The Market-Basket Model
Association Rules
A-Priori Algorithm

Other Algorithms

More Administrivia

2% of your grade will be for answering other
students’ questions on Piazza.

= 18% for Gradiance.
Piazza code is mmds.
Please use only one Gradiance account.

Review sessions the next two Fridays, from
4:30-6PM, in BO1 Gates.

= This Friday: Statistics.
= Next Friday: Linear Algebra.

The Market-Basket Model

A large set of items, e.g., things sold in a
supermarket.
A large set of baskets, each of which is a small

set of the items, e.g., the things one customer
buys on one day.

Simplest question: find sets of items that
appear “frequently” in the baskets.

Support for itemset I = the number of baskets
containing all items in /.

= Sometimes given as a percentage of the baskets.
Given a support threshold s, a set of items
appearing in at least s baskets is called a
frequent itemset.

Example: Frequent Itemsets

ltems={milk, coke, pepsi, beer, juice}.
Support = 3 baskets.
B]_ = {m; C) b} Bz = {ml p) J}

im, b} {b,c}, {c,j}.

Applications

“Classic” application was analyzing what people
bought together in a brick-and-mortar store.

= Apocryphal story of “diapers and beer” discovery.

= Used to position potato chips between diapers and
beer to enhance sales of potato chips.
Many other applications, including plagiarism

detection; see MMDS.

Association Rules

If-then rules about the contents of baskets.
means: “if a basket contains all
of iy,..., I, thenitis to contain j.”
Confidence of this association rule is the
probability of j given i,,..., i,.
= That is, the fraction of the baskets with i,,..., i, that
also containj.

Generally want both high confidence and high
support for the set of items involved.

We'll worry about support and itemsets, not
association rules.

Example: Confidence

" B, ={m, ¢, b} B, ={m, p, j}

- B3y =1{m, b} B, =1c, j}

- Bg={m, p, b} *Bg={m, c, b, j}
B, ={c, b, j} B, = {b, c}

An association rule:
= Confidence = 2/4 = 50%.

Computation Model

Typically, data is kept in flat files.
Stored on disk.

Stored basket-by-basket.

Expand baskets into pairs, triples, etc. as you
read baskets.

= Use k nested loops to generate all sets of size k.

Computation Model - (2)

The true cost of mining disk-resident data is
usually the .
In practice, algorithms for finding frequent
itemsets read the data in passes — all baskets
read in turn.
Thus, we measure the cost by the

an algorithm takes.

10

Main-Memory Bottleneck

For many frequent-itemset algorithms, main
memory is the critical resource.

As we read baskets, we need to count
something, e.g., occurrences of pairs of items.
The number of different things we can count is
limited by main memory.

Swapping counts in/out is a disaster.

11

Finding Frequent Pairs

The hardest problem often turns out to be

finding the

= Why? Often frequent pairs are common, frequent
triples are rare.

Why? Support threshold is usually set high enough that
you don’t get too many frequent itemsets.

We'll concentrate on pairs, then extend to
larger sets.

12

Naive Algorithm

Read file once, counting in main memory the

occurrences of each pair.

* From each basket of n items, generate its n(n-1)/2
pairs by two nested loops.

Fails if (#items)? exceeds main memory.

= Example: Walmart sells 100K items, so probably OK.
= Example: Web has 100B pages, so definitely not OK.

13

Details of Main-Memory Counting

1. Count all pairs, using a triangular matrix.

2. Keep a table of triples [, j, c] = “the count of
the pair of items {j, j} is c.”
(1) requires only 4 bytes/pair.
= Note: always assume integers are 4 bytes.
(2) requires 12 bytes, but only for those
pairs with count > 0.

14

4 per pair

Triangular matrix

O
° o
O
12 per
occurring pair
o ° ®

Tabular method

15

Triangular-Matrix Approach

Number items 1, 2,..., n.

= Requires table of size O(n) to convert item names
to consecutive integers.

Count {j, j} only if i <.

Keep pairs in the order {1,2}, {1,3},..., {1,n},
2,3}, {2,4},..., {2,n}, {3,4},..., {3,n},..., {n -1,n}.
Find pair {i, j}, where i<j, at the position:

Total number of pairs n(n —1)/2; total bytes
about 2n?.

16

Details of Tabular Approach

Total bytes used is about 12p, where p is the
number of pairs that actually occur.

= Beats triangular matrix if at most 1/3 of possible
pairs actually occur.

