
1

10.3 Recursive Programming in Datalog

While relational algebra can express many useful operations on relations, there
are some computations that cannot be written as an expression of relational al-
gebra. A common kind of operation on data that we cannot express in relational
algebra involves an in�nite, recursively de�ned sequence of similar expressions.

Example 10.1 : Often, a successful movie is followed by a sequel; if the se-
quel does well, then the sequel has a sequel, and so on. Thus, a movie may
be ancestral to a long sequence of other movies. Suppose we have a relation
SequelOf(movie, sequel) containing pairs consisting of a movie and its im-
mediate sequel. Examples of tuples in this relation are:

movie sequel

Naked Gun Naked Gun 21=2

Naked Gun 21=2 Naked Gun 331=3

We might also have a more general notion of a follow-on to a movie, which
is a sequel, a sequel of a sequel, and so on. In the relation above, Naked Gun

331=3 is a follow-on to Naked Gun, but not a sequel in the strict sense we are
using the term \sequel" here. It saves space if we store only the immediate
sequels in the relation and construct the follow-ons if we need them. In the
above example, we store only one fewer pair, but for the �ve Rocky movies we
store six fewer pairs, and for the 18 Friday the 13th movies we store 136 fewer
pairs.

However, it is not immediately obvious how we construct the relation of
follow-ons from the relation SequelOf. We can construct the sequels of sequels
by joining SequelOf with itself once. An example of such an expression in
relational algebra, using renaming so that the join becomes a natural join, is:

�first;third
�
�R(first;second)(SequelOf) ./ �S(second;third)(SequelOf)

�

In this expression, SequelOf is renamed twice, once so its attributes are called
first and second, and again so its attributes are called second and third.
Thus, the natural join asks for tuples (m1;m2) and (m3;m4) in SequelOf such
that m2 = m3. We then produce the pair (m1;m4). Note that m4 is the sequel
of the sequel of m1.

Similarly, we could join three copies of SequelOf to get the sequels of sequels
of sequels (e.g., Rocky and Rocky IV). We could in fact produce the ith sequels
for any �xed value of i by joining SequelOf with itself i � 1 times. We could
then take the union of SequelOf and a �nite sequence of these joins to get all
the sequels up to some �xed limit.

What we cannot do in relational algebra is ask for the \in�nite union" of the
in�nite sequence of expressions that give the ith sequels for i = 1; 2; : : : . Note
that relational algebra's union allows us only to take the union of two relations,
not an in�nite number. By applying the union operator any �nite number of

2

times in an algebraic expression, we can take the union of any �nite number of
relations, but we cannot take the union of an unlimited number of relations in
an algebraic expression. 2

10.3.1 Recursive Rules

By using an IDB predicate both in the head and the body of rules, we can
express an in�nite union in Datalog. We shall �rst see some examples of how
to express recursions in Datalog. In Section 10.3.2 we shall examine the least

�xedpoint computation of the relations for the IDB predicates of these rules. A
new approach to rule-evaluation is needed for recursive rules, since the straight-
forward rule-evaluation approach of Section ?? assumes all the predicates in the
body of rules have �xed relations.

Example 10.2 : We can de�ne the IDB relation FollowOn by the following
two Datalog rules:

1. FollowOn(x,y) SequelOf(x,y)

2. FollowOn(x,y) SequelOf(x,z) AND FollowOn(z,y)

The �rst rule is the basis; it tells us that every sequel is a follow-on. The second
rule says that every follow-on of a sequel of movie x is also a follow-on of x.
More precisely: if z is a sequel of x, and we have found that y is a follow-on of
z, then y is a follow-on of x. 2

10.3.2 Evaluating Recursive Datalog Rules

To evaluate the IDB predicates of recursive Datalog rules, we follow the principle
that we never want to conclude that a tuple is in an IDB relation unless we are
forced to do so by applying the rules as in Section ??. Thus, we:

1. Begin by assuming all IDB predicates have empty relations.

2. Perform a number of rounds, in which progressively larger relations are
constructed for the IDB predicates. In the bodies of the rules, use the
IDB relations constructed on the previous round. Apply the rules to get
new estimates for all the IDB predicates.

