
Jeffrey D. Ullman
Stanford University

 Different algorithms for the same problem can
be parallelized to different degrees.

 The same activity can (sometimes) be
performed for each node in parallel.

 A relational join or similar step can be
performed in one round of MapReduce.

 Parameters: N = # nodes, M = # edges, D =
diameter = maximum over all pairs of nodes of
the minimum path length from one node to the
other.

2

 Many very large graphs have small diameter.

 Called the small world property.

 Example: 6 degrees of Kevin Bacon.
 Example: “Erdos numbers.”
 Example: Most pairs of Web pages are within 12

links of one another.

 But study at Google found pairs of pages whose
shortest path has a length in the thousands.

3

 Used to divide a graph into reasonable
communities.

 Roughly: the betweenness of an edge e is the
number of pairs of nodes (A,B) for which the edge
e lies on the shortest path between A and B.

 More precisely: if there are several shortest paths
between A and B, then e is credited with the
fraction of those paths on which it appears.

 Edges of high betweenness separate
communities.

5

6

A D

C

E

F G

B

Edge (B,D) has betweenness = 12, since it is on the
shortest path from each of {A,B,C} to each of {D,E,F,G}.

Edge (G,F) has betweenness = 1, since it is on no
shortest path other than that for its endpoints.

1. Perform a breadth-first search from each node
of the graph.

2. Label nodes top-down (root to leaves) to count
the shortest paths from the root to that node.

3. Label both nodes and edges bottom-up with the
fraction of shortest paths from the root to nodes
at or below passing through this node or edge.

4. The betweenness of an edge is half the sum of
the labels of that edge, starting with each node
as root.

 Half to avoid double-counting each edge.
7

8

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

Label of root = 1

Label of other
nodes = sum of
labels of parents

BFS starting
at E

9

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

4.5 1.5

4.5 1.5

1

1

1

Leaves get label 1

1 1 Edges get their
share of their
children

3

Interior nodes get
1 plus the sum of
the edges below

3
0.5 0.5

Split of G’s label
is according to the
path counts (black
labels) of its parents
D and F.

10

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

4.5 1.5

4.5 1.5

1

1

1

1 1

3

3
0.5 0.5

Edge (E,D) has label 4.5.

This edge is on all shortest
paths from E to A, B, C, and D.

It is also on half the shortest
paths from E to G.

But on none of the shortest
paths from E to F.

11

A D

C

E

F G

B

12 5

5

4.5

4.5
4

1.5

1.5

1

12

A D

C

E

F G

B

5

5

4.5

4.5
4

1.5

1.5

1

A sensible partition into communities

13

A D

C

E

F G

B

4.5

4.5
4

1.5

1.5

1

Why are A and C closer than B?
B is a “traitor” to the community,
being connected to D outside the group.

1. Algorithm can be done with each node as root,
in parallel.

2. Depth of a breadth-first tree is no greater than
the diameter of the graph.

3. One MapReduce round per level suffices for
each part.

14

 Why Care?

1. Density of triangles measures maturity of a
community.

 As communities age, their members tend to connect.

2. The algorithm is actually an example of a recent
and powerful theory of optimal join computation.

16

 Let the graph have N nodes and M edges.

 N < M < N2.

 One approach: Consider all N-choose-3 sets of
nodes, and see if there are edges connecting all 3.

 An O(N3) algorithm.

 Another approach: consider all edges e and all
nodes u and see if both ends of e have edges to u.

 An O(MN) algorithm.

17

Note: we assume sensible data structures that let us look up an edge in
O(1) time and find the edges out of a node in time proportional to the
number of those edges.

 To find a better algorithm, we need to use the
concept of a heavy hitter – a node with degree
at least M.

 Note: there can be no more than 2M heavy
hitters, or the sum of the degrees of all nodes
exceeds 2M.

 A heavy-hitter triangle is one whose three
nodes are all heavy hitters.

18

 First, find the heavy hitters.

 Look at all edges and count the degrees of all nodes.