May require extra space for retrieval structure,

e.g., a hash table.

17

The A-Priori Algorithm

Monotonicity of “Frequent”
Candidate Pairs
Extension to Larger ltemsets

A-Priori Algorithm

A two-pass approach called a-priori limits the
need for main memory.
Key idea: monotonicity: if a set of items
appears at least s times, so does every subset of
the set.

. if item i does not
appear in s baskets, then no pair including i can
appear in s baskets.

19

A-Priori Algorithm — (2)

: Read baskets and count in main
memory the occurrences of each item.

= Requires only memory proportional to #items.
ltems that appear at least s times are the
frequent items.

20

A-Priori Algorithm — (3)

: Read baskets again and count in
main memory only those pairs both of
which were found in Pass 1 to be frequent.
Requires memory proportional to square
of frequent items only (for counts), plus a
list of the frequent items (so you know
what must be counted).

21

Picture of A-Priori

ltem counts Frequent items

Counts of
pairs of

frequent
items

Pass 1 Pass 2

22

Detail for A-Priori

You can use the triangular matrix method with
n = number of frequent items.
= May save space compared with storing triples.

: number frequent items 1, 2,... and keep a
table relating new numbers to original item
numbers.

23

A-Priori Using Triangular Matrix

ltem counts

Counts of

pairs of

frequent
items

Pass 1 Pass 2

24

Frequent Triples, Etc.

For each size of itemsets k, we construct two
sets of k-sets (sets of size k):

= C, = candidate k-sets = those that might be frequent
sets (support > s) based on information from the
pass for itemsets of size k — 1.

= | =the set of truly frequent k-sets.

25

All
items

]

C,

All pairs

Count _
the items of items t
fromL,
Filter L, Construct — C, ™
1;
First
pass
Frequent
items

Count
he pairs

/

Filter

Second
pass

L2

To be
explained

/

—>

Construct

Frequent
pairs

Passes Beyond Two

= all items
In general, L, = members of C, with support = s.

- RGC]LIIFES one pass.
Ci.q1 = (k+1)-sets, each k of whichisin L.

27

Memory Requirements

At the kth pass, you need space to count each
member of C,.

In realistic cases, because you need fairly high
support, the number of candidates of each size
drops, once you get beyond pairs.

28

The PCY (Park-Chen-Yu)
Algorithm

Improvement to A-Priori
Exploits Empty Memory on First Pass
Frequent Buckets

During Pass 1 of A-priori, most memory is idle.
Use that memory to keep counts of buckets into
which pairs of items are hashed.

= Just the count, not the pairs themselves.
For each basket, enumerate all its pairs, hash
them, and increment the resulting bucket count

by 1.

30

PCY Algorithm — (2)

A bucket is frequent if its count is at least the

sup
If a
tot
On

oort threshold.
oucket is not frequent, no pair that hashes
nat bucket could possibly be a frequent pair.

Pass 2, we only count pairs of frequent

items that also hash to a frequent bucket.

A bitmap tells which buckets are frequent, using
only one bit per bucket (i.e., 1/32 of the space
used on Pass 1).

31

Picture of PCY

ltem counts Frequent items
Bitmap
Hash
table Counts of
candidate
pairs

Pass 1 Pass 2

32

Pass 1: Memory Organization

Space to count each item.

" One (typically) 4-byte integer per item.

Use the rest of the space for as many
integers, representing buckets, as we can.

33

PCY Algorithm — Pass 1

FOR (each basket) {
FOR (each i1item 1n the basket)
add 1 to 1tem’s count;
FOR (each pair of 1tems) {
hash the pailr to a bucket;
add 1 to the count for that bucket

34

Observations About Buckets

A bucket that a frequent pair hashes to is
surely frequent.

= We cannot use the hash table to eliminate any
member of this bucket.

Even without any frequent pair, a bucket can
be frequent.

= Again, nothing in the bucket can be eliminated.

35

Observations — (2)

But in the best case, the count for a bucket is
less than the support s.

= Now, all pairs that hash to this bucket can be
eliminated as candidates, even if the pair consists of
two frequent items.

36

PCY Algorithm — Between Passes

Replace the buckets by a bit-vector (the

“bitmap”):

= 1 means the bucket is frequent; 0 means it is not.

Also, decic

e which items are frequent and list

them for the second pass.

