
CS-245 Database System Principles

Final Exam – Winter 2001

This exam is open book and notes. You have 120 minutes to complete it. There are 8
questions.

Serial number: _________
Name: ___

The Honor Code is an undertaking of the students, individually and collectively:

1. that they will not give or receive aid in examinations; that they will not give or
receive unpermitted aid in class work, in the preparation of reports, or in any other
work that is to be used by the instructor as the basis of grading;

2. that they will do their share and take an active part in seeing to it that others as
well as themselves uphold the spirit and letter of the Honor Code.

The faculty on its part manifests its condense in the honor of its students by refraining
from proctoring examinations and from taking unusual and unreasonable precautions to
prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far as
practicable, academic procedures that create temptations to violate the Honor Code.
While the faculty alone has the right and obligation to set academic requirements, the
students and faculty will work together to establish optimal conditions for honorable
academic work.

I acknowledge and accept the Honor Code.

Signed: ___

Problem Points Maximum
1 10
2 10
3 10
4 15
5 15
6 10
7 15
8 15

Total: 100

 1

Problem 1 (10 points)

State if the following statements are TRUE or FALSE. If a statement is false, please
explain why.

a) Any schedule produced by a lock scheduler using shared and exclusive
locks is conflict serializable.

Answer: Schedule must be legal, transactions two phase.

b) Multi-key indexes are better than partitioned hash tables for answering

range queries on multiple key attributes.

c) Undo logging is suitable for use with archiving, though it’s less efficient

than redo and undo/redo logging.

Answer: Undo logging is not suitable for archiving.

d) No deadlocks can occur under 2PL.

Answer: Two transactions can both grab a lock on different objects and wait for
each other’s lock.

e) Consider a disk that has 16 surfaces, each with 1024 tracks. Each track is

divided into 36 sectors, and a sector holds 2048 bytes. Blocks consist of 2
consecutive sectors. 20% of the circumference of each track is occupied by
gaps between the sectors. The disk rotates at 3840rpm, i.e., one rotation
every 15.6 milliseconds. Given these parameters, the transfer time for one
block is approximately 0.78ms.

False

True

False

False

True

 2

f) Relation R has 4000 records. Suppose a clustered B+ tree index is built on

R’s key attribute. A block can hold a B+ tree node (interior or leaf node)
with 20 keys and 21 pointers. In this case, at least 220 blocks are needed to
hold the entire B+ tree index.

Answer: Right answer is 211.

g) Consider an extensible hash table where the hash function generates a 20-bit

hash key, but only the high order 8 bits are used. In this case, the hash table
can have at most 220-8 data blocks (containing records).

Answer: The table can contain at most 28 data blocks.

h) The “containment of value sets property” states that whenever two attributes

appear with the same name, the values these attributes can take come from
the same set of values.

Answer: Read page 372.

i) In a Zipfian distribution, the frequency of occurrence of the ith most

common value is in proportion to 1 over the square root of i.

j) Sequence pointers are used in leaf nodes of B+ trees to speed up range

queries.

Common Mistakes: Not explaining why they chose False.

False

False

False

True

True

 3

Problem 2 (10 points)

Examine the schedule given below. There are three transactions, T1, T2, and T3. Initially,
the salary = 1 and the tax = 2. The assignments happen within the local memory space of
the transactions and the effects of these assignments are not reflected in the database until
the WRITE operation.

 T1 T2 T3
--
0 start
1 READ tax
2 tax := tax + 1
3 start
4 READ salary
5 salary := salary + 1
6 WRITE tax
7 commit
8 start
9 READ tax
10 READ salary
11 tax := tax + salary
12 WRITE tax
13 commit
14 ------------------- checkpoint start --------------------------
15 READ tax
16 tax := tax + salary
17 WRITE salary
18 ------------------- checkpoint end --------------------------
19 commit

a) Show the undo/redo log file entries that would be generated by this execution. Use the
same notation used in class. For each log entry, indicate what line above generates it.

