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Information Diffusion

e Users of a social network post and share information with their
neighbors

b pding

e Users are constantly exposed to new pieces of information by their

neighbors

* Most models assume different pieces of information spread from user to
user independently

e But can one piece of information promote or suppress the spread of
another piece of information?
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e \\We focus on single pieces of information (rumors,
articles, memes, etc) called contagions.
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Information Diffusion - Terminology

e \\We focus on single pieces of information (rumors,
articles, memes, etc) called contagions.

® A user posting a contagion for their neighbors to see

(“retweet”, “share”, “repost”, etc.) is called an
adoption.

*\When a user’s neighbor adopts a contagion, the
user sees the contagion and is exposed.

e Upon exposure to a contagion, a user will adopt the
contagion with certain probability.
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Information Diffusion

Does exposure to one contagion increase/decrease
adoption probabillity of another contagion”

Did 1st cat video decrease
adoption probability of 2nad
cat video”? ‘

Did cat videos /
iIncrease adoption
orobability of dog T \

video?
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Why are interactions important?

¢ \\le can suppress the spread of other undesirable
contagions:

“Fair Labor Association too easy on Apple. Foxconn. study
says”
suppressed by
"New IPhone 5 Sales Helps Apple Beat Android In The U.S.”
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Contagion Interactions

Why are interactions important?

¢ \\We can suppress the spread of other undesirable
contagions:

“Fair Labor Association too easy on Apple. Foxconn. study
says”
suppressed by
"New IPhone 5 Sales Helps Apple Beat Android In The U.S.”

e Contagions can promote other contagions

¢ \What news stories sequence would maximize our
advertisement’s click-through-rate?

* |[n general, this leads to a more accurate diffusion model
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Contagion Interactions

Why is modeling interactions difficult?
e Many thousands of contagions diffusing at any time:

e Observing interactions between all of them is

Impossible.
® The ordering of contagion exposures matters
e Cat Video, News Article, Advertisement
vs. News Article, Cat Video, Advertisement

e The sampling of all possible interactions and exposure

sequences Iis sparse.
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The Model

¢\\e assume K most recent exposures effect a user’s
adoption:

P(adopt X=co | exposed Yi=c1, Yo=C>, ..., Yk=Ck)

N /

Contagion the user is Contagions the user
viewing Now. previously viewed.

Contagions adopted by neighbors:

5 6 o dls

Adopt?
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The Model - Simplifications

e Massive number of probabilities to measure:
(Num. Contagions)X = 1.9x1021
e Simplification is necessary.

e Assume Yiis independent of Y;. Then we apply Bayes

P (XHHL) = e T P00
- k=1 /

Left to be modeled

Easily measured empirically
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e Still too many probabilities.

e pssume: P(X = ¢|Yy = ¢;) = P(X = ¢;) + Interaction(c;, c;)

¢ | et contagion interactions come from latent interacting topics or clusters.
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The Model - Simplifications

e Still too many probabilities.

e Assume: P(X — C’I,‘Yk p— C]) ~ P(X — C’i) —|— I?”Lt(j?“actiml(ci, C])

¢ | et contagion interactions come from latent interacting topics or clusters.

M, @

cluster a

/ cluster b

.

Bl

e | BT
a b ¢ d
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The Model - Simplifications

e Still too many probabilities.

e Assume: P(X — C’L‘Yk p— C]) ~ P(X — C’i) —|— InteraCtion(Ci, C])

¢ | et contagion interactions come from latent interacting topics or clusters.

M;,

a\

-

cluster b Memberships to clusters

.rA(k)
.LJ. cluster c " )
M; d/ .... Cluster d bethS%CCII?JZferS
a b c¢ d
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Fitting The Model

e Given:

* The Network - which users are connected
e Adoption times - which users adopted the contagions and when
e We measure directly: P( X = c¢;) for all contagions:
P(X = ci) = (num. adoptions of ci) / (num. exposures to c;)
* We Infer:

* The cluster memberships M.

