
CS 245 – Winter 2002 
 

Midterm solutions 
 
 
 
Problem 1. 
 
a. 
 
Answer for Q1: 1 block 
Because we know values for both A and B, we can produce a single hash value for the 
query. This gives us one bucket to look in. 
 
Answer for Q2: 210-X blocks 
Because we only know values for A, we must try all possible values for the B portion of 
the hash value. Since the B portion is 10-X bits, there are 210-X possible values for the B 
portion of the hash. Thus, we need to examine 210-X blocks. 
 
Common errors: Answering 2X for Q1 or Q2. 
 
b. 0.4 + 0.6 x 210-X 
We multiply the cost for each query times the probability of that query. 
 
Common errors: Usually people who got part a. right got this part right too. 
 
c. X=10 
The answer in part b is a function that increases as 10-X increases. In other words, the 
larger X is, the smaller the function in part b. Thus, with X at its maximum (10) the 
function is minimized. 
 
Common errors: Not recognizing that the function in part b monotonically decreases with 
increasing X. Lots of people tried equating the derivative to zero and got stuck. 
 
Problem 2. 
 

a. False. You can generate multiple physical plans from a single logical plan by 
using different physical operators, join orders, etc. 

b. False. Pushing down selections sometimes improves query processing, but only 
by reducing the sizes of intermediate results. The final query result should always 
be the same. 

c. True. 
d. True. 
e. False. A join can be performed with a variety of non-index algorithms, for 

example, nested loop join. 



f. True. 
g. True. 
h. False. In RAID-4, there is one redundant disk. 
i. False. In a fixed format record, the schema tells us which field is which. 
j. True. 
k. False. For example, the rule that a disjunctive selection can be decomposed into 

the union of two selections is only true for setc. 
l. True. 
m. False. If one relation fits in memory, you can do a one pass join. 

 
Problem 3. 
 
a. 102,400 tracks.  
 
The maximum number of tracks is determined by the maximum allowable seek time. 
Setting 1+(n/29) = 201 gives us n=102,400. 
 
b. 8 surfaces. 
The number of tracks per surface (from part a) multiplied by the number of bytes per 
track (given in the problem) gives us the number of bytes per surface. The total number 
of bytes in the disk divided by the bytes per surface gives us 8 surfaces. 
 
c. 10,000 RPM 
 
The maximum rotational latency is 6 milliseconds, which is thus the maximum rotation 
period. 1/6 ms, converted to minutes, gives us 10,000 RPM. 
 
Common errors: Confusing rotational latency and seek time, calculation errors, assuming 
6 milliseconds was the average rotational latency when in fact it is the maximum latency. 
 
Problem 4. 
 
a. Depth = 3. 
 
Worst case depth happens when all (non-root) nodes are half full. Every leaf must have at 
least (100+1)/2 = 50 keys. For a table with 20,000 records, this means we have 
20,000/50 = 400 leaf nodes in the worst case. Every non-leaf, non-root node must have at 
least 101/2 = 51 pointers. This means that in the worse case we have 400/51 = 8 
nodes in the layer above the leaf. The next layer up has 8 pointers and must be the root 
layer. The total is three layers. 
 
Common errors: Working top down, which usually gave an answer of 4 layers. 
 
b. Depth = 2. 
 



In this case, the leaf nodes must have at least (200+1)/2 = 100 keys. With 20,000 
records we have 20,000/100 = 200 leaf nodes. Every non-leaf, non-root node must have 
at least 201/2 = 101 pointers. This means that the layer above the leaf layer cannot have 
more than one node, or at least one node would have less than 101 pointers. Thus, the 
layer above the leaf layer is the root. The total is two layers. 
 
Common errors: Again, working down, which gave an answer of 3 layers. Also, failing to 
realize that the layer above the leaf must be the root, and answering 3 layers. 
 
c. 40 operations per second. 
 
