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Information Diffusion
• Users of a social network post and share information with their 

neighbors

• Users are constantly exposed to new pieces of information by their 
neighbors

• Most models assume different pieces of information spread from user to 
user independently

• But can one piece of information promote or suppress the spread of 
another piece of information?
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Information Diffusion - Terminology
•We focus on single pieces of information (rumors, 

articles, memes, etc) called contagions.

•A user posting a contagion for their neighbors to see 
(“retweet”, “share”, “repost”, etc.) is called an 
adoption.

•When a user’s neighbor adopts a contagion, the 
user sees the contagion and is exposed.

•Upon exposure to a contagion, a user will adopt the 
contagion with certain probability.
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Information Diffusion

Did 1st cat video decrease 
adoption probability of 2nd 

cat video?

Did cat videos 
increase adoption 
probability of dog 

video?

Does exposure to one contagion increase/decrease 
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• We can suppress the spread of other undesirable 
contagions:
“Fair Labor Association too easy on Apple, Foxconn, study 

says”
suppressed by 

“New iPhone 5 Sales Helps Apple Beat Android In The U.S.”

• Contagions can promote other contagions

• What news stories sequence would maximize our 
advertisement’s click-through-rate?

• In general, this leads to a more accurate diffusion model

Contagion Interactions
Why are interactions important?
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Contagion Interactions
Why is modeling interactions difficult?

•Many thousands of contagions diffusing at any time:

•Observing interactions between all of them is 
impossible.

•The ordering of contagion exposures matters

•Cat Video, News Article, Advertisement 

vs. News Article, Cat Video, Advertisement

•  The sampling of all possible interactions and exposure 
sequences is sparse.
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•Massive number of probabilities to measure: 

(Num. Contagions)K ≈ 1.9x1021

•Simplification is necessary.

•Assume Yi is independent of Yj.  Then we apply Bayes 

The Model - Simplifications

X

Infection?

Y1Y2

u2 u1 u0

Examining now...

Time
Figure 1. A visual representation of our model for K = 2. Here, a
particular user has been exposed to the sequence of contagions. She is
currently examining contagion u0, but our model is assuming that she is
still be affected by u1 and u2 that she previously saw. Our goal is to model
the probability of the user adopting u0 as a function of which contagions
she was exposed to in the past.

being infected by X upon being exposed to it, given her
exposure history Y1, Y2, .., Yk. In other words, we model

P (infection by X = u0 | exposed to the sequence
X = u0, Y1 = u1, Y2 = u2, ... YK = uK)

for any combination of contagions u0, u1, ...,uK . For
the sake of brevity, we represent this probability as
P (X |Y1, ..., YK) or

P
(

X | {Yk}
K
k=1

)

(1)

(i.e. exposure to X is always assumed).
Let W be the number of contagions that we are studying,

so there areWK different contagion combinations for which
we need to calculate Eqn. (1). In our dataset, we have over
W = 18, 000 real-world contagions, so for a fixed K , this
is obviously infeasible. We make the assumption that Yk

is independent of Yl i.e. the contagion k exposures ago is
independent of the contagion l exposures ago, for any k, l.
This assumption allows us to re-express Eq. 1:

P
(

X | {Yk}
K
k=1

)

=
P (X) · P

(

{Yk}
K
k=1 |X

)

P
(

{Yk}
K
k=1

)

=
P (X) ·

∏K
k=1 P (Yk|X)

∏K
k=1 P (Yk)

=
P (X) ·

∏K
k=1

P (X|Yk)·P (Yk)
P (X)

∏K
k=1 P (Yk)

=
1

P (X)K−1

K
∏

k=1

P (X |Yk).

It should be noted here that

P (Yk) ≡ P (kth most recent exposure was Yk)

whereas

P (X) ≡ P (infection by X given just exposed to X).