3. If the rules are safe, no IDB tuple can have a component value that does
not also appear in some EDB relation. Thus, there are a �nite number of
possible tuples for all IDB relations, and eventually there will be a round
on which no new tuples are added to any IDB relation. At this point, we
can terminate our computation with the answer; no new IDB tuples will
ever be constructed.

This set of IDB tuples is called the least �xedpoint of the rules.

10.3. RECURSIVE PROGRAMMING IN DATALOG 3

Example 10.3 : Let us show the computation of the least �xedpoint for re-
lation FollowOn when the relation SequelOf consists of the following three
tuples:

movie sequel

Rocky Rocky II

Rocky II Rocky III

Rocky III Rocky IV

At the �rst round of computation, FollowOn is assumed empty. Thus, rule (2)
cannot yield any FollowOn tuples. However, rule (1) says that every SequelOf

tuple is a FollowOn tuple. Thus, after the �rst round, the value of FollowOn is
identical to the SequelOf relation above. The situation after round 1 is shown
in Fig. 10.1(a).

In the second round, we use the relation from Fig. 10.1(a) as FollowOn and
apply the two rules to this relation and the given SequelOf relation. The �rst
rule gives us the three tuples that we already have, and in fact it is easy to see
that rule (1) will never yield any tuples for FollowOn other than these three.
For rule (2), we look for a tuple from SequelOf whose second component equals
the �rst component of a tuple from FollowOn.

Thus, we can take the tuple (Rocky; Rocky II) from SequelOf and pair
it with the tuple (Rocky II; Rocky III) from FollowOn to get the new tuple
(Rocky; Rocky III) for FollowOn. Similarly, we can take the tuple

(Rocky II; Rocky III)

from SequelOf and tuple (Rocky III; Rocky IV) from FollowOn to get new
tuple (Rocky II; Rocky IV) for FollowOn. However, no other pairs of tuples
from SequelOf and FollowOn join. Thus, after the second round, FollowOn has
the �ve tuples shown in Fig. 10.1(b). Intuitively, just as Fig. 10.1(a) contained
only those follow-on facts that are based on a single sequel, Fig. 10.1(b) contains
those follow-on facts based on one or two sequels.

In the third round, we use the relation from Fig. 10.1(b) for FollowOn and
again evaluate the body of rule (2). We get all the tuples we already had,
of course, and one more tuple. When we join the tuple (Rocky; Rocky II)
from SequelOf with the tuple (Rocky II; Rocky IV) from the current value of
FollowOn, we get the new tuple (Rocky; Rocky IV). Thus, after round 3, the
value of FollowOn is as shown in Fig. 10.1(c).

When we proceed to round 4, we get no new tuples, so we stop. The true
relation FollowOn is as shown in Fig. 10.1(c). 2

There is an important trick that simpli�es all recursive Datalog evaluations,
such as the one above:

� At any round, the only new tuples added to any IDB relation will come
from applications of rules in which at least one IDB subgoal is matched
to a tuple that was added to its relation at the previous round.

4

x y

Rocky Rocky II

Rocky II Rocky III

Rocky III Rocky IV

(a) After round 1

x y

Rocky Rocky II

Rocky II Rocky III

Rocky III Rocky IV

Rocky Rocky III

Rocky II Rocky IV

(b) After round 2

x y

Rocky Rocky II

Rocky II Rocky III

Rocky III Rocky IV

Rocky Rocky III

Rocky II Rocky IV

Rocky Rocky IV

(c) After round 3 and subsequently

Figure 10.1: Recursive computation of relation FollowOn

The justi�cation for this rule is that should all subgoals be matched to \old"
tuples, the tuple of the head would already have been added on the previous
round. The next two examples illustrate this strategy and also show us more
complex examples of recursion.

Example 10.4 : Many examples of the use of recursion can be found in a study
of paths in a graph. Figure 10.2 shows a graph representing some
ights of two
hypothetical airlines | Untried Airlines (UA), and Arcane Airlines (AA) |
among the cities San Francisco, Denver, Dallas, Chicago, and New York.