 Takes time O(M).

 And one MapReduce job suffices.

 Consider all triples of heavy hitters and see if
there are edges between each pair of the three.

 Takes time O(M1.5), since there is a limit of 2M
on the number of heavy hitters.

19

 At least one node is not a heavy hitter.
 Consider each edge e.

 If both ends are heavy hitters, ignore.

 Otherwise, let end node u not be a heavy hitter.

 For each of the at most M nodes v connected to u,
see whether v is connected to the other end of e.

 Takes time O(M1.5).

 M edges, and at most M work with each.

20

 Both parts take O(M1.5) time and together find
any triangle in the graph.

 For any N and M, you can find a graph with N
nodes, M edges, and (M1.5) triangles, so no
algorithm can do significantly better.

 Hint: consider a complete graph with sqrt(M) nodes,
plus other isolated nodes.

 Note that M1.5 can never be greater than the
running times of the two obvious algorithms
with which we began: N3 and MN.

21

 Needs a constant number of MapReduce
rounds, independent of N or M.

1. Count degrees of each node.

2. Filter edges with two heavy-hitter ends.

3. 1 or 2 rounds to join only the heavy-hitter edges.

4. Join the non-heavy-hitter edges with all edges at a
non-heavy end.

5. Then join the result of (4) with all edges to see if a
triangle is completed.

22

 A directed graph of N nodes and M arcs.
 Arcs are represented by a relation Arc(u,v)

meaning there is an arc from node u to node v.
 Goal is to compute the transitive closure of Arc,

which is the relation Path(u,v), meaning that
there is a path of length 1 or more from u to v.

 Bad news: TC takes time O(NM) in the worst
case.

 Good news: But you can parallelize it heavily.

24

 Important in its own right.

 Finding structure of the Web, e.g., strongly
connected “central” region.

 Finding connections: “was money ever transferred,
directly or indirectly, from the West-Side Mob to the
Stanford Chess Club?”

 Ancestry: “is Jeff Ullman a descendant of Genghis
Khan?”

 Every linear recursion (only one recursive call)
can be expressed as a transitive closure plus
nonrecursive stuff to translate to and from TC.

25

 A more subtle example is the matter finding
cousins = people who have a common ancestor,
the same number of generations away from
both.

 Assume Parent(c, p) relation.
 Basis: Cousin(x,y) if Parent(x,z) AND Parent(y,z).

 We call these “siblings.”

 Induction: Cousin(x,y) if Parent(x,x’) AND
 Parent(y,y’) AND Cousin(x’,y’).

 Doesn’t look like TC, but it is a linear recursion.

26

27

Siblings

First cousins

Second cousins

 Create a new graph G whose nodes are pairs of
people (x,y).

 An arc in G from (x’,y’) to (x,y) if Parent(x,x’) and
Parent(y,y’).

 Compute the TC in G.
 If there is a path from (a,b) to (c,d), then “if a

and b are cousins, then c and d are also
cousins.”

 Use TC to find all nodes of G reachable from
nodes (x,y) such that x and y have a common
parent.

28

 The same idea, with different labels for arcs
(not just “Parent”), yields a simrank calculation.

 Two entities are similar if they either:

1. Have arcs with the same label from the same node,
or

2. Have arcs with the same label from similar nodes.

 Implemented by a PageRank-like calculation on
the graph whose nodes are pairs of entities.

 Usually with some taxation, so longer paths from the
same node imply less similarity than shorter paths.

29

1. Path := Arc;
2. FOR each node u, Path(v,w) += Path(v,u) AND

 Path(u,w); /*u is called the pivot */
 Running time O(N3) independent of M or D.
 Can parallelize the pivot step for each u.
 But the pivot steps must be executed

sequentially, so N rounds of MapReduce are
needed.

31

 A pivot on u is essentially a join of the Path
relation with itself, restricted so the join value is
always u.

 Path(v,w) += Path(v,u) AND Path(u,w).