Answer:

 <0, T3, start>
 <3, T1, start>
 <6, T3, tax, 2, 3>
 <7, T3, commit>
 <8, T2, start>
 <12, T2, tax, 3, 4>
 <13, T2, commit>
 <14, checkpoint start , T1 is still active>
 <17, T1, salary, 1, 2>
 <18, checkpoint end>
 <19, T1, commit>

 4

Common Mistakes and Comments:
1. Writing to log on calculation instead of actual WRITE command
2. Not including START of transactions in log
3. Not including CHECKPOINT start and end in log
4. Logging READs or calculations.
5. Incorrect value of tax for T2 by reading T1’s value of salary

b) Assume that the undo/redo recovery algorithm with checkpoints is being used. The
database crashes immediately after statement 7. (Assume that all the log records up to
this point are on disk.)

b.1) Which transactions would have to be undone?

Answer: T1

Common Mistakes and Comments: Answering NONE since T1 has written
nothing to disk, but still need to ABORT transaction regardless of whether on
disk.

b.2) Which transactions would have to be redone?

Answer: T3

c) Again assume that the undo/redo recovery algorithm with checkpoints is being used,
but now the databases crashes just after statement 18. (Assume that all the log records up
to this point are on disk.)

c.1) Which transactions would have to be undone?

Answer: T1

c.2) Which transactions would have to be redone?

Answer: None

 5

Problem 3 (10 points)
Examine the schedule given below. There are four transactions, T1, T2, T3, and T4.

 T1 T2 T3 T4
--
1 READ tax
2 READ salary
3 WRITE tax
4 READ tax
5 WRITE tax
6 READ tax
7 WRITE salary
8 READ salary
9 WRITE tax
10 WRITE salary
11 READ salary
12 WRITE salary

a) Draw the precedence graph for this schedule.

Answer:
 salary salary tax
 T1 -----------> T3 -----------> T4 ----------> T2
 ^ |
 | |

 tax

b) What is the equivalent serialization order for this schedule? If no order is possible,
then state ’none’.

Answer: None, the conflict graph has a cycle.

c) Assume that transaction T4 did not run at all. What is the precedence graph in this
case?

Answer: Same as above with t4 removed.

d) What is the equivalent serialization order for this second schedule? If no order is
possible, then state ’none’.

Answer: T2 T1 T3

Common Mistakes and Comments: Not being consistant. if an arc was made
from T4->T1, then there should be an arc from T1->T4. Otherwise, if you were
reducing the graph, neither edge should be present.

 6

Problem 4 (15 points)

Consider a four-dimensional data cube S(W, X, Y, Z), where the following sum
aggregates have been materialized:

Materialized: S(W, X, Y, Z)
 S(*, X, Y, Z)
 S(W, X, *, *)
 S(W, *, Y, *)

For each of the following queries, give the materialized aggregates (or the cube itself)
from which the query can most efficiently be computed. If the result can be computed
from two aggregates S1 and S2, but the computation from S1 is clearly less expensive than
the computation from S2, then only give S1 in your answer. If with the information given
here, you cannot infer that S1 is better than S2 or vice versa, then give both S1 and S2 in
your answer.

Note that lower case variables represent particular values of the attribute (e.g., x is a
value for X).

a) S(*, x, y, z)

Answer: S(*, X, Y, Z)

b) S(w, *, *, *)

Answer: S(W, X, *, *) or S(W, *, Y, *)

c) S(*, *, *, *)

Answer: S(W, X, *, *) or S(W, *, Y, *) or S(*, X, Y, Z)

Common Mistakes and Comments: Most of the people didn’t put S(*, X, Y, Z)
as one of the answers. This is possible if W is infinite or very huge.

d) S(w, *, y, z)

Answer: S(W, X, Y, Z)

 7

Problem 5 (15 points)

Consider a database that uses a validation mechanism for concurrency control. There are
only 4 kinds of transactions in the system. The read, write actions of the 4 kinds of
transactions are given below.

(i): r(A) r(B) w(A) w(C) w(E)
(ii): r(C) w(F) w(B)
(iii): r(D) r(B) w(B)
(iv): r(c) r(D)

Note that (i) - (iv) are transaction types and not transactions. In particular we can have
two different transactions of the same type. Two transactions are said to execute
concurrently if at some point of time, both the transactions have started, but neither has
finished.

a) Determine for each pair of transaction types (m, n) (including the case m = n), if the
transaction of type n can be aborted due to a transaction of type m when executing
concurrently (in the absence of any other transaction). Please indicate your answer in the
table below by placing a YES in column n and row m if a transaction of type n can be
aborted due to a transaction of type m, and NO otherwise.