37

PCY Algorithm — Pass 2

Count all pairs {j, j} that meet the conditions
for being a candidate pair:

1. Bothiandj are frequent items.

2. The pair {i, j}, hashes to a bucket number whose bit
in the bit vector is 1.

38

Memory Detalls

Buckets require a few bytes each.

= Note: we don’t have to count past s.

= # buckets is O(main-memory size).
On second pass, a table of
triples is essential.

= Thus, hash table on Pass 1 must eliminate 2/3 of the
candidate pairs for PCY to beat a-priori.

39

More Extensions to A-Priori

The MMDS book covers several other

extensions beyond the PCY idea: “Multistage”
and “Multihash.”

For reading on your own.

40

All (Or Most) Frequent
ltemsets In < 2 Passes

Simple Algorithm

Savasere-Omiecinski- Navathe
(SON) Algorithm

Toivonen’s Algorithm

Simple Algorithm

Take a random sample of the market baskets.
Run a-priori or one of its improvements (for
sets of all sizes, not just pairs) in main
memory, so you don’t pay for disk I/O each
time you increase the size of itemsets.

Use as your support threshold a suitable,
scaled-back number.

= Example: if your sample is 1/100 of the baskets,
use s/100 as your support threshold instead of s.

42

Simple Algorithm — Option

Optionally, verify that your guesses are
truly frequent in the entire data set by a
second pass.

But you don’t catch sets frequent in the
whole but not in the sample.

= Smaller threshold, e.g., s/125 instead of s/100,
helps catch more truly frequent itemsets.

But requires more space.

43

SON Algorithm

Partition the baskets into small subsets.

Read each subset into main memory and
perform the first pass of the simple algorithm
oh each subset.

= Parallel processing of the subsets a good option.

An itemset becomes a candidate if it is found to
be frequent (with support threshold suitably
scaled down) in one or more subsets of the
baskets.

44

SON Algorithm — Pass 2

On a second pass, count all the candidate
itemsets and determine which are frequent in

the entire set.
: an itemset cannot be

frequent in the entire set of baskets unless it is
frequent in at least one subset.

45

Toivonen’s Algorithm

Start as in the simple algorithm, but lower the
threshold slightly for the sample.

- . if the sample is 1% of the baskets, use
s/125 as the support threshold rather than s/100.

= Goal is to avoid missing any itemset that is frequent
in the full set of baskets.

46

Toilvonen’s Algorithm — (2)

Add to the itemsets that are frequent in the
sample the negative border of these itemsets.
An itemset is in the negative border if it is not
deemed frequent in the sample, but o/l its
immediate subsets are.

" Immediate = “delete exactly one element.”

47

Example: Negative Border

{A,B,C,D} is in the negative border if and only if:
1. Itis not frequent in the sample, but
2. Allof {A,B,C}, {B,C,D}, {A,C,D}, and {A,B,D} are.
{A}is in the negative border if and only if it is
not frequent in the sample.

= Because the empty set is always frequent.

Unless there are fewer baskets than the support threshold
(silly case).

48

Picture of Negative Border

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

49

Toivonen’s Algorithm — (3)

In a second pass, count all candidate frequent
itemsets from the first pass, and also count

their negative border.
If no itemset from the negative border turns out

to be frequent, then the candidates found to be
frequent in the whole data are the
frequent itemsets.

50

Tolvonen’s Algorithm — (4)

What if we find that something in the negative
border is actually frequent?

We must start over again with another sample!
Try to choose the support threshold so the
probability of failure is low, while the number
of itemsets checked on the second pass fits in
main-memory.

51

If Something in the Negative Border Is

Frequent. ..

We broke through the
negative border. How
far does the problem
go?

Negative Border

tripletons
doubletons

singletons

Frequent Itemsets
from Sample

52

If there is an itemset that is frequent in the

whole, but not frequent in the sample, then
there is a member of the negative border for

the sample that is frequent in the whole.

53

Suppose not; I.e.;

1. Thereis an itemset S frequent in the whole but
not frequent in the sample, and

2. Nothing in the negative border is frequent in the
whole.

Let T be a subset of S that is not
frequent in the sample.

T is frequent in the whole (S is frequent +
monotonicity).

T is in the negative border (else not
“smallest”).

54

Cool Idea Provided by a Student

If you execute a-priori on the sample, in main
memory, then every candidate k-set is either a
frequent k-set or it is in the negative border.
And the entire negative border can be found

this way.
So you get the negative border “for free.”

55

