Graphs and Social Networks

Betweeness
Counting Triangles
Transitive Closure

Jeffrey D. Ullman Stanford University

Issues Regarding Parallelism

- Different algorithms for the same problem can be parallelized to different degrees.
- The same activity can (sometimes) be performed for each node in parallel.
- A relational join or similar step can be performed in one round of MapReduce.
- Parameters: N = # nodes, M = # edges, D = diameter = maximum over all pairs of nodes of the minimum path length from one node to the other.

It's a Small World After All

- Many very large graphs have small diameter.
 - Called the small world property.
- Example: 6 degrees of Kevin Bacon.
- Example: "Erdos numbers."
- Example: Most pairs of Web pages are within 12 links of one another.
 - But study at Google found pairs of pages whose shortest path has a length in the thousands.

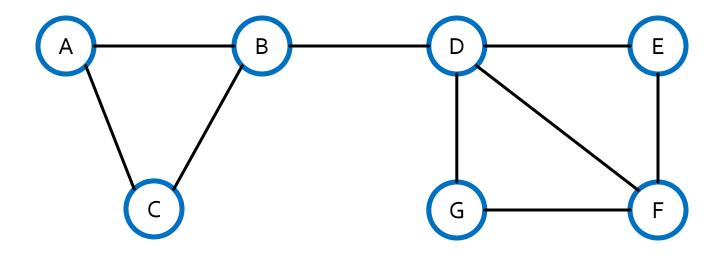
Betweeness

Girvan-Newman Algorithm Application to Communities

Betweenness

- Used to divide a graph into reasonable communities.
- Roughly: the betweenness of an edge e is the number of pairs of nodes (A,B) for which the edge e lies on the shortest path between A and B.
- More precisely: if there are several shortest paths between A and B, then e is credited with the fraction of those paths on which it appears.
- Edges of high betweenness separate communities.

Example: Betweenness



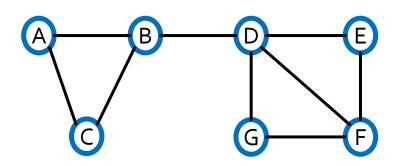
Edge (B,D) has betweenness = 12, since it is on the shortest path from each of {A,B,C} to each of {D,E,F,G}.

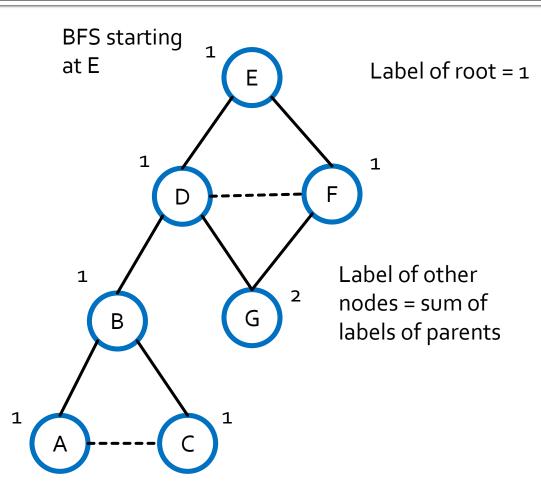
Edge (G,F) has betweenness = 1, since it is on no shortest path other than that for its endpoints.