Answer: First, note that if a transaction T2 is aborted by a transaction T1 , then T1
should have validated first. It is easy to show that if
WS(T1) ∩ WS(T2) ≠ ∅ OR (WS(T1) ∩ RS(T2) ≠ ∅ ,
then there exists some sequence of “start”, “validation”, “end” actions for the two
transactions such that T2 is aborted.

 Transaction of this type (n)

Can be aborted
by type below

(m)

(i) (ii) (iii) (iv)

(i) Yes Yes No Yes

(ii) Yes Yes Yes No

(iii) Yes Yes Yes No

(iv) No No No No

 8

b) Determine for each pair of transactions (m, n) if the two transactions can be run
concurrently without either of them aborting (in the absence of any other transaction).
Use the notation followed in part (a) to indicate the answer in the table below. In
particular, a YES in column n and row m will mean that a transactions of type m and n
can run concurrently (i.e., a transaction of type m need not be aborted by a type n
transaction, and that a transaction of type n need not be aborted by a type m transaction.)

Answer: Since concurrent execution is a symmetric event and we required that
neither transaction abort, the table is obviously symmetric. There were two
possible interpretations to this question and we gave full credit to solutions
assuming any of the two.
The first interpretation was to mark a “Yes" if there existed some sequence of
execution where the transactions ran concurrently without aborting, and “No"
otherwise. Two transactions can run concurrently (under favorable
circumstances) if the condition given in part (c) is not satisfied. We get the
following table for this interpretation.

 (i) (ii) (iii) (iv)

(i) No No Yes Yes

(ii) No Yes Yes Yes

(iii) Yes Yes No Yes

(iv) Yes Yes Yes Yes

The second interpretation was to mark a “Yes" if the two transactions could
always run concurrently under any sequence of execution. This can happen only
if there are no conflicting actions in the two transactions. The solution for this
case is given below.

 (i) (ii) (iii) (iv)

(i) No No No No

(ii) No No No Yes

(iii) No No No Yes

(iv) No Yes Yes Yes

 9

c) What is the condition under which two transactions can never execute concurrently in
the validation scheme (without one of them being rolled back)? Express your answer in
terms of read-sets (RS(T1), RS(T2)) and write-sets (WS(T1), WS(T2)) of the two
transactions T1 and T2.

Answer:

The condition is:
(RS(T1) ∩ WS(T2) ≠ ∅) AND (RS(T2) ∩ WS(T1) ≠ ∅)

Common Mistakes and Comments:

1. It is hard to pinpoint the common mistakes for parts (a) and (b) since there
were no explanations for the answers. But there were a couple of
solutions that managed to get all 16 entries wrong in the above tables but
nevertheless got full credit!!

2. The common mistakes for part (c) are as follows:
a) Using OR instead of AND , or using no boolean operator on the two

conditions.
b) Using the condition WS(T1) ∩ TWS(T2) ≠ ∅ . Note that two

transactions can execute concurrently even if they write the same
database element if the second starts after thefirst validates and
validates after the first one finishes.

c) Reporting the validate rules directly from the text book.

 10

Problem 6 (10 points)

For each of the following statements, indicate if it is TRUE or FALSE. If the statement is
false, give a simple counter-example. To construct counter-examples, please only use
schedules that use the following two transactions (and only these transactions). It is OK
to leave out some actions of these two transactions if you wish. (However, you should not
reorder the actions of transactions.)

For this problem, use the definition of recoverable we used in class, not the one used in
the textbook.

• T1: w1(A) w1(B) r1(C) c1
• T2: w2(A) r2(B) w2(C) c2

a) All serial schedules are conflict-serializable.

Answer: True

b) All avoids-cascading-rollback schedules are recoverable.

Answer: True

c) All strict schedules are serial.

Answer: False.

������������������������	����������

Common Mistakes and Comments: Some students claim they can’t construct a
schedule as a counter example. In fact we can if we leave out some actions in
one or two of the transactions.

d) All recoverable schedules are conflict-serializable.

Answer: False

 �������������������	
����	������������������

e) All strict schedules are conflict-serializable.

Answer: True

 11

Problem 7 (15 points)

Consider a legacy source that offers data equivalent to a relation R(X, Y, Z).

