
Crawl Ordering by Search Impact

Sandeep Pandey
∗

Carnegie Mellon University
spandey@cs.cmu.edu

Christopher Olston
Yahoo! Research

olston@yahoo-inc.com

ABSTRACT
We study how to prioritize the fetching of new pages under
the objective of maximizing the quality of search results. In
particular, our objective is to fetch new pages that have the
most impact, where the impact of a page is equal to the num-
ber of times the page appears in the top K search results for
queries, for some constant K, e.g., K = 10. Since the impact
of a page depends on its relevance score for queries, which in
turn depends on the page content, the main difficulty lies in
estimating the impact of the page before actually fetching it.
Hence, impact must be estimated based on the limited infor-
mation that is available prior to fetching page content, e.g.,
the URL string, number of in-links, referring anchortext.

We formally characterize this problem and study its hard-
ness. We leverage our formalism to design a new impact-
driven crawling policy, and demonstrate its effectiveness us-
ing real world data. Our technique ensures that the crawler
acquires content relevant to “tail topics” that are obscure
but of interest to some users, rather than just redundantly
accumulating content on popular topics.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; D.2.8 [Software Engineering]: Metrics—perfor-
mance measures

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
web crawling, crawl ordering, impact-driven crawling

1. INTRODUCTION
The main task of a Web crawler is to fetch pages from

among the “frontier” of discovered URLs (Figure 1), in order

∗This work was performed while the author was visiting Ya-
hoo! Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’08, February 11–12, 2008, Palo Alto, California, USA.
Copyright 2008 ACM 978-1-59593-927-9/08/0002 ...$5.00.

links

(uncrawled pages)
frontier

crawled pages

Figure 1: A search engine crawler’s view of the Web.

Query: “NCAA Football” “Judy Inklesmurf”

Rank
Query-

Page independent
score

Query-
Page independent

score
1 P1 0.82 P2 0.40
2 P3 0.95 P4 0.12
.
.

100 P201 0.80 P202 0.01

Table 1: Top results for queries “NCAA Football”
and “Judy Inklesmurf.”

to supply more pages to the ranking engine and in turn
improve result quality. (There are other reasons to fetch new
pages, such as discovery of additional pages or improving
the accuracy of link-based importance measurements, but
these aspects are not the focus of this paper.) For a Web-
scale crawler, the frontier is gigantic (typically many times
the number of crawled pages [11]) and many, if not most,
of these pages are of no interest to search engine users for
reasons related to quality, spam and relevance.

On the other hand, certain frontier pages are highly rel-
evant to topics of present interest, and users expect to see
them in query results right away. Given that a crawler has
limited resources relative to the enormity of the uncrawled
frontier, it is crucial to fetch a well-chosen subset in a well-
chosen order.

The current state of the art is to prioritize page fetch-
ing by query-independent features such as link-based im-
portance (e.g., PageRank, or an estimate thereof) [1, 7].
Unfortunately, query-independent importance measures do
not provide the best prioritization policy for a search engine
crawler. Consider the two queries “NCAA Football” and
“Judy Inklesmurf” (a hypothetical actor who stars in an ob-
scure television series with a growing cult following). There

are plenty of high-quality pages on the Web for the query
“NCAA Football,” but very few about “Judy Inklesmurf.”
For the sake of this example, say the pages relevant to these
queries on the Web are as shown in Table 1, when arranged
in decreasing order of rank position in the query result list.
(Observe that the pages are not ranked in strictly decreas-
ing order of query-independent importance scores because a
search engine scoring function considers many other features
such as referring anchortext, page content, URL string [16].)

Now suppose that we are given the choice between fetch-
ing page P201 about NCAA Football or fetching page P2, the
most linked-to page about Judy Inklesmurf. Though page
P201 has a higher importance score than P2, we prefer to
fetch page P2. Fetching page P2 would make a huge im-
provement in the search results quality for the query Judy
Inklesmurf. On the other hand, fetching page P201 would
not lead to any significant improvement because there are
many other superior quality pages for the NCAA football
query (we assume P201 has no substantial impact for other
queries).

The problem with using a query-independent importance
measure to do crawl prioritization is that it only accumulates
content on well-established topics whose pages have many
links. However, as mentioned in [17], the number of tail
queries (i.e., queries that lie in the tail of the query frequency
distribution) seen by search engines today is too large to
ignore.