Girvan-Newman Algorithm

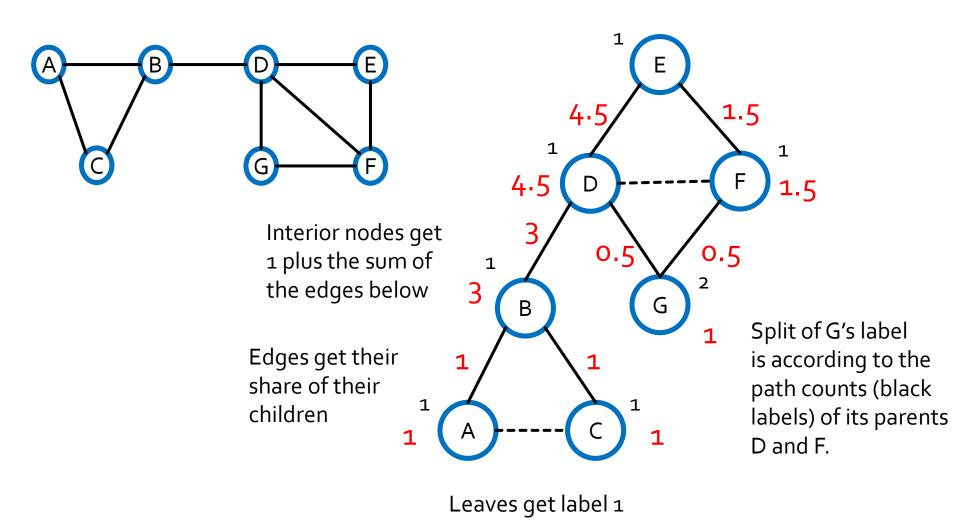
- 1. Perform a breadth-first search from each node of the graph.
- 2. Label nodes top-down (root to leaves) to count the shortest paths from the root to that node.
- 3. Label both nodes and edges bottom-up with the fraction of shortest paths from the root to nodes at or below passing through this node or edge.
- 4. The betweenness of an edge is half the sum of the labels of that edge, starting with each node as root.
 - Half to avoid double-counting each edge.

Example: Steps 1 and 2

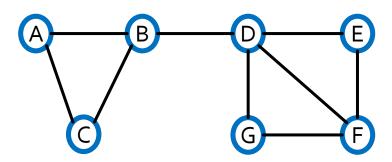




Example: Step 3



Sanity Check

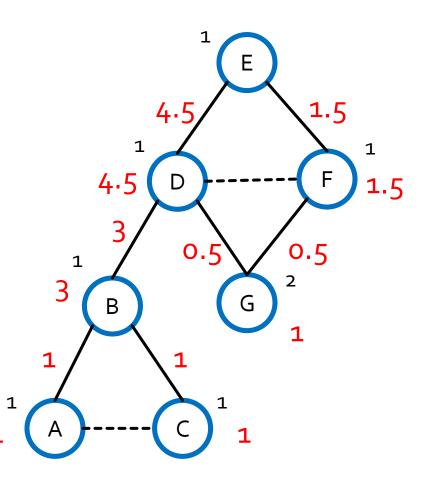


Edge (E,D) has label 4.5.

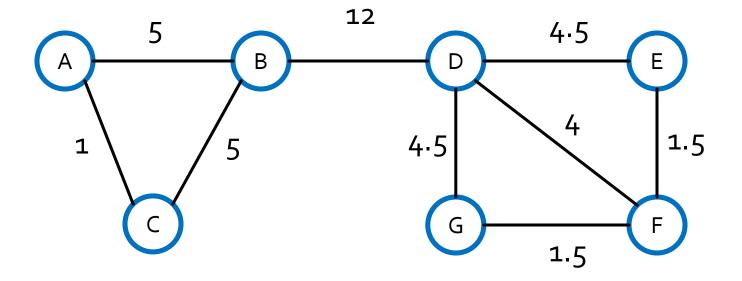
This edge is on all shortest paths from E to A, B, C, and D.

It is also on half the shortest paths from E to G.

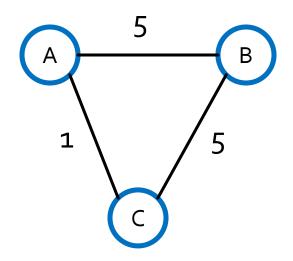
But on none of the shortest paths from E to F.