We refer to P (X) as the prior infection probability, and it
can easily be computed empirically by counting the number

times a user was infected by X after being exposed to it
and dividing by the number of times a user was exposed to
X . Therefore, we only need to model P (X |Yk) for each
k = 1, ...,K . This reduces the contagion combinations
down to W × W × K , which is significantly less than
before but still prohibitively large. The final step we make
is that instead of modeling interactions between all pairs
of contagions, we model the interactions between clusters
(i.e., latent topics) of contagions. Specifically, we assume
there exits a small number of latent clusters in which each
contagion is a member with varying degree. Our approach
is to parameterize each contagion’s membership to these
clusters while simultaneously parameterizing the interactions
between these clusters. Here, our model currently assumes
that the infection probability does not change from user to
user. This is discussed later in the section “User Bias.”
Modeling interactions. To begin, we assume that each con-
tagion has some inherent infectiousness or virality (modeled
by the prior infection probability P (X)), and being exposed
to other contagions either slightly increases or decreases the
probability of infection. In other words, we model:

P (X = uj|Yk = ui) ≈ P (X = uj) +∆(k)
cont.(ui, uj) (2)

where ∆(k)
cont.(ui, uj) is the interaction function that rep-

resents the effect contagion ui has on contagion uj from
k exposures away, and P (X = uj) is the empirically
measured prior infection probability for contagion uj . We
can treat ∆(k)

cont.(ui, uj) as the i, j entry of the matrix
∆

(k)
cont. ∈ %W×W , which is far too large to model explicitly.

Rather, we model the interactions between clusters (i.e.,
latent topics) of contagions.
Our strategy will be to identify clusters of the contagions

that interact in similar ways, and then only model the
interactions between these clusters. Let there be a small
number of latent clusters (say there are T of them) to which
each contagion is a member of in varying degree. If we know
to which cluster each contagion belongs, then all we would
have to do is model T × T different interactions.
Given W contagions, we define the contagion to cluster

membership matrix M ∈ [0, 1]W×T such that

Mi,t = P (contagion ui ∈ cluster ct)

and so
∑

t Mi,t = 1 ∀ i. To express the interactions between
each latent cluster, for each k = 1, ...,K we have a new
interaction function ∆(k)

clust(ct, cs) to model the effect of
cluster ct on cluster cs. Now, for ui '= uj

∆(k)
cont.(ui, uj) =

∑

t

∑

s

Mj,t ·∆
(k)
clust(ct, cs) ·Mi,s

and for ui = uj

∆(k)
cont.(uj, uj) =

∑

s

Mj,s ·∆
(k)
clust(cs, cs).
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we need to calculate Eqn. (1). In our dataset, we have over
W = 18, 000 real-world contagions, so for a fixed K , this
is obviously infeasible. We make the assumption that Yk

is independent of Yl i.e. the contagion k exposures ago is
independent of the contagion l exposures ago, for any k, l.
This assumption allows us to re-express Eq. 1:
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It should be noted here that

P (Yk) ≡ P (kth most recent exposure was Yk)

whereas

P (X) ≡ P (infection by X given just exposed to X).

We refer to P (X) as the prior infection probability, and it
can easily be computed empirically by counting the number

times a user was infected by X after being exposed to it
and dividing by the number of times a user was exposed to
X . Therefore, we only need to model P (X |Yk) for each
k = 1, ...,K . This reduces the contagion combinations
down to W × W × K , which is significantly less than
before but still prohibitively large. The final step we make
is that instead of modeling interactions between all pairs
of contagions, we model the interactions between clusters
(i.e., latent topics) of contagions. Specifically, we assume
there exits a small number of latent clusters in which each
contagion is a member with varying degree. Our approach
is to parameterize each contagion’s membership to these
clusters while simultaneously parameterizing the interactions
between these clusters. Here, our model currently assumes
that the infection probability does not change from user to
user. This is discussed later in the section “User Bias.”
Modeling interactions. To begin, we assume that each con-
tagion has some inherent infectiousness or virality (modeled
by the prior infection probability P (X)), and being exposed
to other contagions either slightly increases or decreases the
probability of infection. In other words, we model:

P (X = uj|Yk = ui) ≈ P (X = uj) +∆(k)
cont.(ui, uj) (2)

where ∆(k)
cont.(ui, uj) is the interaction function that rep-

resents the effect contagion ui has on contagion uj from
k exposures away, and P (X = uj) is the empirically
measured prior infection probability for contagion uj . We
can treat ∆(k)

cont.(ui, uj) as the i, j entry of the matrix
∆

(k)
cont. ∈ %W×W , which is far too large to model explicitly.

