational algebra.

+ The same as SQL select-from-where,
without aggregation and grouping.

€ But with recurson, Datalog can express
more than these languages.

@ Yet still not Turing-complete.

Recursive Example

@ EDB: Par(c,p) = pis a parent of c

@ Generalized cousins: people with common
ancestors one or more generations back:

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y
Cousin(x,y) <- Sib(x,y)
Cousin(x,y) <- Par(x,xp) AND Par(y,yp)

AND Cousin(xp,yp)

Definition of Recursion °

@ Form a dependency graph whose
nodes = IDB predicates.

@®Arc X->Y if and only if there is a rule
with X in the head and Y in the body.

@ Cycle = recursion; no cycle = no
recursion.

Example: Dependency Graphs °

m JoeSells

Recursive Nonrecursive

Evaluating Recursive Rules °

@ The following works when there is no
negation:
1. Start by assuming all IDB relations are
empty.
2. Repeatedly evaluate the rules using the
EDB and the previous IDB, to get a new
IDB.

3. End when no change to IDB.

The “Naive” Evaluation Algorithm

Start:
IDB =0

l

Apply rules
to IDB, EDB

yes
done

Example: Evaluation of Cousin °

@ We'll proceed in rounds to infer Sib facts
(red) and Cousin facts (green).

¥ Remember the rules:

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y
Cousin(x,y) <- Sib(x,y)
Cousin(x,y) <- Par(x,xp) AND Par(y,yp)

AND Cousin(xp,yp)

Seminaive Evaluation @

@ Since the EDB never changes, on each
round we only get new IDB tuples if we
use at least one IDB tuple that was
obtained on the previous round.

@ Saves work; lets us avoid rediscovering
most known facts.

+ A fact could still be derived in a second
way.

Par Data: Parent Above Child ®

/N
/S

Round 1
Round 2
Round 3
Round 4

e &8 &8 8

Recursion Plus Negation ©

#"Naive” evaluation doesn't work when
there are negated subgoals.

@ In fact, negation wrapped in a
recursion makes no sense in general.

@ Even when recursion and negation are
separate, we can have ambiguity about
the correct IDB relations.

Stratified Negation ©

@ Stratification is a constraint usually
placed on Datalog with recursion and
negation.

@ It rules out negation wrapped inside
recursion.

@ Gives the sensible IDB relations when
negation and recursion are separate.

Problematic Recursive Negation

P(x) <- Q(x) AND NOT P(x)
EDB: Q(1), Q(2)

Initial: P={}

Round 1: P = {(1), (2)}

Round 2: P={}

Round 3: P = {(1), (2)}, etc., etc. ...

Strata °

@ Intuitively, the stratum of an IDB
predicate P is the maximum number of
negations that can be applied to an IDB
predicate used in evaluating ~.

@ Stratified negation = “finite strata.”

@ Notice in P(x) <- Q(x) AND NOT P(x),
we can negate P an infinite humber of
times deriving P(x).

Stratum Graph °

@ To formalize strata use the stratum
graph :
+ Nodes = IDB predicates.
* Arc A->B if predicate A depends on 5.

+ Label this arc "-" if the B subgoal is
negated.

Stratified Negation Definition °

@ The stratum of a node (predicate) is
the maximum number of — arcs on a
path leading from that node.

@ A Datalog program is stratified if all its
IDB predicates have finite strata.

Example °

P(x) <- Q(x) AND NOT P(x)

d Cp

Another Example °

@ EDB = Source(x), Target(x), Arc(X,y).

@ Rules for “targets not reached from any
source”:

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x)

AND NOT Reach(x)

The Stratum Graph °

Stratum 1:
<=1larcon NoReach

any path out.

Stratum 0:

No — arcs on @
any path out. Q

Models @

@A model is a choice of IDB relations
that, with the given EDB relations
makes all rules true regardless of what
values are substituted for the variables.

+ Remember: a rule is true whenever its
body is false.

+ But if the body is true, then the head must
be true as well.

41

Minimal Models °

@ When there is no negation, a Datalog
program has a unique minimal model
(one that does not contain any other
model).

@ But with negation, there can be several
minimal models.

@ The stratified model is the one that
“makes sense.”

The Stratified Model °

€ When the Datalog program is stratified,
we can evaluate IDB predicates lowest-
stratum-first.

@ Once evaluated, treat it as EDB for
higher strata.

43

Example: Multiple Models --- 1 °

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x) AND NOT Reach(x)

Arc

Arc
4
Solirce Target Tdget ArC

Stratum 0: Stratum 1:
Reach(1), Reach(2) NoReach(3)
))

Example: Multiple Models --- 2 °

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x) AND NOT Reach(x)
Arc
_e

Source Target Target Arc

Arc

Another model! Reach(1), Reach(2),
Reach(3), Reach(4); NoReach is empty.