 But (ick!) every tuple has the same value (u) for
the join attribute.

 Standard MapReduce join will bottleneck, since all
Path facts wind up at the same reducer (the one for
key u).

32

 This problem, where one or more values of the
join attribute are “heavy hitters” is called skew.

 It limits the amount of parallelism, unless you
do something clever.

 But there is a cost: in MapReduce terms, you
communicate each Path fact from its mapper to
many reducers.

 As communication is often the bottleneck, you have
to be clever how you parallelize when there is a
heavy hitter.

33

 The trick: Given Path(v,u) facts and Path(u,w)
facts:

1. Divide the values of v into k equal-sized groups.

2. Divide the values of w into k equal-sized groups.

 Can be the same groups, since v and w range over all nodes.

3. Create a key (reducer) for each pair of groups, one
for v and one for w.

4. Send Path(v,u) to the k reducers for key (g,h), where
g is the group of v, and h is anything.

5. Send Path(u,w) to the k reducers for key (g,h), where
h is the group of w and g is anything.

34

35

Path(v,u) group 1

Path(v,u) group 2

Path(v,u) group 3

Path(u,w)
group 1

Path(u,w)
group 2

Path(u,w)
group 3

k = 3

Notice:
every Path(u,v)
meets every
Path(u,w) at
exactly one
reducer.

 Depth-first search from each node.
 O(NM) running time.
 Can parallelize by starting at each node in

parallel.
 But depth-first search is not easily

parallelizable.
 Thus, the equivalent of M rounds of

MapReduce needed, independent of N and D.

36

 Same as depth-first, but search breadth-first
from each node.

 Search from each node can be done in parallel.
 But each search takes only D rounds, not M,

provided you can perform the breadth-first
search in parallel from each node you visit.

 Similar in performance (if implemented
carefully) to “linear TC,” which we will discuss
next.

37

 Large-scale TC can be expressed as the iterated
join of relations.

 Simplest case is where we
1. Initialize Path(U,V) = Arc(U,V).
2. Join an arc with a path to get a longer path, as:
Path(U,V) += PROJECTUV(Arc(U,W) JOIN Path(W,V))
 or alternatively
Path(U,V) += PROJECTUV(Path(U,W) JOIN Arc(W,V))

 Repeat (2) until convergence (requires D iterations).

38

 Join-project, as used here is really the
composition of relations.

 Shorthand: we’ll use R(A,B)  S(B,C) for
PROJECTAC(R(A,B) JOIN S(B,C)).

 MapReduce implementation of composition is
the same as for the join, except:

1. You exclude the key b from the tuple (a,b,c)
generated in the Reduce phase.

2. You need to follow it by a second MapReduce job
that eliminates duplicate (a,c) tuples from the
result.

39

 Joining Path with Arc repeatedly redoes a lot of
work.

 Once I have combined Arc(a,b) with Path(b,c) in
one round, there is no reason to do so in
subsequent rounds.

 I already know Path(a,c).

 At each round, use only those Path facts that
were discovered on the previous round.

40

Path = ;

NewPath = Arc;

while (NewPath != ) {

 Path += NewPath;

 NewPath(U,V)=

 Arc(U,W)  NewPath(W,V));
 NewPath -= Path;

}

41

42

1 3

4

2

Arc U V

1 2

1 3

2 3

2 4

Initial: - 12, 13, 23, 24

Path NewPath

Path += NewPath 12, 13, 23, 24 12, 13, 23, 24

Compute NewPath 12, 13, 23, 24 13, 14

Subtract Path 12, 13, 23, 24 14

Path += NewPath 12, 13, 14, 23, 24 14

Compute NewPath 12, 13, 14, 23, 24 -

Done

 Each Path fact is used in only one round.
 In that round, Path(b,c) is paired with each

Arc(a,b).
 There can be N2 Path facts.
 But the average Path fact is compared with M/N

Arc facts.

 To be precise, Path(b,c) is matched with a number of
arcs equal to the in-degree of node b.

