Using CQ Theory in Information Integration

Yes; this stuff really does get used in systems. We shall talk about three somewhat different systems that use the theory in various ways:

1. *Information Manifold*, developed by Alon Levy at AT&T Research Labs (Levy is now at U. Washington).
2. *Infomaster*, developed at Stanford by Mike Genesereth and his group.

Two Broad Approaches

1. **View Centric**: There is a set of global predicates. Information sources are described by what they produce, in terms of the global predicates.
 - **View** = query describing what a source produces.
 - Global predicates behave like EDB, even though they are not stored and don't really exist.
 - Queries in terms of the global predicates are answered by piecing together views.

2. **Query-Centric**: A mediator exports global predicates.
 - Queries about these global predicates are translated by the mediator into queries at the sources and the answer is pieced together from the source responses.
 - Source predicates play the role of EDB.
 - Predicates exported by the mediator are defined by “views” of the source predicates.

Building Queries From Views

Information Manifold (IM) is built on the principle that there is a global set of predicates, and information sources are described in terms of what they can say about those predicates.
- We describe each information source by a set of *views* that they can provide.
- Views are expressed as CQ’s whose subgoals use the global predicates.
Queries are also CQ’s about the global predicates.

Fundamental Question:

Given a query and a collection of views, how do we find an expression using the views only, that is equivalent to the query.

- Remember: equivalence = containment in both directions.
- Sometimes equivalence is not possible; we need to find a query about the views that is maximally contained in the query.
- In IM, we really want all CQ’s whose subgoals are views and that are contained in the query, since each expression may contribute answers to the query.
 - Exception: if one CQ is contained in another, then we don’t need the contained CQ.

Example

Let us consider an integrated information system about employees of a company.

- Global predicates:

 \[
 \begin{align*}
 \text{emp}(E) &= E \text{ is an employee} \\
 \text{phone}(E, P) &= P \text{ is } E\text{'s phone} \\
 \text{office}(E, O) &= O \text{ is } E\text{'s office} \\
 \text{mgr}(E, M) &= M \text{ is } E\text{'s manager} \\
 \text{dept}(E, D) &= D \text{ is } E\text{'s department}
 \end{align*}
 \]

We suppose three sources, each providing one view:

\[
\begin{align*}
v1(E, P, M) &:= \text{emp}(E) \& \text{phone}(E, P) \\
& \& \text{mgr}(E, M) \\
v2(E, O, D) &:= \text{emp}(E) \& \text{office}(E, O) \\
& \& \text{dept}(E, D) \\
v3(E, P) &:= \text{emp}(E) \& \text{phone}(E, P) \\
& \& \text{dept}(E, \text{toy})
\end{align*}
\]

1. View \(v_1\), gives information about employees, their phones and managers.
2. View \(v_2\) and gives information about the offices and departments of employees.
3. View \(v_3\) provides the phones of employees, but only for employees in the Toy Department.

Interpretation of View Definitions
- A view definition gives properties that the tuples produced by the view must have.
- The view definition is not a guarantee that all such tuples are provided by the view.
- There is not even a guarantee that results produced by the two views are consistent.
 - E.g., there is no reason to believe the phone information provided by \(v_1 \) and \(v_3 \) is consistent.

Example

The constraint department = “Toy” is enforced by the subgoal \(\text{dept}(E, \text{toy}) \) in the definition of \(v_3 \).

- This constraint would be important if we asked a query about employees known not to be in the Toy Department; we would not include \(v_3 \) in any solution.

Consider the query: “what are Sally’s phone and office?” In terms of the global predicates:

\[
q_1(P, O) :\neg \text{phone}(\text{sally}, P) \& \text{office}(\text{sally}, O)
\]

- There are two *minimal* solutions to this query.
 - “Minimal” = not contained in any other solution that is also contained in the query.

\[
\begin{align*}
a_1(P, O) :& \quad v_1(\text{sally}, P) \& v_2(\text{sally}, O, D) \\
\quad a_2(P, O) :& \quad v_3(\text{sally}, P) \& v_2(\text{sally}, O, D)
\end{align*}
\]

If we expand the views in the rules for the answer, we get:

\[
\begin{align*}
a_1(P, O) :& \quad \text{emp}(\text{sally}) \& \text{phone}(\text{sally}, P) \\
& \quad \& \text{mgr}(\text{sally}, M) \& \text{emp}(\text{sally}) \\
& \quad \& \text{office}(\text{sally}, O) \& \text{dept}(\text{sally}, D) \\
\quad a_2(P, O) :& \quad \text{emp}(\text{sally}) \& \text{phone}(\text{sally}, P) \\
& \quad \& \text{dept}(\text{sally}, \text{toy}) \& \text{emp}(\text{sally}) \\
& \quad \& \text{office}(\text{sally}, O) \& \text{dept}(\text{sally}, D)
\end{align*}
\]

- Note these CQ’s are not equivalent to \(q_1 \); they are the CQ’s that come closest to \(q_1 \) while still being contained in \(q_1 \) and constructable from the views.

