Data Dependences and
Parallelization

Agenda

m /ntroduction

m Single Loop

= Nested Loops

m Data Dependence Analysis

Stanford University CS243 Winter 2006

Motivation

m DOALL loops: loops whose iterations can
execute in parallel

for 1 =11, 20
a[i] = a[i] + 3

m New abstraction needed

m Abstraction used in data flow analysis is inadequate
m Information of all instances of a statement is combined

Stanford University CS243 Winter 2006

e

fori1 =11, 20
a[i] — a[i] + 3

Parallel

for1 =11, 20

afi] = afi-1] + 3 Parallel?

Stanford University CS243 Winter 2006

Examples

for 1 -1 .20 Parallel

a[i] = a[i] + 3
fori=11, 20

3[1] — 3[1_1] + 3 Not parallel
for1 =11, 20

a[i] = a[i-10] + 3 Parallel?

Stanford University CS243 Winter 2006

Agenda

= Introduction

m Single Loop

= Nested Loops

m Data Dependence Analysis

Stanford University CS243 Winter 2006

Data Dependence of Scalar
Variables

m [rue dependence m Output dependence

a4 — a =
— a a:

= Anti-dependence ® Input dependence

a — = a

Stanford University CS243 Winter 2006
7

Array Accesses in a Loop

fori= 2, 5
a[i] = a[i] + 3

CS243 Winter 2006

Array Anti-dependence

fori= 2,5
a[i-2] = afi] + 3

CS243 Winter 2006

Array True-dependence

fori= 2,5
a[i] = a[i-2] + 3

CS243 Winter 2006

10

Dynamic Data Dependence

m Let o and o' be two (dynamic) operations

m Data dependence exists from o to o’, iff
= either o or o’ Is a write operation
= 0 and o’ may refer to the same location
m O executes before o

Stanford University CS243 Winter 2006 »

Static Data Dependence

m Let a and a’ be two static array accesses
(not necessarily distinct)

m Data dependence exists from a to a’, iff
m either a or a’ Is a write operation

= [here exists a dynamic instance of a (o) and
a dynamic instance of a’ (0’) such that
m 0 and o’ may refer to the same location
m O executes before o’

Stanford University CS243 Winter 2006

12

Recognizing DOALL Loops

m Find data dependences in loop

m Definition: a dependence is loop-carried if
It crosses an iteration boundary

m If there are no loop-carried dependences
then loop is parallelizable

Stanford University CS243 Winter 2006 3

Compute Dependence

fori= 2,5
a[i-2] = afi] + 3

m [here is a dependence between ai] and
a[i-2] if
= There exist two iterations i.and i, within the
loop bounds such that iterations i, and i, read

and write the same array element,
respectively

m There existi, |

oy, 251,1,S9, 1. =1, -2

Stanford University CS243 Winter 2006 »

Compute Dependence

fori= 2,5
a[i-2] = afi] + 3

m [here Is a dependence between ali-2] and
ali-2] if
= There exist two iterations i, and i, within the

loop bounds such that iterations i, and I, write
the same array element, respectively

= There exist i, i,,2=<1i,,i1,<95, i,-2=i,-2

Vi "W V’IW

Stanford University CS243 Winter 2006 "

Parallelization

fori= 2,5
a[i-2] = afi] + 3

m Is there a loop-carried dependence
between a[i] and a[i-2]?

m Is there a loop-carried dependence
between a[i-2] and ali-2]?

Stanford University CS243 Winter 2006

16

Agenda

= Introduction

m Single Loops

m Nested Loops

m Data Dependence Analysis

Stanford University CS243 Winter 2006

17

Nested Loops

= Which loop(s) are parallel?

fori1=0,5
fori2=0,3
a[1l,i2] = a[il1-2,i2-1] + 3

Stanford University CS243 Winter 2006

18

Iteration Space

= An abstraction for
loops
fori1=0,5
fori2=0,3
a[il,i2] = 3 12
= |[teration Is
represented as

coordinates in i1
iteration space.

Stanford University CS243 Winter 2006 o

Execution Order

m Sequential execution
order of iterations:

Lexicographic order [0,0],
[0,1], ...[0,3], [1,0], [1,1],

.[1,31, [2,0]...

m Let| = (i,ly,...1,). | i2
lexicographically less

than I’, I<I’, iff there exists

k such that (iy,... i, 1) =

Stanford University CS243 Winter 2006

Parallelism for Nested Loops

m |s there a data dependence between
ali1,12] and a[i1-2,12-1]7
= There exist i1, 12, 11,,12,, such that
=0<i1,i1,<5,
=0<i2,i2, <3,
mi1.-2=11,
ni2.-1=i2,

Stanford University CS243 Winter 2006

21

Loop-carried Dependence

m If there are no loop-carried dependences,
then loop Is parallelizable.

m Dependence carried by outer loop:
mi1.#11,

m Dependence carried by inner loop:
mi1.=11,
mi2.F12,

m [his can naturally be extended to
dependence carried by loop level k.