 Thus, the total work, if implemented correctly,
is O(MN).

43

 Each round of seminaive TC requires two
MapReduce jobs.

 One to join, the other to eliminate duplicates.

 Number of rounds needed equals the diameter.

 More parallelizable than classical methods (or
equivalent to breadth-first search) when D is small.

44

 If you have a graph with large diameter, you do
not want to run the Seminaive TC algorithm for
that number of rounds.

 Why? Successive MapReduce jobs are inherently
serial.

 Better approach: recursive doubling = compute
Path(U,V) += Path(U,W)  Path(W,V) for log2(D)
number of rounds.

 After r rounds, you have all paths of length 2r.

45

 The “seminaive” trick works for nonlinear TC as
well as for linear TC.

 But you must use new Path facts in both the first and
second positions.

46

Path = ;

NewPath = Arc;

while (NewPath != ) {

 Path += NewPath;

 NewPath(U,V)=

 Path(U,W) NewPath(W,V));
 NewPath -= Path;

}

47

Note: in general, seminaive evaluation requires
the “new” tuples to be available for each use of
a relation, so we would need the union with another
term NewPath(U,W) o Path(W,V). However, in this case
it can be proved that this one term is enough.

 Each Path fact is in NewPath only once.
 There can be N2 Path facts.
 When (a,b) is in NewPath, it can be joined with

2N other Path facts.

 Those of the form Path(x,a) or Path(b,y).

 Thus, total computation is O(N3).

48

 Good news: You generate the same Path facts
as for linear TC, but in fewer rounds, often a lot
fewer.

 Bad news: you generate the same fact in many
different ways, compared with linear.

 Neither method can avoid the fact that if there
are many different paths from u to v, you will
discover each of those paths, even though one
would be enough.

 But nonlinear discovers the same exact path
many times.

49

50

51

52

 (Valduriez-Boral, Ioannides) Construct a path
from two paths:

1. The first has a length that is a power of 2.

2. The second is no longer than the first.

53

 The trick is to keep two path relations, P and Q.
 After the i-th round:
 P(U,V) contains all those pairs (u,v) such that the

shortest path from u to v has length less than 2i.

 Q(U,V) contains all those pairs (u,v) such that the
shortest path from u to v has length exactly 2i.

 For the next round:
 Compute P += Q  P.

 Paths of length less than 2i+1.

 Compute Q = (Q  Q) – P.
 P here is the new value of P.

54

55

Method Total
Computation

Parallel
Rounds

Warshall O(N3) O(N)

Depth-First Search O(NM) O(M)

Breadth-First Search O(NM) O(D)

Linear + Seminaive O(NM) O(D)

Nonlinear + Seminaive O(N3) O(log D)

Smart O(N3) O(log D)

Seems odd. But in the worst case, almost all shortest paths can have a
length that is a power of 2, so there is no guarantee of improvement for Smart.

 In a sense, acyclic graphs are the hardest TC
cases.

 If there are large strongly connected
components (SCC’s) = sets of nodes with a path
from any member of the set to any other, you
can simplify TC.

 Example: The Web has a large SCC and other
acyclic structures (see Sect. 5.1.3).

 The big SCC and other SCC’s made it much easier to
discover the structure of the Web.

56

 Pick a node u at random.
 Do a breadth-first search to find all nodes

reachable from u.

 Parallelizable in at most D rounds.

 Imagine the arcs reversed and do another
breadth-first search in the reverse graph.

 The intersection of these two sets is the SCC
containing u.

 With luck, that will be a big set.

 Collapse the SCC to a single node and repeat.

57

 Instead of just asking whether a path from node
u to node v exists, we can attach values to arcs
and extend those values to paths.

 Example: value is the “length” of an arc or path.

 Concatenate paths by taking the sum.

 Path(u,v, x+y) = Arc(u,w, x)  Path(w,v, y).

 Combine two paths from u to v by taking the
minimum.

 Similar example: value is cost of transportation.

58