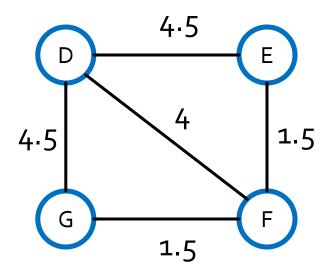


Result of G-N Algorithm



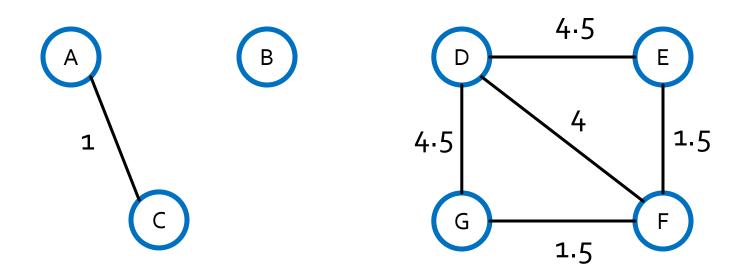
Remove Edge of Highest Betweenness





A sensible partition into communities

Remove Next-Highest Edge(s)



Why are A and C closer than B?
B is a "traitor" to the community,
being connected to D outside the group.

Paralllelizing G-N Algorithm

- Algorithm can be done with each node as root, in parallel.
- Depth of a breadth-first tree is no greater than the diameter of the graph.
- 3. One MapReduce round per level suffices for each part.

Counting Triangles

Bounds on Numbers of Triangles
Heavy Hitters
An Optimal Algorithm

Counting Triangles

- Why Care?
 - Density of triangles measures maturity of a community.
 - As communities age, their members tend to connect.
 - 2. The algorithm is actually an example of a recent and powerful theory of optimal join computation.

First Observations

- Let the graph have N nodes and M edges.
 - $\mathbb{N} \leq \mathbb{N} \leq \mathbb{N}^2$.
- One approach: Consider all N-choose-3 sets of nodes, and see if there are edges connecting all 3.
 - An O(N³) algorithm.
- Another approach: consider all edges e and all nodes u and see if both ends of e have edges to u.
 - An O(MN) algorithm.

Note: we assume sensible data structures that let us look up an edge in O(1) time and find the edges out of a node in time proportional to the number of those edges.

Heavy Hitters

- To find a better algorithm, we need to use the concept of a *heavy hitter* a node with degree at least \sqrt{M} .
- Note: there can be no more than $2\sqrt{M}$ heavy hitters, or the sum of the degrees of all nodes exceeds 2M.
- A heavy-hitter triangle is one whose three nodes are all heavy hitters.

Finding Heavy-Hitter Triangles

- First, find the heavy hitters.
 - Look at all edges and count the degrees of all nodes.
 - Takes time O(M).
 - And one MapReduce job suffices.
- Consider all triples of heavy hitters and see if there are edges between each pair of the three.
- Takes time O(M^{1.5}), since there is a limit of $2\sqrt{M}$ on the number of heavy hitters.

Finding Other Triangles

- At least one node is not a heavy hitter.
- Consider each edge e.
 - If both ends are heavy hitters, ignore.
 - Otherwise, let end node u not be a heavy hitter.
 - For each of the at most \sqrt{M} nodes v connected to u, see whether v is connected to the other end of e.
- Takes time O(M^{1.5}).
 - M edges, and at most \sqrt{M} work with each.

Optimality of This Algorithm

- Both parts take O(M^{1.5}) time and together find any triangle in the graph.
- For any N and M, you can find a graph with N nodes, M edges, and $\Omega(M^{1.5})$ triangles, so no algorithm can do significantly better.
 - Hint: consider a complete graph with sqrt(M) nodes, plus other isolated nodes.
- Note that M^{1.5} can never be greater than the running times of the two obvious algorithms with which we began: N³ and MN.

Parallelization

- Needs a constant number of MapReduce rounds, independent of N or M.
 - 1. Count degrees of each node.
 - 2. Filter edges with two heavy-hitter ends.
 - 3. 1 or 2 rounds to join only the heavy-hitter edges.
 - 4. Join the non-heavy-hitter edges with all edges at a non-heavy end.
 - 5. Then join the result of (4) with all edges to see if a triangle is completed.

