
Physics, Health, and Human Trafficking?

CS341 datasets: NOT exhaustive

chrismre@cs.stanford.edu

Extraction

The DeepDive Team http://deepdive.stanford.edu/

Dark Data System: ETL on Steroids

Quality that can exceed paid human annotators and volunteers

Human Trafficking on the (Dark) Web...

ORPA MENEX

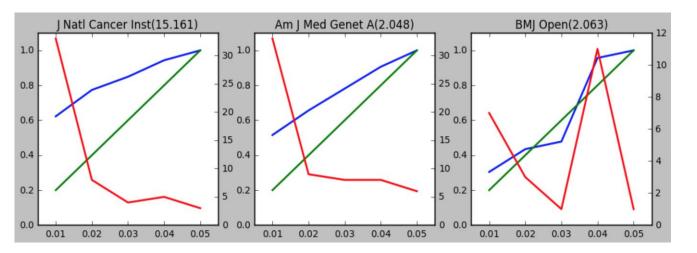
Hypothesis: Trafficked individuals offer *lower cost* and *riskier* sexual services.

In Plain sight: Web ads for such services

Challenges:

- 1. Need high-resolution information to build model.
 - services for what rate, ethnicity, location, etc.
- 2. Scientific papers are **clear**—dark web is **obfuscated**.

New York DA use MEMEX Data for all trafficking investigations this year. **Real Arrests**


For DARPA MEMEX, we were operational in 6 months

- Processed >35M documents (~26M records)
- Tens of columns (location, phone #, price, etc)
- With compute times of less than a day
- >90% Precision for most relations

Project: Analyze world's biggest (oldest) trade.

Extracting P-Values from Scientific Literature

- P-value used to show the statistical significance of the study or findings
 - Under no hacking p-values show be uniformly distributed!
- Using DeepDive we analyzed PubMed articles and extracted p-value mentions
 - Processed 500,000 articles and extracted 94,434 p-value mentions
- Automatic generation of p-curves for 2,000 Journals

- Extraction count
- Observed distribution
- Uniform distribution

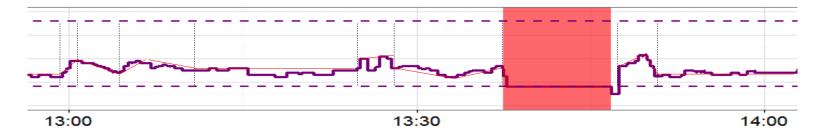
Do it for real!

TAIR: A Plant Genome Database

- Model plant: lessons learned in this organism can be translated to plants that are important to humans: food, medicine, biofuel, housing, etc.
- genome completely sequenced in 2000, 30K+ genes, 10K labs all over the world
- 50-70K academic papers describing basic and applied research. Need many more!
- www.arabidopsis.org

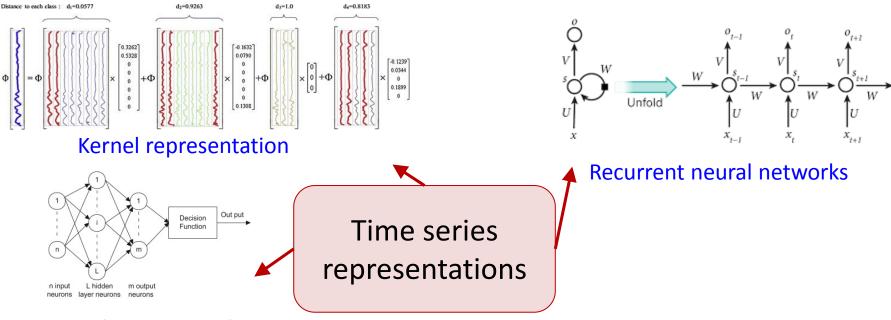
mobilize Center for Mobility Data Integration to Insight

Class project pitches

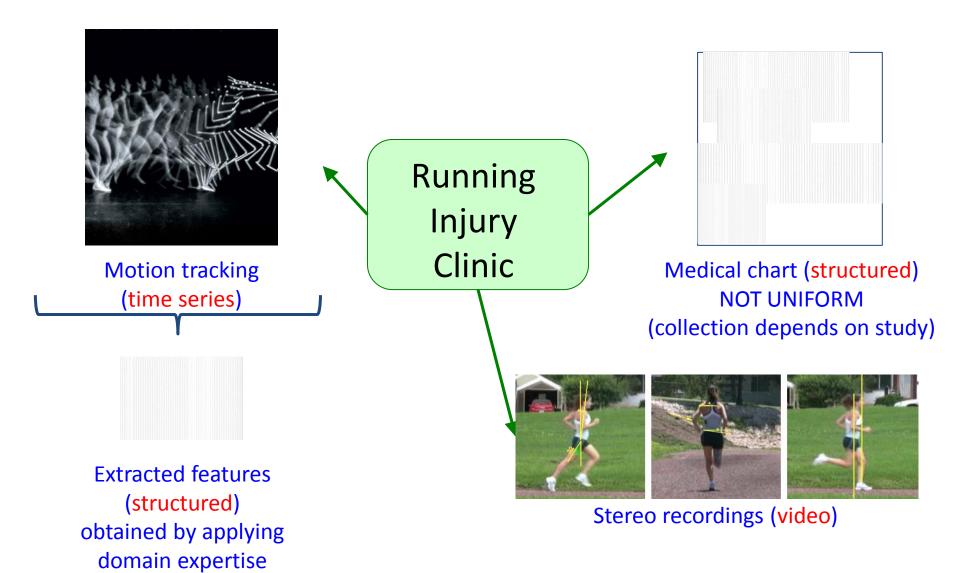


Learning representations from time series data

- Extracting features from time series
 - is a painstaking process
 - relies on domain knowledge
 - often requires multiple iterations
- Project aim: automate the extraction process
- Data: accelerometer step counts,

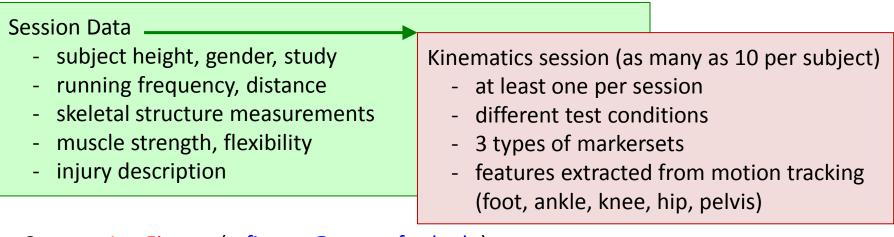

motion tracking wave forms, vital sign data

Learning representations from time series data


Extreme learning machines

Contacts: Ina Fiterau (<u>mfiterau@cs.stanford.edu</u>), Jason Fries (<u>jfries@stanford.edu</u>) References:

[1] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*.


[2] Zhihua Chen, Wangmeng Zuo, Qinghua Hu, Liang Lin, Kernel sparse representation for time series classification, Information Sciences, Volume 292, 20 January 2015

MP5 Detecting Running Injury Patterns

MP5 Detecting Running Injury Patterns

- 1645 sessions (clinic visits), 1424 patients, 18 studies
- Studies handle patients with different conditions
- Aim: predict injury type/severity based on running pattern
- Topics: missing data imputation, domain adaptation
- Collaborators: Jennifer Hicks, Kevin Thomas (MD PhD student)
- Data agreement signature required

Contact: Ina Fiterau (mfiterau@cs.stanford.edu)

SLAC. Imaging and Physics

Email <u>chrismre@cs.stanford.edu</u> to get access to physics projects.