L)

a5

SQL-99 Recursion °

@ Datalog recursion has inspired the
addition of recursion to the SQL-99
standard.

@ Trickier, because SQL allows grouping-
and-aggregation, which behaves like
negation and requires a more complex
notion of stratification.

Form of SQL Recursive Queries °

WITH
<stuff that looks like Datalog rules>
<an SQL query about EDB, IDB>

Rule =
[RECURSIVE] <name>(<arguments>)
AS <query>

47

Example: SQL Recursion --- 1 °

@ Find Sally’s cousins, using SQL like the
recursive Datalog example.

@ Par(child,parent) is the EDB. L“P(:r?;%))('/{?\u;-

WITH Sib(x,y) AS __— Par(y,p) AND

SELECT p1.child, p2.child 7

FROM Par p1, Par p2 O)

WHERE p1.parent = p2.parent AND
pl.child <> p2.child;

Example: SQL Recursion --- 2 °

WITH ... Reflects Cousin(x,y) <-
RECURSIVE Cousin(x,y) AS o 20
[(SELECT * FROM Sib) i
ousin(x,y) <-
UNION L Ear(x,xp) ﬁmg
(SELECT p1.child, p2.child i)
FROM Par p1, Par p2, Cousin %

WHERE p1.parent = Cousin.x AND
p2.parent = Cousin.y);

49

Example: SQL Recursion --- 3 °

@ With those definitions, we can add the
query, which is about the “temporary
view” Cousin(x,y):

SELECT y
FROM Cousin
WHERE x = ‘Sally’;

Plan to Explain Legal SQL
Recursion e

1. Define “monotonicity,” a
generalization of “stratified.”

2. Generalize stratum graph to apply to
SQL.

3. Define proper SQL recursions in terms
of the stratum graph.

Monotonicity ©

@ If relation P is a function of relation Q
(and perhaps other relations), we say P
is monotone in Q if inserting tuples
into Q@ cannot cause any tuple to be
deleted from A,

¥ Examples:
+ P = Q UNION R
+ P = SELECT,_1o(Q).

Example: Nonmonotonicity °

@ If Sells(bar,beer,price) is our usual
relation, then the result of the query:

SELECT AVG(price)

FROM Sells

WHERE bar = 'Joe’’s Bar’;
is not monotone in Sells.

@ Inserting a Joe's-Bar tuple into Sells
usually changes the average price and
thus deletes the old average price. -

SQL Stratum Graph ---2 °

¢ Nodes =
1. IDB relations declared in WITH clause.

2. Subqueries in the body of the “rules.”
+ Includes subqueries at any level of nesting.

SQL Stratum Graph ---2 =

® Arcs P->Q:
1. P isarule head and Q is a relation in the FROM
list (not of a subquery).
2. P isarule head and Q is an immediate subquery
of that rule.
3. P is asubquery, and Q is a relation in its FROM
or an immediate subquery (like 1 and 2).
¢ Put™-"on an arc if P is not monotone in Q.

+ Stratified SQL = finite #'s of —'s on paths.

Example: Stratum Graph ©

@ In our Cousin example, the structure of
the rules was:

Slb 4 Subquery S1
‘ 7)
Cousin { (... FROM Sib)‘
Subquery S2

UNION
‘(... FROM Cousin ...)‘

Nonmonotone Example °

@ Change the UNION in the Cousin
example to EXCEPT:

Sib = ... Subquery S1
Cousin = (... FROM Sib) S
EXCEPT
A \(.. FROM Cousin ...)\ °
\
Can delete a tuple from Cousin Inserting a tuple into S2

The Graph °
No “—" at all,
sosurely @
stratified.
i
The Graph °

An infinite number
of —'s exist on
cycles involving
Cousin and S2.

Cousin

NOT Doesn’t Mean Nonmonotone

@ Not every NOT means the query is
nonmonotone.
+ We need to consider each case separately.
@ Example: Negating a condition in a
WHERE clause just changes the
selection condition.
+ But all selections are monotone.

10

Example: Revised Cousin °

RECURSIVE Cousin AS Revised
subquery S2
(SELECT * FROM Sib)
UNION /

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin
WHERE p1.parent = Cousin.x
pZ.parent = Cousin.y)

| _ Theonly
difference

)i

S2 Still Monotone in Cousin

@ Intuitively, adding a tuple to Cousin
cannot delete from S2.

@ All former tuples in Cousin can still
work with Par tuples to form S2 tuples.

#In addition, the new Cousin tuple might
even join with Par tuples to add to S2.

@

11

