Magic Sets

- Optimization technique for recursive Datalog.
- Also a win on some nonrecursive SQL (Munick, Finkelstein, Pirahesh, and Ramakrishnan, 1990 SIGMOD, pp. 247-258).
- Combines benefits of both top-down (backward chaining, recursive tree search) and bottom-up (forward chaining, naive, seminaive) processing of logic, without disadvantages of either.

Example of Nonrecursive Use

Find the programmers who are making less than the average salary for their department.

```sql
SELECT e1.name
FROM Emps e1
WHERE e1.job = 'programmer' AND
  e1.sal < (  
    SELECT AVG(e2.sal)  
    FROM Emps e2  
    WHERE e2.dept = e1.dept  
  )
```

- Naive implementation computes the average salary for all departments.
- “Magic-sets” implementation first determines the departments that have programmers (perhaps very few). It can then use an index on `Emps.dept` to avoid accessing the entire `Emps` relation.

Recursive Example

```prolog
anc(X,Y) :- par(X,Y)
anc(X,Y) :- par(X,Z) & anc(Z,Y)
```

- Query: `anc(0, W)`.
- Top-down search (e.g., Prolog) would:
 1. Query the EDB for `par(0, Y)`.
 2. By the first rule: return all such answers, say `{(0, 1), (0, 2)}`.
 3. The same parent facts are also useful in the second rule to set up “calls” to `anc(1, Y)` and `anc(2, Y)`.
 4. Recursively solve these queries.
Advantage of Top-Down

- We never even ask about individuals that are not in the ancestry of individual 0.

Advantage of Bottom-Up

(i.e., naïve, seminaïve)

- We don’t go into infinite recursive loops.

Example

Both of the following Datalog programs loop if evaluated top-down:

\[
\begin{align*}
\text{anc}(X,Y) & : - \text{par}(X,Y) \\
\text{anc}(X,Y) & : - \text{anc}(X,Z) \& \text{par}(Z,Y)
\end{align*}
\]

\[
\begin{align*}
\text{anc}(X,Y) & : - \text{par}(X,Y) \\
\text{anc}(X,Y) & : - \text{anc}(X,Z) \& \text{anc}(Z,Y)
\end{align*}
\]

Key Magic-Sets Ideas

1. Introduce “magic predicates” to represent the bound arguments in queries that a top-down search would ask.

2. Introduce “supplementary predicates” to represent how answers are passed from left-to-right through a rule.

3. Technical details to get right:
 a) \textit{Predicate splitting}: an IDB predicate must be “called” (in top-down search) with only one binding pattern.
 b) \textit{Subgoal rectification}: avoid IDB subgoals with repeated variables.

Rule/Goal Graphs

- Needed to assure unique binding patterns for IDB predicates.
- Composed of \textit{rule} and \textit{goal nodes}, as follows.

Goal Nodes

- Predicate + “adornment.”
- \textit{Adornment} = list of b’s and f’s, indicating which arguments are bound, which are free.
- Example: \(p^{bf} \). First and third arguments of \(p \) are bound.
Rule Nodes

- r^j_{ij} represents the point in rule r after seeing i subgoals, with variables in set S bound, those in T free.

Children of Goal Nodes

Children of goal node p^a are those rule nodes r^0_{ij} such that

1. Rule r has head predicate p.
2. S is the set of variables that appear in those arguments of the head that a says are bound.
3. T is the other variables of r.

Children of Rule Nodes

Children of the rule node r^j_{ij} are:

1. The goal node of the $(j + 1)$st subgoal of r, with adornment that binds those arguments whose only variables are in S.
2. The rule node r^j_{ij+1}, where $S' = S +$ variables appearing in the $(j + 1)$st subgoal; T' is the other variables.

- Exceptions: no r_{j+1} rule node if r has only $j + 1$ subgoals. No goal child if $j = 0$ and r has no subgoals.

Constructing the RGG

- Start with goal node whose adornment matches bindings of query.
- Add nodes by constructing children as required by rules from previous slides.
- Reordering of subgoals of a rule is allowed: helps maximize “bound” arguments.
- Reordering may be different for different rule nodes.

Example

Here is a nonrecursive example, where the RGG is a tree.

$$r_1 : \text{p}(X,Y) :- \text{q}(X,Z) \& \text{r}(Z,Y)$$
$$r_2 : \text{r}(A,B) :- \text{s}(A,B)$$
$$r_3 : \text{r}(A,B) :- \text{t}(A,B)$$
• Query form p^{bf}, e.g., $p(0, W)$?

