PAGE

CS245 HW1

Sample solutions
1a) 7200 RPM (120 revolutions/sec (1 rev. = 8.33 msec

Assume all cylinders have same # of sectors

capacity = 4GB = 232 bytes

tracks = 8192 tracks/surface * 16 surfaces = 213 * 24 = 217 tracks

232 bytes / 217 tracks = 215 bytes/track

Time over useful data: (8.33)(0.95) = 7.91 ms

Burst bandwidth = bytes per track / time over useful data = 215 bytes / 7.91ms * 1 MB / 220 bytes * 1000ms / sec = 3.95 MB/sec

1b) Sustained bandwidth = bytes per track / time per revolution = 215 bytes / 8.33ms * 1 MB / 220 bytes * 1000ms / sec = 3.75 MB/sec

1c) Average rotational delay = ½ revolution = 4.17 ms

1d) Time = seek + rotational delay + transfer time

= 8 ms + 4.17 ms + 1 ms / 4096 bytes * 4096 bytes = 13.17 ms

2a) Use a summation to figure out the average distance to an arbitrary block:

[image: image1.wmf]5

.

3399

)

10000

)(

2

(

)

8000

)(

7999

(

)

2000

)(

1999

(

10000

10000

2000

7999

0

1999

0

9999

0

=

+

=

+

=

-

å

å

å

=

=

=

i

i

i

i

i

i

2b) Since reading a block spans multiple sectors, we need to use the sustained bandwidth to calculate transfer time. (This actually counts one gap that we don’t need to read, but the difference is negligible and the math is much easier.)

5400 RPM (90 revolutions/sec (1 rev. = 11.11 msec

(1+3399.5/500) + rotational latency + transfer time = 7.799 + 5.56 + transfer time

There are 4096 / 512 = 8 sectors/block (32 blocks/track

Transfer time for 1 block = 11.11 ms/track * 1 track/32 blocks = 0.347ms

Total time = 13.706ms

3a) Each read takes 6.5 + 0.5 = 7ms + seek time.

The first request is for the block at cylinder 6500. It takes 1 + 2500/500 = 6ms to seek, plus 7 ms to read, so block 1 is completed at time 13ms. At this point, we have an outstanding request at cylinder 8000, so we go there next. It takes 1 + 1500/500 = 4ms to seek, plus 7ms to read, so block 3 is completed at time 24ms. There are no more pending requests with higher cylinder numbers, so we now reverse direction to read block 4 at cylinder 3500. It takes 1 + 4500/500 = 10ms to seek, plus 7ms to read, so block 4 is completed at 41ms. (Note that we did not stop for block 5 along the way – the assumptions of this problem state that we cannot change the request once issued.) We continue on to read block 2 at cylinder 2000. It takes 1 + 1500/500 = 4ms to seek, plus 7ms to read, so block 2 is completed at 52ms. There are no outstanding requests with smaller cylinder numbers, so we reverse direction now to read block 5. It takes 1 + 2500/500 = 6ms to seek, plus 7ms to read, so block 5 is completed at 65ms.

	Request
	Completion time (ms)

	1
	13

	2
	52

	3
	24

	4
	41

	5
	65

3b) In a first-come/first-served scheduler, we read the blocks in the order the requests were issued: 1, 2, 3, 4, 5.

Block 1 is completed at (1 + 2500/500) + 7 = 13ms

Block 2 is completed at 13 + (1 + 4500/500) + 7 = 30ms

Block 3 is completed at 30 + (1 + 6000/500) + 7 = 50ms

Block 4 is completed at 50 + (1 + 4500/500) + 7 = 67ms

Block 5 is completed at 67 + (1 + 1000/500) + 7 = 77ms

	Request
	Completion time (ms)

	1
	13

	2
	30

	3
	50

	4
	67

	5
	77

4)

function DoneIO()

// It’s simple if one of the disks is busy

// (Assume we can’t queue requests for a disk)

if AIdle and not BIdle:

PerformIO(A, FindClosestReq(A))

if BIdle and not AIdle:

PerformIO(B, FindClosestReq(B))

// If both are idle, figure out which one has the shortest distance

// (in the correct direction) to a block

if AIdle and BIdle:

nextA = FindClosestRequest(A)

nextB = FindClosestRequest(B)

if DistanceTo(A, nextA) less than DistanceTo(B, nextB):

PerformIO(A, nextA)

else:

PerformIO(B, nextB)

// helper function to find the index of the closest queue element to disk D

// based on an elevator-like algorithm – disk head keeps on moving in the same

// direction until no blocks are left in that direction

function FindClosestRequest(D)

closest = NONE

closestDistance = N + 1

STARTLOOP:

for i = 0...M-1:

if CorrectDirection(D, Queue(i)):

newDistance = DistanceTo(D, Queue(i))

if newDistance less than closestDistance:

closest = i

closestDistance = newDistance

// no blocks in the current direction – time to turn around

if closest equals NONE:

ChangeDirection(D)

goto STARTLOOP

return closest

function DistanceTo(D, k)

// returns the distance from the current position of Disk D to Queue(i)

function CorrectDirection(D, k)

// returns true if Queue(k) is in the “right” direction

// for the elevator algorithm

function ChangeDirection(D)

// Changes the elevator-like scheduling of disk D to go in the opposite direction

5a)

Fixed format: 15*40 + 25 * 10 = 850 bytes
Variable format: 15*40 + 2 + 12 * 25p = 602 + 300p bytes

5b) Solve 850 = 602 + 300p yielding p = 0.827.

For 1>= p 0.827, the fixed format is best.

_1135630270.unknown