We may imagine that the
ights are represented by an EDB relation:

Flights(airline, from, to, departs, arrives)

The tuples in this relation for the data of Fig. 10.2 are shown in Fig. 10.3.

10.3. RECURSIVE PROGRAMMING IN DATALOG 5

Other Forms of Recursion

In Example 10.2 we used a right-recursive form for the recursion,
where the use of the recursive relation FollowOn appears after the EDB re-
lation SequelOf. We could also write similar left-recursive rules by putting
the recursive relation �rst. These rules are:

1. FollowOn(x,y) SequelOf(x,y)

2. FollowOn(x,y) FollowOn(x,z) AND SequelOf(z,y)

Informally, y is a follow-on of x if it is either a sequel of x or a sequel of a
follow-on of x.

We could even use the recursive relation twice, as in the nonlinear

recursion:

1. FollowOn(x,y) SequelOf(x,y)

2. FollowOn(x,y) FollowOn(x,z) AND FollowOn(z,y)

Informally, y is a follow-on of x if it is either a sequel of x or a follow-on of
a follow-on of x. All three of these forms give the same value for relation
FollowOn: the set of pairs (x; y) such that y is a sequel of a sequel of � � �
(some number of times) of x.

The simplest recursive question we can ask is \For what pairs of cities (x; y)
is it possible to get from city x to city y by taking one or more
ights?" The
following two rules describe a relation Reaches(x,y) that contains exactly these
pairs of cities.

1. Reaches(x,y) Flights(a,x,y,d,r)

2. Reaches(x,y) Reaches(x,z) AND Reaches(z,y)

The �rst rule says that Reaches contains those pairs of cities for which there
is a direct
ight from the �rst to the second; the airline a, departure time d,
and arrival time r are arbitrary in this rule. The second rule says that if you
can reach from city x to city z and you can reach from z to y, then you can
reach from x to y. Notice that we have used the nonlinear form of recursion
here, as was described in the box on \Other Forms of Recursion." This form is
slightly more convenient here, because another use of Flights in the recursive
rule would involve three more variables for the unused components of Flights.

To evaluate the relation Reaches, we follow the same iterative process intro-
duced in Example 10.3. We begin by using Rule (1) to get the following pairs
in Reaches: (SF, DEN), (SF, DAL), (DEN, CHI), (DEN, DAL), (DAL, CHI), (DAL, NY),
and (CHI, NY). These are the seven pairs represented by arcs in Fig. 10.2.

In the next round, we apply the recursive Rule (2) to put together pairs
of arcs such that the head of one is the tail of the next. That gives us the

6

SF

UA 930−1230

AA 900−1430

UA

1400−1700

AA

1530−1730

AA 1500−1930

UA 1830−2130

AA 1900−2200

UA 1500−1800

DEN

DAL

CHI
NY

Figure 10.2: A map of some airline
ights

airline from to departs arrives

UA SF DEN 930 1230

AA SF DAL 900 1430

UA DEN CHI 1500 1800

UA DEN DAL 1400 1700

AA DAL CHI 1530 1730

AA DAL NY 1500 1930

AA CHI NY 1900 2200

UA CHI NY 1830 2130

Figure 10.3: Tuples in the relation Flights

additional pairs (SF, CHI), (DEN, NY), and (SF, NY). The third round combines
all one- and two-arc pairs together to form paths of length up to four arcs.
In this particular diagram, we get no new pairs. The relation Reaches thus
consists of the ten pairs (x; y) such that y is reachable from x in the diagram
of Fig. 10.2. Because of the way we drew the diagram, these pairs happen to
be exactly those (x; y) such that y is to the right of x in Fig 10.2. 2

Example 10.5 : A more complicated de�nition of when two
ights can be
combined into a longer sequence of
ights is to require that the second leaves
an airport at least an hour after the �rst arrives at that airport. Now, we use
an IDB predicate, which we shall call Connects(x,y,d,r), that says we can
take one or more
ights, starting at city x at time d and arriving at city y at
time r. If there are any connections, then there is at least an hour to make the
connection.

The rules for Connects are:1

1These rules only work on the assumption that there are no connections spanningmidnight.