Rather, we model the interactions between clusters (i.e.,
latent topics) of contagions.
Our strategy will be to identify clusters of the contagions

that interact in similar ways, and then only model the
interactions between these clusters. Let there be a small
number of latent clusters (say there are T of them) to which
each contagion is a member of in varying degree. If we know
to which cluster each contagion belongs, then all we would
have to do is model T × T different interactions.
Given W contagions, we define the contagion to cluster

membership matrix M ∈ [0, 1]W×T such that

Mi,t = P (contagion ui ∈ cluster ct)

and so
∑

t Mi,t = 1 ∀ i. To express the interactions between
each latent cluster, for each k = 1, ...,K we have a new
interaction function ∆(k)

clust(ct, cs) to model the effect of
cluster ct on cluster cs. Now, for ui '= uj
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Figure 1. A visual representation of our model for K = 2. Here, a
particular user has been exposed to the sequence of contagions. She is
currently examining contagion u0, but our model is assuming that she is
still be affected by u1 and u2 that she previously saw. Our goal is to model
the probability of the user adopting u0 as a function of which contagions
she was exposed to in the past.
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the sake of brevity, we represent this probability as
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(i.e. exposure to X is always assumed).
Let W be the number of contagions that we are studying,

so there areWK different contagion combinations for which
we need to calculate Eqn. (1). In our dataset, we have over
W = 18, 000 real-world contagions, so for a fixed K , this
is obviously infeasible. We make the assumption that Yk
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It should be noted here that

P (Yk) ≡ P (kth most recent exposure was Yk)

whereas

P (X) ≡ P (infection by X given just exposed to X).

We refer to P (X) as the prior infection probability, and it
can easily be computed empirically by counting the number

times a user was infected by X after being exposed to it
and dividing by the number of times a user was exposed to
X . Therefore, we only need to model P (X |Yk) for each
k = 1, ...,K . This reduces the contagion combinations
down to W × W × K , which is significantly less than
before but still prohibitively large. The final step we make
is that instead of modeling interactions between all pairs
of contagions, we model the interactions between clusters
(i.e., latent topics) of contagions. Specifically, we assume
there exits a small number of latent clusters in which each
contagion is a member with varying degree. Our approach
is to parameterize each contagion’s membership to these
clusters while simultaneously parameterizing the interactions
between these clusters. Here, our model currently assumes
that the infection probability does not change from user to
user. This is discussed later in the section “User Bias.”
Modeling interactions. To begin, we assume that each con-
tagion has some inherent infectiousness or virality (modeled
by the prior infection probability P (X)), and being exposed
to other contagions either slightly increases or decreases the
probability of infection. In other words, we model:

P (X = uj|Yk = ui) ≈ P (X = uj) +∆(k)
cont.(ui, uj) (2)

where ∆(k)
cont.(ui, uj) is the interaction function that rep-

resents the effect contagion ui has on contagion uj from
k exposures away, and P (X = uj) is the empirically
measured prior infection probability for contagion uj . We
can treat ∆(k)

cont.(ui, uj) as the i, j entry of the matrix
∆

(k)
cont. ∈ %W×W , which is far too large to model explicitly.

Rather, we model the interactions between clusters (i.e.,
latent topics) of contagions.
Our strategy will be to identify clusters of the contagions

that interact in similar ways, and then only model the
interactions between these clusters. Let there be a small
number of latent clusters (say there are T of them) to which
each contagion is a member of in varying degree. If we know
to which cluster each contagion belongs, then all we would
have to do is model T × T different interactions.
Given W contagions, we define the contagion to cluster

membership matrix M ∈ [0, 1]W×T such that

Mi,t = P (contagion ui ∈ cluster ct)

and so
∑

t Mi,t = 1 ∀ i. To express the interactions between
each latent cluster, for each k = 1, ...,K we have a new
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clust(ct, cs) to model the effect of
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• Still too many probabilities.

• Assume: P (X = ci|Yk = cj) ≈ P (X = ci) + Interaction(ci, cj)

• Let contagion interactions come from latent interacting topics or clusters.

P (X = ci|Yk = cj) ≈ P (X = ci) + Interaction(ci, cj)

Interaction(ci, cj) =
∑

ta,tb

∆(k)(ta, tb)×P (ci ∈ cluster ta)

×P (cj ∈ cluster tb)
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P (X = ci|Yk = cj) = P (X = ci)+
∑
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• Assume: P (X = ci|Yk = cj) ≈ P (X = ci) + Interaction(ci, cj)
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P (X = ci|Yk = cj) ≈ P (X = ci) + Interaction(ci, cj)

Interaction(ci, cj) =
∑

ta,tb

∆(k)(ta, tb)×P (ci ∈ cluster ta)

×P (cj ∈ cluster tb)

Mia ≡ P (ci ∈ cluster ta)

P (X = ci|Yk = cj) = P (X = ci)+
∑

a,b

Mi,a×Mib×∆(k)(a, b)

cj

The Model - Simplifications

Memberships to clusters
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between clusters
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Fitting The Model
• Given:

• The Network - which users are connected

• Adoption times - which users adopted the contagions and when

• We measure directly:  P( X = ci ) for all contagions:

P( X = ci ) = (num. adoptions of ci ) / (num. exposures to ci )

• We Infer:

• The cluster memberships  M.