* The cluster interactions A%,
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e Define n¥j to be the number of times a user was exposed to c¢j, then k
exposures later to c..

e Define p¥j to be number of times this lead to adoption of c;.

* Then the log-likelihood is
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The Objective Function

¢ \We observe exposure sequences, and which exposures led to adoption.

e Define n¥j to be the number of times a user was exposed to c¢j, then k
exposures later to c..

e Define p¥j to be number of times this lead to adoption of c;.

* Then the log-likelihood is

K
LM {A}_) = P( X | Y«) positively sampled

+(n§j — p?j) - log

P( X | Y«) negatively sampled
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Optimizing the Objective Function

e \Ne fit M and A® to the observed data using stochastic
gradient descent:

* A small subset of the p%; and n%;values (terms in the
objective function) are chosen randomly.

® The parameters are fit to this subset using gradient descent.
o After ~20 iterations, the p*; and n¥; values are resampled.

® This continues until no improvement can be achieved.

Thursday, December 13, 12



The Real Dataset - Twitter




The Real Dataset - Twitter

e \We iterated through every tweet sent on Twitter In
January 2011, and we extracted tweeted URLs:




The Real Dataset - Twitter

e \We iterated through every tweet sent on Twitter In
January 2011, and we extracted tweeted URLs:

¢ 18,186 high-volume UF

Ls

|

Thursday, December 13, 12



The Real Dataset - Twitter

e \We iterated through every tweet sent on Twitter In
January 2011, and we extracted tweeted URLs:

¢ 18,186 high-volume UF

Ls

|

¢1,087,033 users with 103,112,438 follower edges

Thursday, December 13, 12



The Real Dataset - Twitter

e \We iterated through every tweet sent on Twitter In
January 2011, and we extracted tweeted URLs:

¢ 18,186 high-volume UF

Ls

|

¢1,087,033 users with 103,112,438 follower edges
e URLs tweeted 2,664,207 times

Thursday, December 13, 12



The Real Dataset - Twitter

e \We iterated through every tweet sent on Twitter In
January 2011, and we extracted tweeted URLs:

¢ 18,186 high-volume UF

Ls

|

¢1,087,033 users with 103,112,438 follower edges
e URLs tweeted 2,664,207 times

810,884,361 exposures to UF

LS.

Vi

Thursday, December 13, 12



The Real Dataset - Twitter

e \We iterated through every tweet sent on Twitter In
January 2011, and we extracted tweeted URLs:

¢ 18,186 high-volume UF

Ls

|

¢1,087,033 users with 103,112,438 follower edges
e URLs tweeted 2,664,207 times

810,884,361 exposures to UF

LS.

Vi

e Fach URL is a different contagion

Thursday, December 13, 12



The Real Dataset - Twitter

e \We iterated through every tweet sent on Twitter In
January 2011, and we extracted tweeted URLs:

¢ 18,186 high-volume UF

Ls

|

¢1,087,033 users with 103,112,438 follower edges
e URLs tweeted 2,664,207 times

810,884,361 exposures to UF

LS.

Vi

e Fach URL is a different contagion

e A user adopts a URL contagion by tweeting it.
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EXperiments

* The model is trained on 90% of all observed exposures.

* The model predicts which exposures in test set will
cause adoptions.

* Multiple measures of performance used
e | og-Likelihood of test set
e maximum F+ score

e Area under precision/recall curve
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* The model’s performance was compared to several baseline
models.
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EXperiments - Baselines

* The model’s performance was compared to several baseline
models.

* Prior Adoption Probability: P(X | Yx) = P(X) for all Y«

¢ Independent Cascade Model [Goldenberg et al. 2001, Kempe
el al 2003]

* Prior+User Bias: Py, (X)=P(X) + dy for each user u.

* Exposure Curve [Romero et al 2011, Myers et al 2012]: Adoption
probability of X as a function of exposure count.