10.3. RECURSIVE PROGRAMMING IN DATALOG 7

1. Connects(x,y,d,r) Flights(a,x,y,d,r)

2. Connects(x,y,d,r) Connects(x,z,d,t1) AND

Connects(z,y,t2,r) AND

t1 <= t2 - 100

In the �rst round, rule (1) gives us the eight Connects facts shown above the
�rst line in Fig. 10.4 (the line is not part of the relation). Each corresponds
to one of the
ights indicated in the diagram of Fig. 10.2; note that one of the
seven arcs of that �gure represents two
ights at di�erent times.

We now try to combine these tuples using Rule (2). For example, the second
and �fth of these tuples combine to give the tuple (SF, CHI, 900, 1730). However,
the second and sixth tuples do not combine because the arrival time in Dallas
is 1430, and the departure time from Dallas, 1500, is only half an hour later.
The Connects relation after the second round consists of all those tuples above
the �rst or second line in Fig. 10.4. Above the top line are the original tuples
from round 1, and the six tuples added on round 2 are shown between the �rst
and second lines.

x y d r

SF DEN 930 1230

SF DAL 900 1430

DEN CHI 1500 1800

DEN DAL 1400 1700

DAL CHI 1530 1730

DAL NY 1500 1930

CHI NY 1900 2200

CHI NY 1830 2130

SF CHI 900 1730

SF CHI 930 1800

SF DAL 930 1700

DEN NY 1500 2200

DAL NY 1530 2130

DAL NY 1530 2200

SF NY 900 2130

SF NY 900 2200

SF NY 930 2200

Figure 10.4: Relation Connects after third round

In the third round, we must in principle consider all pairs of tuples above
one of the two lines in Fig. 10.4 as candidates for the two Connects tuples
in the body of rule (2). However, if both tuples are above the �rst line, then
they would have been considered during round 2 and therefore will not yield a
Connects tuple we have not seen before. The only way to get a new tuple is if

8

at least one of the two Connects tuple used in the body of rule (2) were added
at the previous round; i.e., it is between the lines in Fig. 10.4.

The third round only gives us three new tuples. These are shown at the
bottom of Fig. 10.4. There are no new tuples in the fourth round, so our
computation is complete. Thus, the entire relation Connects is Fig. 10.4. 2

10.3.3 Negation in Recursive Rules

Sometimes it is necessary to use negation in rules that also involve recursion.
There is a safe way and an unsafe way to mix recursion and negation. Generally,
it is considered appropriate to use negation only in situations where the negation
does not appear inside the �xedpoint operation. To see the di�erence, we shall
consider two examples of recursion and negation, one appropriate and the other
paradoxical. We shall see that only \strati�ed" negation is useful when there
is recursion; the term \strati�ed" will be de�ned precisely after the examples.

Example 10.6 : Suppose we want to �nd those pairs of cities (x; y) in the
map of Fig. 10.2 such that UA
ies from x to y (perhaps through several other
cities), but AA does not. We can recursively de�ne a predicate UAreaches as we
de�ned Reaches in Example 10.4, but restricting ourselves only to UA
ights,
as follows:

1. UAreaches(x,y) Flights(UA,x,y,d,r)

2. UAreaches(x,y) UAreaches(x,z) AND UAreaches(z,y)

Similarly, we can recursively de�ne the predicate AAreaches to be those pairs
of cities (x; y) such that one can travel from x to y using only AA
ights, by:

1. AAreaches(x,y) Flights(AA,x,y,d,r)

2. AAreaches(x,y) AAreaches(x,z) AND AAreaches(z,y)

Now, it is a simple matter to compute the UAonly predicate consisting of those
pairs of cities (x; y) such that one can get from x to y on UA
ights but not on
AA
ights, with the nonrecursive rule:

UAonly(x,y) UAreaches(x,y) AND NOT AAreaches(x,y)

This rule computes the set di�erence of UAreaches and AAreaches.
For the data of Fig. 10.2, UAreaches is seen to consist of the following pairs:

(SF, DEN), (SF, DAL), (SF, CHI), (SF, NY), (DEN, DAL), (DEN, CHI), (DEN, NY), and
(CHI, NY). This set is computed by the iterative �xedpoint process outlined
in Section 10.3.2. Similarly, we can compute the value of AAreaches for this
data; it is: (SF, DAL), (SF, CHI), (SF, NY), (DAL, CHI), (DAL, NY), and (CHI, NY).
When we take the di�erence of these sets of pairs we get: (SF, DEN), (DEN, DAL),
(DEN, CHI), and (DEN, NY). This set of four pairs is the relation UAonly. 2

10.3. RECURSIVE PROGRAMMING IN DATALOG 9

Example 10.7 : Now, let us consider an abstract example where things don't
work as well. Suppose we have a single EDB predicate R. This predicate
is unary (one-argument), and it has a single tuple, (0). There are two IDB
predicates, P and Q, also unary. They are de�ned by the two rules

1. P(x) R(x) AND NOT Q(x)

2. Q(x) R(x) AND NOT P(x)

Informally, the two rules tell us that an element x in R is either in P or in Q

but not both. Notice that P and Q are de�ned recursively in terms of each
other.

When we de�ned what recursive rules meant in Section 10.3.2, we said we
want the least �xedpoint, that is, the smallest IDB relations that contain all
tuples that the rules require us to allow. Rule (1), since it is the only rule for
P , says that as relations, P = R�Q, and rule (2) likewise says that Q = R�P .
Since R contains only the tuple (0), we know that only (0) can be in either P
or Q. But where is (0)? It cannot be in neither, since then the equations are
not satis�ed; for instance P = R�Q would imply that ; = f(0)g � ;, which is
false.

If we let P = f(0)g while Q = ;, then we do get a solution to both equations.
P = R�Q becomes f(0)g = f(0)g � ;, which is true, and Q = R� P becomes
; = f(0)g � f(0)g, which is also true.

However, we can also let P = ; and Q = f(0)g. This choice too satis�es
both rules. We thus have two solutions:

a) P = f(0)g Q = ;
b) P = ; Q = f(0)g

Both are minimal, in the sense that if we throw any tuple out of any relation,
the resulting relations no longer satisfy the rules. We cannot, therefore, decide
between the two least �xedpoints (a) and (b), so we cannot answer a simple
question such as \Is P (0) true?" 2

In Example 10.7, we saw that our idea of de�ning the meaning of recur-
sive rules by �nding the least �xedpoint no longer works when recursion and
negation are tangled up too intimately. There can be more than one least
�xedpoint, and these �xedpoints can contradict each other. It would be good if
some other approach to de�ning the meaning of recursive negation would work
better, but unfortunately, there is no general agreement about what such rules
should mean.

Thus, it is conventional to restrict ourselves to recursions in which nega-
tion is strati�ed. For instance, the SQL-99 standard for recursion discussed in
Section ?? makes this restriction. As we shall see, when negation is strati�ed
there is an algorithm to compute one particular least �xedpoint (perhaps out of
many such �xedpoints) that matches our intuition about what the rules mean.
We de�ne the property of being strati�ed as follows.

10

1. Draw a graph whose nodes correspond to the IDB predicates.

2. Draw an arc from node A to node B if a rule with predicate A in the head
has a negated subgoal with predicate B. Label this arc with a � sign to
indicate it is a negative arc.

3. Draw an arc from node A to node B if a rule with head predicate A

has a non-negated subgoal with predicate B. This arc does not have a
minus-sign as label.

If this graph has a cycle containing one or more negative arcs, then the
recursion is not strati�ed. Otherwise, the recursion is strati�ed. We can group
the IDB predicates of a strati�ed graph into strata. The stratum of a predicate
A is the largest number of negative arcs on a path beginning from A.

If the recursion is strati�ed, then we may evaluate the IDB predicates in
the order of their strata, lowest �rst. This strategy produces one of the least
�xedpoints of the rules. More importantly, computing the IDB predicates in
the order implied by their strata appears always to make sense and give us the
\right" �xedpoint. In contrast, as we have seen in Example 10.7, unstrati�ed
recursions may leave us with no \right" �xedpoint at all, even if there are many
to choose from.