• The cluster interactions  ∆(k).
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• Define nkij to be the number of times a user was exposed to cj, then k 
exposures later to ci.  

• Define pkij to be number of times this lead to adoption of ci.

• Then the log-likelihood is

The Objective FunctionP (X = ci|Yk = cj) ≈ P (X = ci) + Interaction(ci, cj)

Interaction(ci, cj) =
∑

ta,tb

∆(k)(ta, tb)×P (ci ∈ cluster ta)

×P (cj ∈ cluster tb)

Mia ≡ P (ci ∈ cluster ta)

P (X = ci|Yk = cj) = P (X = ci)+
∑

a,b

Mi,a×Mib×∆(k)(a, b)

L(M, {∆}Kk=1) =

∑

i,j,k

pkij · log
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∑
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•We fit M and ∆(k) to the observed data using stochastic 
gradient descent:

•A small subset of the  pkij   and  nkij values (terms in the 
objective function) are chosen randomly.

•The parameters are fit to this subset using gradient descent.

•After ~20 iterations, the pkij   and  nkij values are resampled.

•This continues until no improvement can be achieved.

Optimizing the Objective Function
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The Real Dataset - Twitter
•We iterated through every tweet sent on Twitter in 

January 2011, and we extracted tweeted URLs:

•18,186 high-volume URLs 

•1,087,033 users with 103,112,438 follower edges

• URLs tweeted 2,664,207 times

•810,884,361 exposures to URLs.

•Each URL is a different contagion

•A user adopts a URL contagion by tweeting it.

Thursday, December 13, 12



Experiments

Thursday, December 13, 12



•The model is trained on 90% of all observed exposures.

Experiments

Thursday, December 13, 12



•The model is trained on 90% of all observed exposures.

•The model predicts which exposures in test set will 
cause adoptions.

Experiments

Thursday, December 13, 12



•The model is trained on 90% of all observed exposures.

•The model predicts which exposures in test set will 
cause adoptions.

•Multiple measures of performance used

Experiments

Thursday, December 13, 12



•The model is trained on 90% of all observed exposures.

•The model predicts which exposures in test set will 
cause adoptions.

•Multiple measures of performance used

•Log-Likelihood of test set

Experiments

Thursday, December 13, 12



•The model is trained on 90% of all observed exposures.

•The model predicts which exposures in test set will 
cause adoptions.

•Multiple measures of performance used

•Log-Likelihood of test set

•maximum F1 score

Experiments

Thursday, December 13, 12



•The model is trained on 90% of all observed exposures.

•The model predicts which exposures in test set will 
cause adoptions.

•Multiple measures of performance used

•Log-Likelihood of test set

•maximum F1 score

•Area under precision/recall curve

Experiments
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• The model’s performance was compared to several baseline 
models.

• Prior Adoption Probability:  P( X | Yk ) = P(X) for all Yk

• Independent Cascade Model [Goldenberg et al. 2001, Kempe 
el al 2003]

• Prior+User Bias:  Pu ( X ) = P(X) + du  for each user u.  

• Exposure Curve [Romero et al 2011, Myers et al 2012]:  Adoption 
probability of X as a function of exposure count. 