For parts (a) through (d) below, assume that the capabilities of this source are described
by the following two templates:
• f u b
• o[x1,x2] f u

a) Can the following query be directly answered by this source?
• R(x1, Y, z1)

Answer: Yes

b) Can the following query be directly answered by this source?
• R(X, y1, z1)

Answer: No

c) Can the following query be directly answered by this source?
• R(X, y1, Z)

Answer: Yes

d) Can the following query be directly answered by this source?
• R(x3, y1, Z)

Answer: No

 12

For parts (e) and (f) below, assume that the capabilities of this source are described by the
following single template:
• b u’ c[z1, z2]

e) The following query cannot be directly supported by the source:
• R(x1, Y, z3)
However, can it be answered by submitting a different (and supported) query and then
post-processing the results to get the desired answer? If yes, please give the query to
submit to the source and explain how its answer is processed. If no, briefly explain why
not.

Answer:
No; We have to specify Z value using the listed values.

f) The following query cannot be directly supported by the source:
• R(x1, y1, Z)
However, can it be answered by submitting a different (and supported) query and then
post-processing the results to get the desired answer? If yes, please give the query to
submit to the source and explain how its answer is processed. If no, briefly explain why
not.

Answer: No; cannot retrieve Y values to evaluate Y condition in query.

Common Mistakes and Comments: For some students use the same reason
for (e). While it is true we still can’t leave Z unspecified, the key reason is we
can’t retrieve Y values since the output constraint placed on Y (specified as u’).

 13

Problem 8 (15 points)

We would like to sort the tuples of a relation R on a given key. The following
information is known about the relation.

• The relation R contains 100000 tuples, i.e., T(R) = 100000.
• The size of a block on disk is 4000 bytes.
• The size of each R tuple is 400 bytes.
• Relation R is clustered, that is each disk block holding R tuples is full of R tuples.
• The size of the sort key is 32 bytes.
• A record pointer is 8 bytes.

Answer the following questions based on the information above.

a) If we use a two pass sorting algorithm, what is the minimum amount of main memory
(in number of blocks) required?

Answer: 1)(101 += RB . Note that we need 1 block for the output buffer. The
solution 100 also got nearly full credit.

b) What is the cost of the two pass sorting algorithm in terms of number of disk I/Os?
Include the cost of the writing the sorted file to the disk in the end in your calculations.

Answer: 40000 = 4 x B(R).

 14

c) Consider the following variant of the sorting algorithm. Instead of sorting the entire
tuple, we just sort the <key, recordPointer> for each tuple. As in the conventional two
pass sorting algorithm, we sort chunks of <key, recordPointer> in main memory and
write the chunks to disk. In the merge phase, <key, recordPointer> entries from different
chunks are merged. The record pointers to used to recover the rest of the tuple (from the
original copy of R) and write the sorted relation to the disk. What is the minimum
amount of main memory required for this operation? What is the cost in terms of number
of disk I/Os?

Answer:
Memory required = 34. Note that the solution is not 11000 + as expected. We
need an additional block for the random access step in the second phase. It is
easy to see that 34 blocks suffices but 33 does not. The solutions 32 and 33
were also given nearly full credit.
The I/Os of the sorting scheme is 122000. This includes 10000 for initially
reading the relation R and constructing < key; recordPointer > pairs; 1000 I/Os
for writing the sorted < key; recordPointer > pair to disk; 1000 for reading the
same from disk; 100000 I/Os for random access to retrieve the tuples pointed by
the record pointer; and finally 10000 I/Os to write the sorted relation R to disk.
The common mistakes for this part were

1) Assuming that the < key; recordPointer > is materialized in the disk.
2) Reporting that the cost of random access as 10000, the number of blocks

of R.

d) Keeping all other parameters constant, for what values of tuple size is the variant
discussed in (c) better (in the number of IOs)?

Answer:
There are two possible solutions. If we assume that the records are unspanned,
then the correct solution is tuplesize > 2001. If the records are spanned(ignoring
overhead) then the correct solution is tuplesize > 2040. Let t be the tuplesize.
Then B(R) = 100000 * t/4000 = 25*t. The cost of the first scheme = 4*B(R). The
cost of the second scheme is B(R)+T(R)=100+T(R)/100+T(R)+B(R) which is 50*t
+ 102000. The second expression is smaller when t >2040.