UAonly

AAreaches UAreaches

−

Figure 10.5: Graph constructed from a strati�ed recursion

Example 10.8 : The graph for the predicates of Example 10.6 is shown in
Fig. 10.5. AAreaches and UAreaches are in stratum 0, because none of the
paths beginning at their nodes involves a negative arc. UAonly has stratum 1,
because there are paths with one negative arc leading from that node, but no
paths with more than one negative arc. Thus, we must completely evaluate
AAreaches and UAreaches before we start evaluating UAonly.

Compare the situation when we construct the graph for the IDB predicates
of Example 10.7. This graph is shown in Fig. 10.6. Since rule (1) has head P

with negated subgoal Q, there is a negative arc from P to Q. Since rule (2)
has head Q with negated subgoal P , there is also a negative arc in the opposite
direction. There is thus a negative cycle, and the rules are not strati�ed. 2

10.3. RECURSIVE PROGRAMMING IN DATALOG 11

P Q

Figure 10.6: Graph constructed from an unstrati�ed recursion

10.3.4 Exercises for Section 10.3

Exercise 10.3.1 : If we add or delete arcs to the diagram of Fig. 10.2, we may
change the value of the relation Reaches of Example 10.4, the relation Connects
of Example 10.5, or the relations UAreaches and AAreaches of Example 10.6.
Give the new values of these relations if we:

* a) Add an arc from CHI to SF labeled AA, 1900-2100.

b) Add an arc from NY to DEN labeled UA, 900-1100.

c) Add both arcs from (a) and (b).

d) Delete the arc from DEN to DAL.

Exercise 10.3.2 : Write Datalog rules (using strati�ed negation, if negation is
necessary) to describe the following modi�cations to the notion of \follow-on"
from Example 10.1. You may use EDB relation SequelOf and the IDB relation
FollowOn de�ned in Example 10.2.

* a) P(x,y) meaning that movie y is a follow-on to movie x, but not a sequel
of x (as de�ned by the EDB relation SequelOf).

b) Q(x,y) meaning that y is a follow-on of x, but neither a sequel nor a
sequel of a sequel.

! c) R(x) meaning that movie x has at least two follow-ons. Note that both
could be sequels, rather than one being a sequel and the other a sequel of
a sequel.

!! d) S(x,y), meaning that y is a follow-on of x but y has at most one follow-on.

Exercise 10.3.3 : ODL classes and their relationships can be described by
a relation Rel(class, rclass, mult). Here, mult gives the multiplicity of
a relationship, either multi for a multivalued relationship, or single for a
single-valued relationship. The �rst two attributes are the related classes; the
relationship goes from class to rclass (related class). For example, the re-
lation Rel representing the three ODL classes of our running movie example
from Fig. ?? is shown in Fig. 10.7.

We can also see this data as a graph, in which the nodes are classes and
the arcs go from a class to a related class, with label multi or single, as
appropriate. Figure 10.8 illustrates this graph for the data of Fig. 10.7.

12

class rclass mult

Star Movie multi

Movie Star multi

Movie Studio single

Studio Movie multi

Figure 10.7: Representing ODL relationships by relational data

Star Movie Studio

multi

multi

single

multi

Figure 10.8: Representing relationships by a graph

For each of the following, write Datalog rules, using strati�ed negation if
negation is necessary, to express the described predicate(s). You may use Rel

as an EDB relation. Show the result of evaluating your rules, round-by-round,
on the data from Fig. 10.7.

a) Predicate P(class, eclass), meaning that there is a path2 in the graph
of classes that goes from class to eclass. The latter class can be thought
of as \embedded" in class, since it is in a sense part of a part of an � � � ob-
ject of the �rst class.

*! b) Predicates S(class, eclass) and M(class, eclass). The �rst means
that there is a \single-valued embedding" of eclass in class, that is, a
path from class to eclass along which every arc is labeled single. The
second, M , means that there is a \multivalued embedding" of eclass in
class, i.e., a path from class to eclass with at least one arc labeled
multi.

c) Predicate Q(class, eclass) that says there is a path from class to
eclass but no single-valued path. You may use IDB predicates de�ned
previously in this exercise.

2We shall not consider empty paths to be \paths" in this exercise.