Recursive Example

\[r_1: \text{anc}(X, Y) :- \text{par}(X, Y) \]
\[r_2: \text{anc}(X, Y) :- \text{anc}(X, Z) \land \text{anc}(Z, Y) \]

• Query; anc^{bh}, e.g., $\text{anc}(joe, sue)$?

Splitting Predicates

• For magic-sets to work, there must be a unique binding pattern associated with each IDB predicate.

• No constraint on EDB predicates.

• Key idea: For each adornment α such that p^α appears in the RGG, make a new predicate
Rules for \(p_\alpha \) are the same as for \(p \), but predicates of IDB subgoals are the version with the correct binding pattern.

- RGG helps us figure out the needed binding patterns.

Example

For RGG above:

\[
\begin{align*}
\text{anc} _ \text{bb}(X, Y) :&= \text{par}(X, Y) \\
\text{anc} _ \text{bb}(X, Y) :&= \text{anc} _ \text{bf}(X, Z) \& \\
& \quad \text{anc} _ \text{bb}(Z, Y) \\
\text{anc} _ \text{bf}(X, Y) :&= \text{par}(X, Y) \\
\text{anc} _ \text{bf}(X, Y) :&= \text{anc} _ \text{bf}(X, Z) \& \\
& \quad \text{anc} _ \text{bf}(Z, Y)
\end{align*}
\]

Rectifying Subgoals

- All IDB subgoals must have arguments that are distinct variables.
- Feasible for datalog (no function symbols).
- Fixes some problems where RGG knows about fewer bound arguments than the top-down expansion does.
 - See p. 801ff of PDKS-II.
- Trick: replace an IDB subgoal \(G \) with variables appearing in more than one argument and/or constant arguments by a new predicate whose arguments are single copies of the variables appearing in \(G \).
- Create rules for the new predicate by unifying \(G \) with heads of rules for \(G \)'s predicate.
- Repetition may be needed because the resulting rules may have unrectified subgoals.

Example

\[
\begin{align*}
r_1 :& p(X, Y) :- a(X, Y) \\
r_2 :& p(X, Y) :- b(X, Z) \& p(Z, Z) \& b(Z, Y)
\end{align*}
\]

- \(p(Z, Z) \) is unrectified. Create \(q(Z) = p(Z, Z) \).
- Unify heads of rules with \(p(Z, Z) \). Careful! \(Z \) in body of \(r_2 \) must be renamed.
- \(r_1 \) becomes \(p(Z, Z) :- a(Z, Z) \) or \(q(Z) :- a(Z, Z) \)
• \(r_2 \) becomes
 \[
 p(Z, Z) : - b(Z, W) \& p(W, W) \& b(W, Z)
 \]
 or
 \[
 q(Z) : - b(Z, W) \& q(W) \& b(W, Z)
 \]

• Finally, in the original \(r_2 \) we replace subgoal \(p(Z, Z) \) by \(q(Z) \). The resulting rules, with variables renamed:
 \[
 p(X, Y) : - a(X, Y)
 \]
 \[
 p(X, Y) : - b(X, Z) \& q(Z) \& b(Z, Y)
 \]
 \[
 q(X) : - a(X, X)
 \]
 \[
 q(X) : - b(X, Y) \& q(Y) \& b(Y, X)
 \]

Magic Sets Transformation

Start with a program and a binding pattern for a query.

1. Split predicates to get unique binding patterns.
2. Rectify subgoals.
3. Introduce magic and supplementary predicates as follows.

Magic Predicates

For each IDB predicate \(p \), introduce \(m.p \).

- Arguments of \(m.p \) correspond to bound arguments of \(p \) in its unique binding pattern.
- Intuition: \(m.p \) is true of exactly those tuples that are members of queries to some \(p \)-node in the top-down expansion.

Supplementary Predicates

For each rule \(r \) of \(n \) subgoals, introduce supplementary predicates \(sup_{p,j} \) for \(0 \leq j < n \).

- Arguments are the bound and active variables before the \(j + 1 \)st subgoal of \(r \).
 - A variable is active iff it appears either in the head or a subgoal from \(j + 1 \) on.
- Intuition: true for a tuple iff that tuple represents a possible binding for the bound, active variables at that point.