Experiments - Baselines

P(
Ad
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tio

n)

# of Exposures
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Experiments - Results

Log-Like. Area under PR max F1

Prior Adoption 
Probability -335,550.39 0.0157 0.0157
Prior+User Bias -338,821.54 0.0123 0.0112
Exposure Curve -338,367.86 0.0250 0.0181

Our Model -299,884.86 0.1238 0.0465
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Prior Adoption 
Probability -335,550.39 0.0157 0.0157
Prior+User Bias -338,821.54 0.0123 0.0112
Exposure Curve -338,367.86 0.0250 0.0181

Our Model -299,884.86 0.1238 0.0465
400% 

Improvement!
168% 

Improvement!
11% 

Improvement

Including a user bias parameter offered no improvement in 
performance.
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(b) Relative Change in Probability

Figure 3. (a) The distribution in the expected interaction across all pairs
of intersecting contagions for k = 1, ...,5. (b) The distribution of relative
change in probability caused by including the interaction term of the model
across all exposure events in the training dataset.

the probabilities of infection assigned to each exposure event
comes from the contagion prior infection probability and
how much comes from the contagion interactions.
Figure 3(a) shows the distribution of the expected interac-

tion across all pairs of contagions in our dataset. Given this
figure, it appears that on average, the expected interaction
term of the model is very small. In fact, the average infection
probability P (X) is 0.0029 with a standard deviation of
0.0055, whereas the average expected interaction is -6.637E-
5 with a standard deviation of 7.630E-5. First, this validates
the assumption presented in Eqn. 2; P (X |Yk) is largely
the prior infection probability, plus or minus the interaction
term. This could, however, imply that the vast majority of the
probability of infection that the interaction model assigns to
each exposed contagion comes from the infection probability
term and not from interactions between other contagions. In
actuality, only a very few number of the possible pairs of
contagions ever interact with each other (i.e., are exposed
to the same user at close to the same time). Furthermore,
many of the pairs of contagions that do interact only do so
a few number of times, whereas there are other contagion
pairs that interact several thousand times. To account for
this, we took every single exposure event in the training
dataset and recorded the probability of infection given by
our interaction model. We then recorded the relative change
in probability of the interaction model compared to just the
prior probability of infection P (X):

Relative Change =
(Interact. Model Prob.)− (Prior Prob.)

(Prior Prob.)
.

With this measure, the contribution of each contagion pair
to the distribution of interactions is proportional to how
often they interact. Fig. 3(b) shows the distribution of this
quantity across all exposure events in the training dataset.
This plot tells a very different story in that the contribution
of contagion interactions to the model vary widely, with
the distribution showing a heavy tail that reaches 1,000%
relative change in the infection probability. In fact, the
average absolute value of relative change is 71%, indicating
that on average more than half of the assigned probability
comes from interactions between contagions. In short, the
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Figure 4. (a) Relative Interaction versus the source contagion’s prior
infection probability minus the destination contagion’s prior infection
probability. (b) Relative Interaction versus content similarity between the
contagions. The relative interaction in both figures is calculated using Eq 3.

aggregate of several small changes in each P (X |Yk) creates
a large change in P (X |Y1, ..., Yk).
We consider this strong evidence, in conjunction with

the significant increase in infection prediction accuracy,
that interactions between contagions should be a necessary
component of any information cascade model.
Why so negative? Another interesting observation that
comes from the distribution of interactions shown in Fig.
3(a) is that it is not centered at exactly 0. Specifically, there
are more than a hundred times as many contagion pairs at
the mode of this distribution (which is slightly negative)
than there are at 0. In other words, there appears to be
this default negative interaction between contagion pairs,
and it is only some inherent interaction between specific
pairs of contagions that changes this. This implies that if
one studied the process of a contagion propagating across
Twitter with no other contagions propagating at the same
time, the infection probabilities would be higher and the final
reach of the cascade would be larger compared to if another
contagion was randomly chosen to propagate at the same
time. This is intuitive. If a user has exactly one contagion
in her news feed when she logs in, the chances she even
sees the contagion is much higher, and the contagion will
not have to share her focus with others.
Why do contagions interact? The most important question
that can be asked of our interaction model is what causes
interactions between cascading contagions?
To answer this question, we first look at how the prior

infection probabilities of contagions affect their interactions.
Fig. 4(a) shows for each pair of interacting contagions the
expected interaction versus the prior infection probability
of the source (exposing) contagion minus the infection
probability of the destination (infecting) contagion. For the
expected interaction, we normalize the the interaction across
all pairs of URLs to a standard normal, i.e., the normalized
interaction between URLs i and j is

Rel. Interactionk[i, j] =

(

M ·∆(k) ·MT
)

i,j
− µ

(k)
int

σ
(k)
int

(3)

where σ(k)
int is the standard deviation of interactions between
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Figure 3. (a) The distribution in the expected interaction across all pairs
of intersecting contagions for k = 1, ...,5. (b) The distribution of relative
change in probability caused by including the interaction term of the model
across all exposure events in the training dataset.

