
CS-245 Database System Principles – Winter 2004
Assignment 6

Due at the beginning of class on Thursday, February 26th

• State all assumptions and show all work.
• You can email questions to cs245-staff@cs.stanford.edu

Problem 1 (20 points)

For each of the following schedules:

a) Sa = r1(A); r2(B); w1(B); w2(C); r3(C); w3(A);
b) Sb = r1(A); r2(A); r1(B); r2(B); r3(A); r4(B); w1(A); w2(B);

Answer the following questions:

i. What is the precedence graph for the schedule?
ii. Is the schedule conflict-serializable? If so, what are all the equivalent serial schedules?

Problem 2 (15 points)

In a lock table, the system keeps a "group mode" that records the "strongest" lock type of
the transactions that have currently locked an object. In particular, say object O is locked
in modes M1, ... Mj and let the group mode of O be GM(O). Then, for any possible lock
mode N,

• GM(O) and N are not compatible if and only if there is an Mi element of {M1, ...,
Mj} such that N and Mi are not compatible;

• GM(O) and N are compatible if and only if for all Mi element of {M1, ..., Mj}, N
and Mi are compatible.

When a new lock request arrives, for lock mode N, the system can simply check if N is
compatible with GM(O), instead of checking N against all locks currently held on object
O.
Consider the multiple-granularity locking mechanism (Section 9.6 [18.6]). In each of sub-
problems (a) through (e) below, the modes of currently held locks on an object O are
given. (For instance, in case (a), object O is locked in mode IX by two transactions and
in mode IS by two transactions.) For each case, give the group mode, if there is one. (Be
careful, some of the cases below are impossible! In those cases, just say there is no group
mode and explain why it is so).

a) SIX, IS
b) IX, IS, IX, IS
c) S, IS, IX, SIX
d) S, IS

e) IX, S, IS

Problem 3 (24 points)

Consider the following two transactions:
T1 = w1(C) r1(A) w1(A) r1(B) w1(B);
T2 = r2(B) w2(B) r2(A) w2(A)
Say our scheduler performs exclusive locking only (i.e., no shared locks). For each of the
following three instances of transactions T1 and T2 annotated with lock and unlock
actions, say whether the annotated transactions:

1. obey two-phase locking,
2. will necessarily result in a conflict serializable schedule (if no deadlock occurs),
3. will necessarily result in a recoverable schedule (if no deadlock occurs),
4. will necessarily result in a schedule that avoids cascading rollback (if no deadlock

occurs),
5. will necessarily result in a strict schedule (if no deadlock occurs),
6. will necessarily result in a serial schedule (if no deadlock occurs), and
7. may result in a deadlock.

a)
T1 = L1(B) L1(C) w1(C) L1(A) r1(A) w1(A) r1(B) w1(B) Commit U1(A) U1(C) U1(B)
T2 = L2(B) r2(B) w2(B) L2(A) r2(A) w2(A) Commit U2(A) U2(B)
b)
T1 = L1(C) L1(A) r1(A) w1(C) w1(A) L1(B) r1(B) w1(B) U1(A) U1(C) U1(B) Commit
T2 = L2(B) r2(B) w2(B) L2(A) r2(A) w2(A) Commit U2(A) U2(B)
c)
T1 = L1(C) w1(C) L1(A) r1(A) w1(A) L1(B) r1(B) w1(B) Commit U1(A) U1(C) U1(B)
T2 = L2(B) r2(B) w2(B) L2(A) r2(A) w2(A) Commit U2(A) U2(B)

Format your answer in a table with Yes/No entries.

Problem 4 (20 points)

In the following sequences of events, we use Ri(X) to mean “transaction Ti starts, and its
read set is the list of the database elements X.” Also, Vi means “Ti attempts to validate,”
and Wi(X) means that “Ti finishes, and its write set was X.”. State what happens when
each sequence is processed by a validation-based scheduler. In particular, state which set
intersections are performed for each Vj action and indicate if the validation is successful
or not.

a) R1(A,B); R2(B,C); R3(C); V1; V2; V3; W1(A); W2(B); W3(C);
b) R1(A,B); R2(B,C); R3(B); V1; V2; W1(C); V3; W2(B); W3(C);

Problem 5 (20 points)

Suppose we perform the following actions on the B-tree given in the figure. Assume
there is only one kind of lock available (i.e., no read/write/update locks). If we use the
tree protocol, when can we release the lock on each of the nodes accessed? Note that we
would like to unlock a node as early as possible to maximize concurrency. We also
would like to maximize throughput; i.e., releasing a higher-level node has priority over
releasing a lower level node. Use the notation L(node), UL(node), R(node), W(node) to
indicate locking, unlocking, reading and writing a node respectively. Use Create(node) to
indicate creation of a new node, if necessary. List the actions in the order they occur, and
add short explanations if necessary. E.g., start part a. with the sequence
Lock and read root a: L(a) R(a)
Lock and read node b: L(b) R(b)
…

The actions to be performed:
a. Delete 5 (assume records are borrowed from right sibling if node underfull)
b. Insert 39 (assume overfull nodes are split)

Problem 6 (1 point)
Name a movie star mentioned in the book, or any other movie star.