Transitive Closure

Classical Approaches

Arc + Path => Path

Path + Path => Path

"Smart" Transitive Closure

Strongly Connected Components

The Setting

- A directed graph of N nodes and M arcs.
- Arcs are represented by a relation Arc(u,v)
 meaning there is an arc from node u to node v.
- Goal is to compute the transitive closure of Arc, which is the relation Path(u,v), meaning that there is a path of length 1 or more from u to v.
- Bad news: TC takes time O(NM) in the worst case.
- Good news: But you can parallelize it heavily.

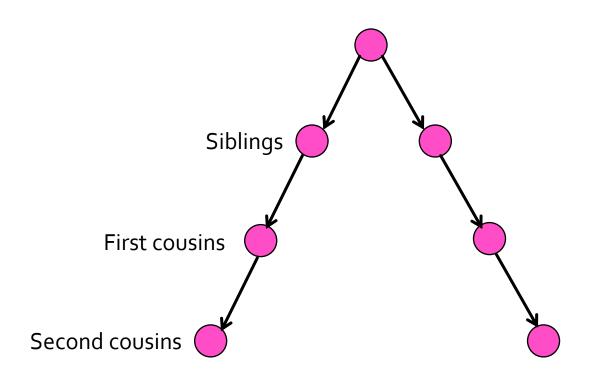
Why Transitive Closure?

- Important in its own right.
 - Finding structure of the Web, e.g., strongly connected "central" region.
 - Finding connections: "was money ever transferred, directly or indirectly, from the West-Side Mob to the Stanford Chess Club?"
 - Ancestry: "is Jeff Ullman a descendant of Genghis Khan?"
- Every linear recursion (only one recursive call) can be expressed as a transitive closure plus nonrecursive stuff to translate to and from TC.

Example: Cousins

- A more subtle example is the matter finding cousins = people who have a common ancestor, the same number of generations away from both.
- Assume Parent(c, p) relation.
- Basis: Cousin(x,y) if Parent(x,z) AND Parent(y,z).
 - We call these "siblings."
- Induction: Cousin(x,y) if Parent(x,x') AND Parent(y,y') AND Cousin(x',y').
- Doesn't look like TC, but it is a linear recursion.

Cousins – (2)



Cousins – (3)

- Create a new graph G whose nodes are pairs of people (x,y).
- An arc in G from (x',y') to (x,y) if Parent(x,x') and Parent(y,y').
- Compute the TC in G.
- If there is a path from (a,b) to (c,d), then "if a and b are cousins, then c and d are also cousins."
- Use TC to find all nodes of G reachable from nodes (x,y) such that x and y have a common parent.

Simrank

- The same idea, with different labels for arcs (not just "Parent"), yields a simrank calculation.
- Two entities are similar if they either:
 - Have arcs with the same label from the same node, or
 - 2. Have arcs with the same label from similar nodes.
- Implemented by a PageRank-like calculation on the graph whose nodes are pairs of entities.
 - Usually with some taxation, so longer paths from the same node imply less similarity than shorter paths.

Classical Methods for TC

Warshall's Algorithm
Depth-First Search
Breadth-First Search

Warshall's Algorithm

- 1. Path := Arc;
- 2. FOR each node u, Path(v,w) += Path(v,u) AND Path(u,w); /*u is called the pivot */
- Running time O(N³) independent of M or D.
- Can parallelize the pivot step for each u.
- But the pivot steps must be executed sequentially, so N rounds of MapReduce are needed.

Parallelizing the Pivot Step

- A pivot on u is essentially a join of the Path relation with itself, restricted so the join value is always u.
 - Path(v,w) += Path(v,u) AND Path(u,w).
- But (ick!) every tuple has the same value (u) for the join attribute.
 - Standard MapReduce join will bottleneck, since all Path facts wind up at the same reducer (the one for key u).