the probabilities of infection assigned to each exposure event
comes from the contagion prior infection probability and
how much comes from the contagion interactions.
Figure 3(a) shows the distribution of the expected interac-

tion across all pairs of contagions in our dataset. Given this
figure, it appears that on average, the expected interaction
term of the model is very small. In fact, the average infection
probability P (X) is 0.0029 with a standard deviation of
0.0055, whereas the average expected interaction is -6.637E-
5 with a standard deviation of 7.630E-5. First, this validates
the assumption presented in Eqn. 2; P (X |Yk) is largely
the prior infection probability, plus or minus the interaction
term. This could, however, imply that the vast majority of the
probability of infection that the interaction model assigns to
each exposed contagion comes from the infection probability
term and not from interactions between other contagions. In
actuality, only a very few number of the possible pairs of
contagions ever interact with each other (i.e., are exposed
to the same user at close to the same time). Furthermore,
many of the pairs of contagions that do interact only do so
a few number of times, whereas there are other contagion
pairs that interact several thousand times. To account for
this, we took every single exposure event in the training
dataset and recorded the probability of infection given by
our interaction model. We then recorded the relative change
in probability of the interaction model compared to just the
prior probability of infection P (X):

Relative Change =
(Interact. Model Prob.)− (Prior Prob.)

(Prior Prob.)
.

With this measure, the contribution of each contagion pair
to the distribution of interactions is proportional to how
often they interact. Fig. 3(b) shows the distribution of this
quantity across all exposure events in the training dataset.
This plot tells a very different story in that the contribution
of contagion interactions to the model vary widely, with
the distribution showing a heavy tail that reaches 1,000%
relative change in the infection probability. In fact, the
average absolute value of relative change is 71%, indicating
that on average more than half of the assigned probability
comes from interactions between contagions. In short, the
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Figure 4. (a) Relative Interaction versus the source contagion’s prior
infection probability minus the destination contagion’s prior infection
probability. (b) Relative Interaction versus content similarity between the
contagions. The relative interaction in both figures is calculated using Eq 3.

aggregate of several small changes in each P (X |Yk) creates
a large change in P (X |Y1, ..., Yk).
We consider this strong evidence, in conjunction with

the significant increase in infection prediction accuracy,
that interactions between contagions should be a necessary
component of any information cascade model.
Why so negative? Another interesting observation that
comes from the distribution of interactions shown in Fig.
3(a) is that it is not centered at exactly 0. Specifically, there
are more than a hundred times as many contagion pairs at
the mode of this distribution (which is slightly negative)
than there are at 0. In other words, there appears to be
this default negative interaction between contagion pairs,
and it is only some inherent interaction between specific
pairs of contagions that changes this. This implies that if
one studied the process of a contagion propagating across
Twitter with no other contagions propagating at the same
time, the infection probabilities would be higher and the final
reach of the cascade would be larger compared to if another
contagion was randomly chosen to propagate at the same
time. This is intuitive. If a user has exactly one contagion
in her news feed when she logs in, the chances she even
sees the contagion is much higher, and the contagion will
not have to share her focus with others.
Why do contagions interact? The most important question
that can be asked of our interaction model is what causes
interactions between cascading contagions?
To answer this question, we first look at how the prior

infection probabilities of contagions affect their interactions.
Fig. 4(a) shows for each pair of interacting contagions the
expected interaction versus the prior infection probability
of the source (exposing) contagion minus the infection
probability of the destination (infecting) contagion. For the
expected interaction, we normalize the the interaction across
all pairs of URLs to a standard normal, i.e., the normalized
interaction between URLs i and j is

Rel. Interactionk[i, j] =

(

M ·∆(k) ·MT
)

i,j
− µ

(k)
int

σ
(k)
int

(3)

where σ(k)
int is the standard deviation of interactions between

•In all, interactions between other contagions change 
adoption probability by 71% on average!
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Figure 3. (a) The distribution in the expected interaction across all pairs
of intersecting contagions for k = 1, ...,5. (b) The distribution of relative
change in probability caused by including the interaction term of the model
across all exposure events in the training dataset.