Stanford University CS243 Winter 2006 -

Nested Loops

= Which loop carries
the dependence?

fori1=0,5 ,2
fori2 =0, 3 '
a[il,i2] = a[i1-2,i2-1] + 3

1|

Stanford University CS243 Winter 2006 -

Agenda

= Introduction

m Single Loop

= Nested Loops

m Data Dependence Analysis

Stanford University CS243 Winter 2006

24

Solving Data Dependence
Problems

m Memory disambiguation is un-decidable at
compile-time.

read(n)
fori=0,3
a[i] = a[n] + 3

Stanford University CS243 Winter 2006

25

Domain of Data Dependence
Analysis

= Only use loop bounds and array indices
which are integer linear functions of
variables.

foril =1, n
for i2 = 2*i1, 100

a[il+2%i2+3] [4*il+2*i2] [i1*i1] = ...

... = a[l][2*i1+1][i2] + 3

Stanford University CS243 Winter 2006

26

Equations

m [here is a data dependence, If
= There existil, 12, 11,,12,, such that
= 0<i1,i1,<n, 2*1,<i2 <100, 2*1,, <i2,< 100,
i1, + 242, +3 =1, 4%i1,, + 2*2,, = 2*i1 + 1
= Note: ignoring non-affine relations
foril =1, n
for 12 = 2*11, 100
a[11+2*12+3] [4*11+2*12] [11*11] = ...
oo = a[1][2*11+1][12] + 3

Stanford University CS243 Winter 2006

27

Solutions

m [here is a data dependence, If
= There existil, 12, 11,,12,, such that
= 0<i1,i1,<n, 2*1, <i2,<100, 2*i1,, <i2,< 100,
i1, +2%2,+3 =1, 4%1, + 2*2,,- 1=i1,+ 1

= No solution — No data dependence

= Solution — there may be a dependence

Stanford University CS243 Winter 2006

28

Form of Data Dependence
Analysis

m Data dependence problems originally
contains equalities and equalities

= Eliminate inequalities in the problem
statement:

= Replace a # b with two sub-problems: a>b or
a<b

= We get

E|iIltl?,AllT <b 1,A27 =bh>

Stanford University CS243 Winter 2006

29

Form of Data Dependence
Analysis

m Eliminate equalities in the problem
statement:

= Replace a =b with two sub-problems: a<b
and b=a

= We get

Jint i, Ai < b
m Integer programming is NP-complete, i.e.
Expensive

Stanford University CS243 Winter 2006 20

Techniques: Inexact Tests

m Examples: GCD test, Banerjee’s test

m 2 outcomes
= No — no dependence

m Don’t know — assume there is a solution —
dependence

m Extra data dependence constraints

m Sacrifice parallelism for compiler
efficiency

Stanford University CS243 Winter 2006

31

GCD Test

m Is there any dependence?
fori=1,100

a[2*i] = ...
oo = a2%1+1] + 3

m Solve a linear Diophantine equation
u 2% = 2% + 1

Stanford University CS243 Winter 2006

Ky

GCD

m [he greatest common divisor (GCD) of
integers a,, a,, ..., a,, denoted gcd(a,, a,,
..., a,), IS the largest integer that evenly
divides all these integers.

m [heorem: The linear Diophantine equation

aixi+a2x2+...+~AdAnXn =C

has an integer solution x., x,, ..., x, Iff
gcd(a,, a,, ..., a,) divides ¢

Stanford University CS243 Winter 2006 2

e

s Example 1: gcd(2,-2) = 2. No solutions

2x1—2x2=1

s Example 2: gcd(24,36,54) = 6. Many
solutions

24x + 36 y + 54z = 30

CS243 Winter 2006

Stanford University

34

Multiple Equalities

x—2y+z=0

3x+2y+z=95

= Equation 1: gcd(1,-2,1) = 1. Many
solutions

= Equation 2: gcd(3,2,1) = 1. Many solutions

m |s there any solution satistying both
equations?

Stanford University CS243 Winter 2006 .

The Euclidean Algorithm

m Assume a and b are positive integers, and
a>Db.

m Let c be the remainder of a/b.
= If c=0, then gcd(a,b) = b.
= Otherwise, gcd(a,b) = ged(b,c).

m gcd(a,, a,, ..., a,) = gcd(ged(a,, a,), a; ...,
a,)

Stanford University CS243 Winter 2006 26

Exact Analysis

m Most memory disambiguations are simple
iInteger programs.

m Approach: Solve exactly — yes, or no
solution

= Solve exactly with Fourier-Motzkin + branch
and bound

= Omega package from University of Maryland

Stanford University CS243 Winter 2006

37

Incremental Analysis

m Use a series of simple tests to solve
simple programs (based on properties of
inequalities rather than array access
patterns)

m Solve exactly with Fourier-Motzkin +
branch and bound

m Memoization

= Many identical integer programs solved for
each program

= Save the results so it need not be recomputed

Stanford University CS243 Winter 2006 28

State of the Art

m Multiprocessors need large outer parallel
loops

s Many inter-procedural optimizations are
needed
= Interprocedural scalar optimizations
m Dependence

= Privatization
m Reduction recognition

= Interprocedural array analysis
m Array section analysis

Stanford University CS243 Winter 2006 29

Summary

m DOALL loops
m [teration Space
m Data dependence analysis

Stanford University CS243 Winter 2006

40