If we use memory intelligently, we cache the root node of the B+-tree in one memory 
block and use the other as scratch storage. Since the B+-tree has 3 layers, we need to 
examine 3 B+-tree blocks and one data block for every operation. However, the root 
should already be in memory, so every operation requires only 3 I/Os. 120 I/Os per 
second / 3 I/Os per operation = 40 operations per second. 
 
Also acceptable: arguing that in the worse case, we need to spend one I/O reading the 
root so we can cache it. Thus, the first operation requires 4 I/Os and every subsequent 
operation requires 3 I/Os. This gives an answer of 39 operations per second for the first 
second, when we have to read the root block. 
 
Common errors: not caching the root block, using the two buffers to do two operations in 
“parallel” as if this increased the number of I/Os per second to 240, answering “3 I/Os 
per operation” when the question asked for operations per second. 
 
d. 60 operations per second. 
 
This answer is by the same argument in part c, except that the B+-tree now only has 2 
layers, so only 2 I/Os per operation are needed. Also acceptable is to assume that the first 
operation must read the root block; this gives an answer of 59 operations per second. 
 
Common errors: usually if errors were made, they were the same errors in part c and d. 
 
Problem 5. 
 
a. 1,000 tuples. 
 
Since the natural join is over two attributes, we use the formula:  
 
T(R)T(S)/(max(V(R,A),V(S,A))max(V(R,B),V(S,B))) =  
2,000x200/(max(10,20)max(20,15)) = 
400,000/(20x20) =  
1,000 
 
Common errors: most people got this right. 



 
b. 2,222,222 tuples. 
 
The chance that a particular R tuple will join with a particular S tuple is the chance that 
the R.B set is a subset of the S.D set. This happens with probability 
 
P = (Number of 2-element subsets of a given 5-element set)/(Total number of 2-element 
sets) 
 
For a given value of S.D (a set with 5 elements), there are (5 choose 2) = 10 possible 2-
element subsets. The attribute R.B can have as a value any one of  (10 choose 2) = 45 
possible sets of 2 elements. Thus, P = 10/45 = 2/9; each R tuple has a 2/9 chance of 
joining with any given S tuple. There are 1,000 S tuples, so every R tuple can expect to 
join with (2/9)(1,000) = 2,000/9 S tuples. There are 10,000 R tuples, so we can expect 
that the join will produce (2,000/9)(10,000) = 20,000,000/9 = 2,222,222.2222222 = 
2,222,222 tuples. 
 
Common errors: the probability in this problem is complicated, and many people had 
trouble with it. 
 
Problem 6. 
 
a. x(4r + 2a) 
 
The worst case occurs when we compact x blocks and end up creating x overflow blocks. 
For each block that we compact we must read the block (cost: r), read the bucket we want 
to put those tuples into (cost: r), realize that we must allocate the overflow block, allocate 
the overflow block (cost: a), write the overflow block (cost: r), write the original bucket 
with a pointer to the overflow block (cost: r), and deallocate the block we are compacting 
(cost: a). The total is (4r + 2a) per compacted block, and there are x compacted blocks. 
Note: this analysis holds even if we create overflow chains of multiple overflow blocks. 
For example, imagine that we start with x+1 blocks and compact x blocks. In the worst 
case, each block we compact is full, so we cannot reuse an existing overflow block; we 
must create a new one. Thus, if we are clever, we can simply add the new block to the 
head of the overflow chain. The result is a linked list of x+1 blocks, and the cost is still 
x(4r+2a). 
 
Also acceptable: we can optimize our algorithm by using the block we are about to 
deallocate as the new overflow block. This avoids one deallocation and one allocation, 
reducing the cost by 2a per block. The resulting cost is x(4r). 
 
b. (y/2)(4r + 2a) 
 
Even though this is an extensible hash table, the cost per block is the same. Since the 
directory is always in memory, we simply have to perform the same sequence of 



operations to compact a block. This time, however, we compact y/2 blocks. Also 
acceptable is to use the optimization described in part a, to get (y/2)(4r) cost. 
 
Common errors: Forgetting to take into account the cost to update pointers to the 
overflow blocks, assuming you can update a pointer to a block without reading the block 
first, not identifying the worst case correctly. 