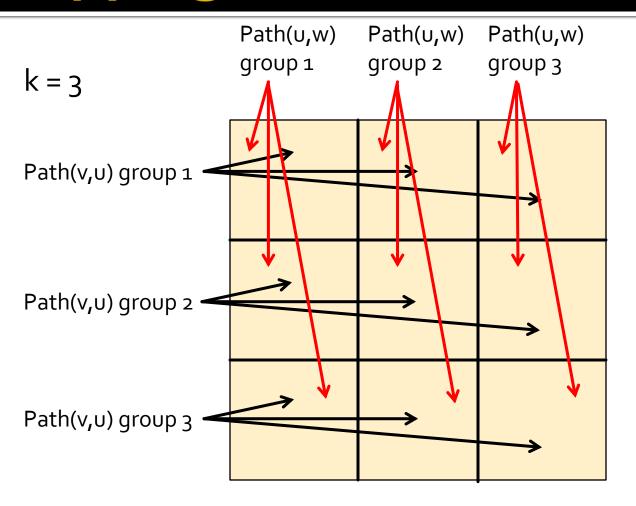
Skew Joins

- This problem, where one or more values of the join attribute are "heavy hitters" is called skew.
- It limits the amount of parallelism, unless you do something clever.
- But there is a cost: in MapReduce terms, you communicate each Path fact from its mapper to many reducers.
 - As communication is often the bottleneck, you have to be clever how you parallelize when there is a heavy hitter.

Skew Joins – (2)

- The trick: Given Path(v,u) facts and Path(u,w) facts:
 - 1. Divide the values of v into k equal-sized groups.
 - 2. Divide the values of w into k equal-sized groups.
 - Can be the same groups, since v and w range over all nodes.
 - 3. Create a key (reducer) for each pair of groups, one for v and one for w.
 - 4. Send Path(v,u) to the k reducers for key (g,h), where g is the group of v, and h is anything.
 - 5. Send Path(u,w) to the k reducers for key (g,h), where h is the group of w and g is anything.

Mapping Path Facts to Reducers



Notice:
every Path(u,v)
meets every
Path(u,w) at
exactly one
reducer.

Depth-First Search

- Depth-first search from each node.
- O(NM) running time.
- Can parallelize by starting at each node in parallel.
- But depth-first search is not easily parallelizable.
- Thus, the equivalent of M rounds of MapReduce needed, independent of N and D.

Breadth-First Search

- Same as depth-first, but search breadth-first from each node.
- Search from each node can be done in parallel.
- But each search takes only D rounds, not M, provided you can perform the breadth-first search in parallel from each node you visit.
- Similar in performance (if implemented carefully) to "linear TC," which we will discuss next.

Linear Transitive Closure

- Large-scale TC can be expressed as the iterated join of relations.
- Simplest case is where we
- Initialize Path(U,V) = Arc(U,V).
- 2. Join an arc with a path to get a longer path, as:

Path(U,V) +=
$$PROJECT_{UV}(Arc(U,W) JOIN Path(W,V))$$

or alternatively

Repeat (2) until convergence (requires D iterations).

Notation for Join-Project

- Join-project, as used here is really the composition of relations.
- Shorthand: we'll use R(A,B) o S(B,C) for $PROJECT_{AC}(R(A,B) JOIN S(B,C))$.
- MapReduce implementation of composition is the same as for the join, except:
 - 1. You exclude the key b from the tuple (a,b,c) generated in the Reduce phase.
 - 2. You need to follow it by a second MapReduce job that eliminates duplicate (a,c) tuples from the result.

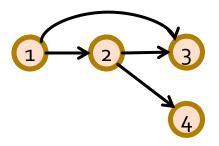
Seminaive Algorithm

- Joining Path with Arc repeatedly redoes a lot of work.
- Once I have combined Arc(a,b) with Path(b,c) in one round, there is no reason to do so in subsequent rounds.
 - I already know Path(a,c).
- At each round, use only those Path facts that were discovered on the previous round.