the probabilities of infection assigned to each exposure event
comes from the contagion prior infection probability and
how much comes from the contagion interactions.
Figure 3(a) shows the distribution of the expected interac-

tion across all pairs of contagions in our dataset. Given this
figure, it appears that on average, the expected interaction
term of the model is very small. In fact, the average infection
probability P (X) is 0.0029 with a standard deviation of
0.0055, whereas the average expected interaction is -6.637E-
5 with a standard deviation of 7.630E-5. First, this validates
the assumption presented in Eqn. 2; P (X |Yk) is largely
the prior infection probability, plus or minus the interaction
term. This could, however, imply that the vast majority of the
probability of infection that the interaction model assigns to
each exposed contagion comes from the infection probability
term and not from interactions between other contagions. In
actuality, only a very few number of the possible pairs of
contagions ever interact with each other (i.e., are exposed
to the same user at close to the same time). Furthermore,
many of the pairs of contagions that do interact only do so
a few number of times, whereas there are other contagion
pairs that interact several thousand times. To account for
this, we took every single exposure event in the training
dataset and recorded the probability of infection given by
our interaction model. We then recorded the relative change
in probability of the interaction model compared to just the
prior probability of infection P (X):

Relative Change =
(Interact. Model Prob.)− (Prior Prob.)

(Prior Prob.)
.

With this measure, the contribution of each contagion pair
to the distribution of interactions is proportional to how
often they interact. Fig. 3(b) shows the distribution of this
quantity across all exposure events in the training dataset.
This plot tells a very different story in that the contribution
of contagion interactions to the model vary widely, with
the distribution showing a heavy tail that reaches 1,000%
relative change in the infection probability. In fact, the
average absolute value of relative change is 71%, indicating
that on average more than half of the assigned probability
comes from interactions between contagions. In short, the
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Figure 4. (a) Relative Interaction versus the source contagion’s prior
infection probability minus the destination contagion’s prior infection
probability. (b) Relative Interaction versus content similarity between the
contagions. The relative interaction in both figures is calculated using Eq 3.

aggregate of several small changes in each P (X |Yk) creates
a large change in P (X |Y1, ..., Yk).
We consider this strong evidence, in conjunction with

the significant increase in infection prediction accuracy,
that interactions between contagions should be a necessary
component of any information cascade model.
Why so negative? Another interesting observation that
comes from the distribution of interactions shown in Fig.
3(a) is that it is not centered at exactly 0. Specifically, there
are more than a hundred times as many contagion pairs at
the mode of this distribution (which is slightly negative)
than there are at 0. In other words, there appears to be
this default negative interaction between contagion pairs,
and it is only some inherent interaction between specific
pairs of contagions that changes this. This implies that if
one studied the process of a contagion propagating across
Twitter with no other contagions propagating at the same
time, the infection probabilities would be higher and the final
reach of the cascade would be larger compared to if another
contagion was randomly chosen to propagate at the same
time. This is intuitive. If a user has exactly one contagion
in her news feed when she logs in, the chances she even
sees the contagion is much higher, and the contagion will
not have to share her focus with others.
Why do contagions interact? The most important question
that can be asked of our interaction model is what causes
interactions between cascading contagions?
To answer this question, we first look at how the prior

infection probabilities of contagions affect their interactions.
Fig. 4(a) shows for each pair of interacting contagions the
expected interaction versus the prior infection probability
of the source (exposing) contagion minus the infection
probability of the destination (infecting) contagion. For the
expected interaction, we normalize the the interaction across
all pairs of URLs to a standard normal, i.e., the normalized
interaction between URLs i and j is

Rel. Interactionk[i, j] =

(

M ·∆(k) ·MT
)

i,j
− µ

(k)
int

σ
(k)
int

(3)

where σ(k)
int is the standard deviation of interactions between

• If highly related in subject matter, the interaction is positive.
• If they are unrelated, the interaction is negative.

P( X= ci | Yk = cj )

Lower prior adoption prob. Higher prior adoption prob.

Thursday, December 13, 12



• Contagions with higher prior adoption probabilities interact strongly with lower 
adoption probability contagions

Insights from the Model

100
101
102
103
104
105
106
107
108

-0.004 -0.002  0  0.002  0.004

C
ou

nt
s

(M*Δ(k)*MT)i,j

K = 1
K = 2
K = 3
K = 4
K = 5

(a) Interaction Distribution

105

106

107

108

109

-2  0  2  4  6  8

C
ou

nt
s

Relative Change in Prob.