Selecting Solutions to a Query

The search for solutions by IM is based on a theorem that limits the set of CQ’s that can possibly be useful.
The search is exponential in principle but appears manageable in practice.

The Query-Expansion Process

Query Q

\[\text{answer}() :- p_i() \land \ldots \land p_n() \]

Solution S

\[\text{answer}() :- v_j() \land \ldots \land v_j() \]

Expansion E

\[\text{answer}() :- p_{j1} \ldots p_{j_k}, \quad p_{j1} \ldots p_{j_k} \]

Explanation of Expansion Diagram

- A query Q is given; solutions S are proposed, and each solution is expanded to a CQ $E = E(S)$ by replacing the view-subgoals in S by their definitions in terms of the global predicates.
 - As always, when replacing a subgoal by the body of a rule, be sure to use unique variables for the local variables in the rule body.
- A solution S is valid for Q if $E(S) \subseteq Q$.
- In principle, there can be an infinite number of valid solutions for a query Q.
 - Just add irrelevant subgoals to S; they may make the solution smaller, but it will still be contained in Q.
- Thus, we want only minimal solutions, those not contained in any other solution.

Important Reminder

Minimality is at the level of solutions, not expansions.
Since views may provide different subsets of the global predicates, comparing expansions for containment might lead to false conclusions based on the (false) assumption that two views provided the same data.

Example

- Views:
 \[v_1(X,Y) :: \text{par}(X,Y) \]
 \[v_2(X,Y) :: \text{par}(X,Y) \]

- Query:
 \[\text{ans}(X,Y) :: \text{par}(X,Y) \]

- Solutions:
 \[\text{ans}(X,Y) :: v_1(X,Y) \]
 \[\text{ans}(X,Y) :: v_2(X,Y) \]

- The expansions of the solutions are each contained in the query, so they are valid solutions, and should be included.
 - They are in fact equivalent to the query, but that is irrelevant, since the “::” in the view definitions is a misnomer; the views need not have every \text{par} fact.
- The solutions themselves (without expansion) are not contained in one another. Thus, neither can eliminate the other in the set of solutions.

Theorem

If \(S \) is a solution for query \(Q \), and \(S \) has more subgoals than \(Q \), then \(S \) is not minimal.

Proof

Look at the containment mapping from \(Q \) to \(E(S) \).

- If \(S \) has more subgoals than \(Q \), then there must be some subgoal \(g \) of \(S \) such that no subgoal of \(Q \) is mapped to any subgoal of \(E(S) \) that comes from the expansion of \(g \).
- If we delete \(g \) from \(S \) to make a new solution \(S' \), then \(E(S') \subseteq Q \).
 - Proof: The containment mapping from \(Q \) to \(E(S) \) is also a containment mapping from \(Q \) to \(E(S') \).
Moreover, $S \subseteq S'$.

* Proof: The identity mapping on subgoals gives us the containment mapping.

* Note this test must be carried out without expansion.

* Thus, S' is a valid solution that contains S in raw form (without expansion).

Example

Continuing the “employees” example, query q_1:

$q_1(P, O) :- \text{phone}(sally, P) \& \text{office}(sally, O)$

has two subgoals. Answers a_1 and a_2 each have two subgoals, so they might be minimal (they are!).

* However, the following answer:

 $a_3(P, O) :- \text{v1}(sally, P, M) \& \text{v2}(sally, O, D) \& \text{v3}(E, P)$

 cannot be minimal, because it has three subgoals, more than q_1 does.

* Note that a_3 is a_1 with the additional condition that Sally’s phone must be the phone of somebody in the Toy Dept.

* Thus, $a_3 \subseteq a_1$ without expansion, and a_3 cannot be minimal.

* The expansion of a_3 is:

 $a_3(P, O) :- \text{emp}(sally) \& \text{phone}(sally, P) \& \text{mgr}(sally, M) \& \text{emp}(sally) \& \text{office}(sally, O) \& \text{dept}(sally, D) \& \text{emp}(E) \& \text{phone}(E, P) \& \text{dept}(E, toy)$

* Thus, $E(a_3) \subseteq q_1$, and a_3 is valid, although not minimal.