Seminaive Details

```
Path = \emptyset;
NewPath = Arc;
while (NewPath !=\emptyset) {
    Path += NewPath;
   NewPath (U, V) =
        Arc(U,W) o NewPath(W,V));
   NewPath -= Path;
```

Example: Seminaive TC



Arc	U	V
	1	2
	1	3
	2	3
	2	4

	Path	NewPath
Initial:	-	12, 13, 23, 24
Path += NewPath	12, 13, 23, 24	12, 13, 23, 24
Compute NewPath	12, 13, 23, 24	13, 14
Subtract Path	12, 13, 23, 24	14
Path += NewPath	12, 13, 14, 23, 24	14
Compute NewPath 12, 13, 14, 23, 24		-
Done		

Computation Time of Seminaive

- Each Path fact is used in only one round.
- In that round, Path(b,c) is paired with each Arc(a,b).
- There can be N² Path facts.
- But the average Path fact is compared with M/N Arc facts.
 - To be precise, Path(b,c) is matched with a number of arcs equal to the in-degree of node b.
- Thus, the total work, if implemented correctly, is O(MN).

How Many Rounds?

- Each round of seminaive TC requires two MapReduce jobs.
 - One to join, the other to eliminate duplicates.
- Number of rounds needed equals the diameter.
 - More parallelizable than classical methods (or equivalent to breadth-first search) when D is small.

Nonlinear Transitive Closure

- If you have a graph with large diameter, you do not want to run the Seminaive TC algorithm for that number of rounds.
 - Why? Successive MapReduce jobs are inherently serial.
- Better approach: recursive doubling = compute Path(U,V) += Path(U,W) o Path(W,V) for log₂(D) number of rounds.
- After r rounds, you have all paths of length 2^r.

Seminaive + Nonlinear

- The "seminaive" trick works for nonlinear TC as well as for linear TC.
 - But you must use new Path facts in both the first and second positions.

Nonlinear Seminaive Details

```
Path = \emptyset;
NewPath = Arc;
while (NewPath !=\emptyset) {
      Path += NewPath;
      NewPath (U, V) =
             Path (U, W) o NewPath (W, V));
     NewPath -= Path;/
               Note: in general, seminaive evaluation requires
               the "new" tuples to be available for each use of
               a relation, so we would need the union with another
               term NewPath(U,W) o Path(W,V). However, in this case
               it can be proved that this one term is enough.
```

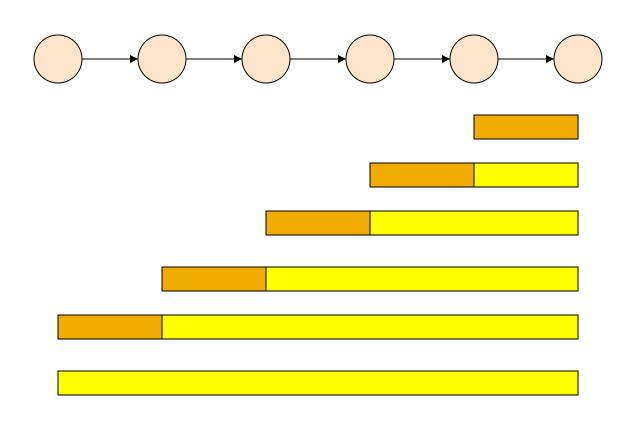
Computation Time of Nonlinear + Seminaive

- Each Path fact is in NewPath only once.
- There can be N² Path facts.
- When (a,b) is in NewPath, it can be joined with 2N other Path facts.
 - Those of the form Path(x,a) or Path(b,y).
- Thus, total computation is O(N³).

