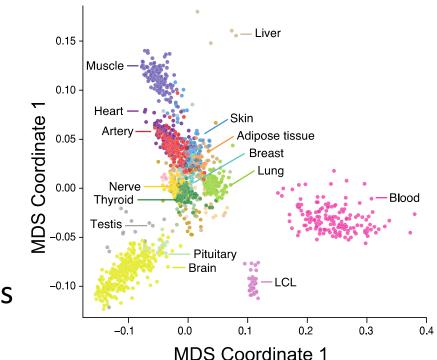
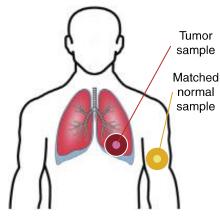

(1) Genotype-Tissue Expression (GTEx)


- Largest systematic study of genetic regulation in multiple tissues to date
 - 53 tissues, 500+ donors, 9K samples, 180M gene RNA-Seq, 14M eQTL, 2M+ gene interactions, 30K+ gene annotations
- Data
 - Donor
 - Age, Gender, Death Type
 - Tissue
 - RNA-Seq expression values
 - Gene
 - Tissue
 - Genetic SNP associations
 - Interaction partners
 - Biological processes, Molecular functions, Diseases
 - Tissue Hierarchy

Relations between donors and within tissues Relations between donors and between tissues

(1) GTEx: Personal transcriptomics


- Many key challenges in medicine involve tissue specificity
- Generic tasks:
 - Find top 100 active interaction modules in a tissue
 - Find informative tissue features
- Specialized tasks:
 - Predict tissue-specific processes
 - Predict gene-disease associations
 - Predict cross-tissue interactions
 - Predict tissue-specific interactions

(2) Cancer Genome Consortium (ICGC)

- International data collection of cancer data:
 - 60+ cancer types, 18K+ donors, 37M+ mutations
- Data
 - Cancer type
 - Donor
 - Tumor stage, Vital status, Disease status, Age, Relapse, Gender
 - Healthy samples: Microarray expressions, RNA-seq expressions, Mutations, Methylation, Copy-number variation
 - Tumor samples: Microarray expressions, RNA-seq expressions, Mutations, Methylation, Copy-number variation
 - Gene-gene interactions

Lawrence et al Nature 2013, Creixell et al. Nature Methods 2015

Genomic mutation

 $G \rightarrow T$

(2) Cancer Genome Consortium (ICGC)

- Goal:
 - Integrate multiple layers of information across all cancers
- Tasks:
 - Predict patients' survival time
 - Identify cancer subtypes with clinically relevant differences
 - Identify abrupt changes between tumor stages progression -> remission -> relapse
- Relevant papers:
 - *Network-based stratification of tumor mutations,* M. Hofree et al., Nature Methods 2013
 - Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes, MDM Leiserson et al., Nature Genetics 2015
 - Pathway and network analysis of cancer genomes, P. Creixell et al., Nature Methods 2015