NS

# of Exposures

P(Adoption)
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EXperiments - Results

Log-Like. Area under PR max F1

Prior Adoption
Probability -335,550.39 0.0157 0.0157
Prior+User Bias  -338,821.54 0.0123 0.0112
Exposure Curve -338,367.86 0.0250 0.0181
Our Model -299,884.80 0.1238 0.0465
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EXperiments - Results

Log-Like. Area under PR max F
Prior Adoption

Probability -335,550.39 0.0157 0.0157
Prior+User Bias  -333,821.54 0.0123 0.0112
Exposure Curve  -338,367.80 0.0250 0.0181
-299,884.86 0.1238 0.0465
11% 400% 168%

Improvement Improvement! Improvement!

Including a user bias parameter offered no improvement in

performance.
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Insights from the Model

e Most interactions are slightly negative (suppressive):

10°
107 ¢
10° ¢
210°
: 104
S 10
10
10
10°

-0. 004 -0.002 O O 002 0.004

¢ |n all, interactions between other contagions change
adoption probability by 771% on average!
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adoption probability contagions
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e Contagions with higher prior adoption probabilities interact strongly with lower
adoption probability contagions
P(X=ci| Yk=c;)
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Insights from the Model

e Contagions with higher prior adoption probabilities interact strongly with lower
adoption probability contagions

P(X=[c]| Yi =[ci)
Lower prior adoption prob. = T~

Higher prior adoption prob.
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Insights from the Model

e Contagions with higher prior adoption probabilities interact strongly with lower
adoption probability contagions

P( X=[ci|| Yk =|[cj))
Lower prior adoption prob. = T~

Higher prior adoption prob.

e |f highly related in subject matter, the interaction is positive.
e |f they are unrelated, the interaction is negative.
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Rel. Interaction Rel. Interaction
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Insights from the Model

e Contagions with higher prior adoption probabilities interact strongly with lower
adoption probability contagions

P( X=[ci|| Yk =|[cj))
Lower prior adoption prob. = T~

Higher prior adoption prob.

e |f highly related in subject matter, the interaction is positive.
e |f they are unrelated, the interaction is negative.

§ 0.002 > 0.06

9 0.0015 B E 0_055 i

O 0.001 + E

S 0.0005 - = 0.05 -

g 0 r £ 0.045 |

= -0.0005 2

0,001 | 3 0.04

£ -0.0015 1 0.035

-1.5-1-050051152 -2-1.5-1-0.50051152
Rel. Interaction Rel. Interaction

e This is evidence of an underlying process of interactions...
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The Interaction Process - An example

“Paint
continues to Golf.

dry without
iIncident.”

Thursday, December 13, 12



The Interaction Process - An example

“Paint
continues to Golf.
dry without

iINncident.”

Thursday, December 13, 12



The Interaction Process - An example

“Paint
continues to Golf.

dry without
iIncident.”

Thursday, December 13, 12



The Interaction Process - An example

“Paint
continues to Golf.

dry without
iIncident.”

| love cat
videos!

Thursday, December 13, 12



The Interaction Process - An example

“Paint
continues to
dry without

iIncident.”

| love cat
videos!

Thursday, December 13, 12



The Interaction Process - An example

“Paint
continues to Golf.

dry without
incident.”

| love cat
videos!

Thursday, December 13, 12



The Interaction Process - An example

“Paint
continues to

dry without
iIncident.”

CFANCY
“Feast

CHICKEN & TUNAFEAST gl
FLAKED
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¢ \\e presented a novel information diffusion model to
account for interactions between diffusing contagions
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Conclusion

¢ \\e presented a novel information diffusion model to
account for interactions between diffusing contagions

*\\Ve developed a scalable algorithm to fit the model to
observable data.

* [he model outperforms several baselines.

e Our model provides insight into the process of
interactions between spreading contagions.
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