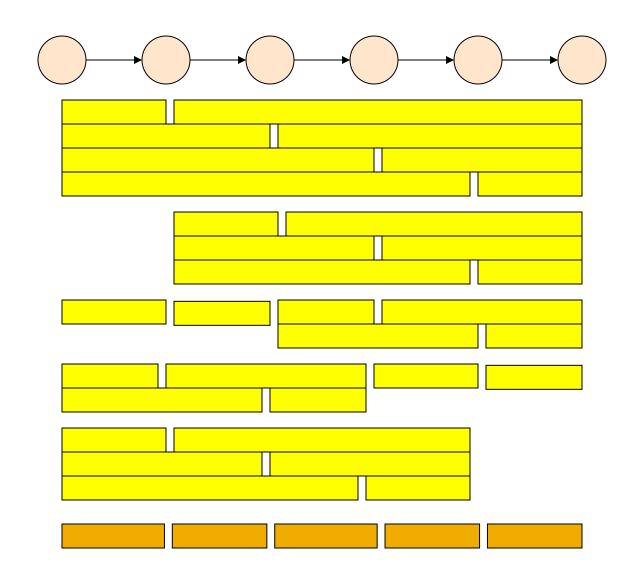
A Problem With Nonlinear TC

- Good news: You generate the same Path facts as for linear TC, but in fewer rounds, often a lot fewer.
- Bad news: you generate the same fact in many different ways, compared with linear.
- Neither method can avoid the fact that if there are many different paths from u to v, you will discover each of those paths, even though one would be enough.
- But nonlinear discovers the same exact path many times.

Example: Linear TC Arc + Path = Path



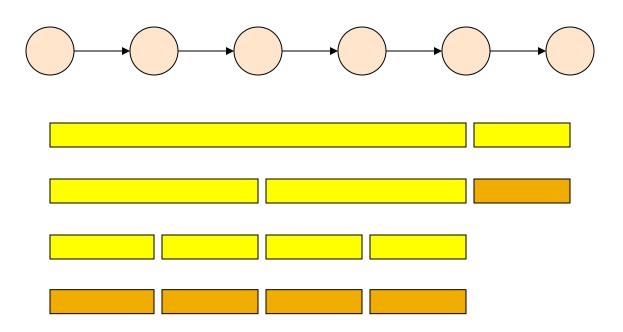
Nonlinear TC Constructs Path + Path = Path in Many Ways



Smart TC

- (Valduriez-Boral, Ioannides) Construct a path from two paths:
 - 1. The first has a length that is a power of 2.
 - 2. The second is no longer than the first.

Example: Smart TC



Implementing Smart TC

- The trick is to keep two path relations, P and Q.
- After the i-th round:
 - P(U,V) contains all those pairs (u,v) such that the shortest path from u to v has length less than 2ⁱ.
 - Q(U,V) contains all those pairs (u,v) such that the shortest path from u to v has length exactly 2ⁱ.
- For the next round:
 - Compute P += Q o P.
 - Paths of length less than 2ⁱ⁺¹.
 - Compute Q = (Q o Q) P.
 - P here is the new value of P.

Summary of TC Options

Method	Total Computation	Parallel Rounds
Warshall	O(N ₃)	O(N)
Depth-First Search	O(NM)	O(M)
Breadth-First Search	O(NM)	O(D)
Linear + Seminaive	O(NM)	O(D)
Nonlinear + Seminaive	O(N ³)	O(log D)
Smart	O(N ³)	O(log D)

Seems odd. But in the worst case, almost all shortest paths can have a length that is a power of 2, so there is no guarantee of improvement for Smart.

Graphs With Large Cycles

- In a sense, acyclic graphs are the hardest TC cases.
- If there are large strongly connected components (SCC's) = sets of nodes with a path from any member of the set to any other, you can simplify TC.
- Example: The Web has a large SCC and other acyclic structures (see Sect. 5.1.3).
 - The big SCC and other SCC's made it much easier to discover the structure of the Web.

The Trick

- Pick a node u at random.
- Do a breadth-first search to find all nodes reachable from u.
 - Parallelizable in at most D rounds.
- Imagine the arcs reversed and do another breadth-first search in the reverse graph.
- The intersection of these two sets is the SCC containing u.
 - With luck, that will be a big set.
- Collapse the SCC to a single node and repeat.

TC-Like Applications

- Instead of just asking whether a path from node u to node v exists, we can attach values to arcs and extend those values to paths.
- Example: value is the "length" of an arc or path.
 - Concatenate paths by taking the sum.
 - Path(u,v, x+y) = $Arc(u,w, x) \circ Path(w,v, y)$.
 - Combine two paths from u to v by taking the minimum.
- Similar example: value is cost of transportation.