(b) Relative Change in Probability

Figure 3. (a) The distribution in the expected interaction across all pairs
of intersecting contagions for k = 1, ...,5. (b) The distribution of relative
change in probability caused by including the interaction term of the model
across all exposure events in the training dataset.

the probabilities of infection assigned to each exposure event
comes from the contagion prior infection probability and
how much comes from the contagion interactions.
Figure 3(a) shows the distribution of the expected interac-

tion across all pairs of contagions in our dataset. Given this
figure, it appears that on average, the expected interaction
term of the model is very small. In fact, the average infection
probability P (X) is 0.0029 with a standard deviation of
0.0055, whereas the average expected interaction is -6.637E-
5 with a standard deviation of 7.630E-5. First, this validates
the assumption presented in Eqn. 2; P (X |Yk) is largely
the prior infection probability, plus or minus the interaction
term. This could, however, imply that the vast majority of the
probability of infection that the interaction model assigns to
each exposed contagion comes from the infection probability
term and not from interactions between other contagions. In
actuality, only a very few number of the possible pairs of
contagions ever interact with each other (i.e., are exposed
to the same user at close to the same time). Furthermore,
many of the pairs of contagions that do interact only do so
a few number of times, whereas there are other contagion
pairs that interact several thousand times. To account for
this, we took every single exposure event in the training
dataset and recorded the probability of infection given by
our interaction model. We then recorded the relative change
in probability of the interaction model compared to just the
prior probability of infection P (X):

Relative Change =
(Interact. Model Prob.)− (Prior Prob.)

(Prior Prob.)
.

With this measure, the contribution of each contagion pair
to the distribution of interactions is proportional to how
often they interact. Fig. 3(b) shows the distribution of this
quantity across all exposure events in the training dataset.
This plot tells a very different story in that the contribution
of contagion interactions to the model vary widely, with
the distribution showing a heavy tail that reaches 1,000%
relative change in the infection probability. In fact, the
average absolute value of relative change is 71%, indicating
that on average more than half of the assigned probability
comes from interactions between contagions. In short, the
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Figure 4. (a) Relative Interaction versus the source contagion’s prior
infection probability minus the destination contagion’s prior infection
probability. (b) Relative Interaction versus content similarity between the
contagions. The relative interaction in both figures is calculated using Eq 3.

aggregate of several small changes in each P (X |Yk) creates
a large change in P (X |Y1, ..., Yk).
We consider this strong evidence, in conjunction with

the significant increase in infection prediction accuracy,
that interactions between contagions should be a necessary
component of any information cascade model.
Why so negative? Another interesting observation that
comes from the distribution of interactions shown in Fig.
3(a) is that it is not centered at exactly 0. Specifically, there
are more than a hundred times as many contagion pairs at
the mode of this distribution (which is slightly negative)
than there are at 0. In other words, there appears to be
this default negative interaction between contagion pairs,
and it is only some inherent interaction between specific
pairs of contagions that changes this. This implies that if
one studied the process of a contagion propagating across
Twitter with no other contagions propagating at the same
time, the infection probabilities would be higher and the final
reach of the cascade would be larger compared to if another
contagion was randomly chosen to propagate at the same
time. This is intuitive. If a user has exactly one contagion
in her news feed when she logs in, the chances she even
sees the contagion is much higher, and the contagion will
not have to share her focus with others.
Why do contagions interact? The most important question
that can be asked of our interaction model is what causes
interactions between cascading contagions?
To answer this question, we first look at how the prior

infection probabilities of contagions affect their interactions.
Fig. 4(a) shows for each pair of interacting contagions the
expected interaction versus the prior infection probability
of the source (exposing) contagion minus the infection
probability of the destination (infecting) contagion. For the
expected interaction, we normalize the the interaction across
all pairs of URLs to a standard normal, i.e., the normalized
interaction between URLs i and j is

Rel. Interactionk[i, j] =

(

M ·∆(k) ·MT
)

i,j
− µ

(k)
int

σ
(k)
int

(3)

where σ(k)
int is the standard deviation of interactions between

• This is evidence of an underlying process of interactions...

• If highly related in subject matter, the interaction is positive.
• If they are unrelated, the interaction is negative.

P( X= ci | Yk = cj )

Lower prior adoption prob. Higher prior adoption prob.
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Conclusion
•We presented a novel information diffusion model to 

account for interactions between diffusing contagions

•We developed a scalable algorithm to fit the model to 
observable data.

•The model outperforms several baselines.

•Our model provides insight into the process of 
interactions between spreading contagions.
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