In this paper we propose a new impact-driven approach
whereby we focus directly on what topics the search engine
users are interested in, and on how much impact a page
would have on the search engine’s ability to serve those in-
terests. The impact of fetching a page depends on the fol-
lowing factors: (a) the queries for which the page is rele-
vant and how often those queries are issued by users (b) the
ranks that the page would receive in the result lists of those
queries, and (c) the attention paid by users to the results
displayed at those ranks. (We give a formal definition of
impact in Section 3.)

In the remainder of this section, we measure the (lack
of) correlation between query-independent importance score
and impact (Section 1.1), and then give an overview of our
impact-driven approach (Section 1.2).

1.1 Weak Correlation Between Impact and
Query-Independent Importance

On the real Web, it is not the case that ordering pages by
query-independent importance is similar to ordering them
by search impact. We support this claim using real data.
Figure 2 shows the query-independent importance scores
and impact values of a random sample of pages.1 Each point
in the figure denotes a page. We divided the points with sim-
ilar query-independent importance scores into buckets and
computed the average impact for each bucket, as shown by
the wide bars in Figure 2. (The two left-most bars are not
very noticeable due to the small average impact values.)

As expected, as the average query-independent impor-

1More precisely, these are the uncrawled pages of Dataset 1
described in Section 6.1. For the purpose of this experiment
the query-independent importance score was computed as
done by a major search engine. Impact was measured as the
number of times a page appears among the top 10 search
results of queries submitted to the the search engine during
a five-day period.

 0

 100

 200

 300

 400

 500

 0.25 0.45 0.65 0.85

im
pa

ct
 (

nu
m

be
r

of
 to

p-
10

 a
pp

ea
ra

nc
es

)

query-independent importance score

Figure 2: Impact and query-independent impor-
tance scores of a random sample of pages.

tance score of a bucket increases, the average impact in-
creases, but observe that the points in the graph are signifi-
cantly scattered—the Pearson correlation coefficient is only
0.09. In other words, there are a significant number of pages
that have low query-independent importance scores but high
impact, and vice versa.

For example, the URL www.silverscape.com/index.cfm/

Strategy/Product_Positioning is in the bottom 20% of
all pages based on the query-independent importance score,
but it falls in the top 1% in terms of impact. The reason
is that many users issue the query “product positioning” on
the search engine and this page is ranked among the top
10 results for this query due to its matching URL, referring
anchortext, and other attributes, despite its weak impor-
tance score. (Additional real-world examples are given in
Section 6.2.)

Conversely, the URL www.pc2sms.eu is in the top 1%
based on the query-independent importance score, but below
the top 25% based on impact. The reason for the relatively
low impact is that the page is only relevant to queries such
as “send free SMS,”which is a popular topic on the Web and
has a large number of relevant pages with higher scores.

1.2 Our Approach
As stated above, our goal is to fetch uncrawled pages that

have the most impact. Measuring a page’s impact requires
computing its rank in the result list of a query, as determined
by the search engine’s scoring function.

Typically a scoring function takes many features about a
page as its input, e.g., page content, URL string, referring
anchortext [16]. We can divide the set of features into two
groups: content-dependent (e.g., page title, words on the
page) and content-independent (e.g., URL string, inlinks,
host affiliation, referring anchortext). For an uncrawled
page, the crawler has access to the content-independent fea-
tures of the page only. Hence, the challenge is in estimat-
ing its rank for queries, while only knowing a subset of
its scoring features (in particular the content-independent
ones). Fortunately, content-independent features (especially
inlinks/PageRank and referring anchortext) tend to be heav-
ily weighted in the overall scoring procedure [2], so there is
hope of being able to do this estimation reasonably well.

Our basic approach is the following: given scoring function

S(p, q) over page p and query q, we define a new scoring
function S′(p, q) which takes content-independent features
of page p as input and outputs a probability distribution over
S(p, q). Then we estimate the impact of each uncrawled page
on a representative query workload. (The workload may be
constructed from past queries that we expect to see again,
and perhaps also anticipated future queries forecasted from
news, blogs, or other early indicators of hot topics.)

There are two important refinements to the basic ap-
proach. The first is that, due to the fact that it is im-
possible to predict the future workload with full accuracy,
we must supplement our workload-based calculations with
query-independent cues. Second, to avoid per-query state
we focus on a small subset of the query workload when driv-
ing the crawler. In particular, we focus on queries whose
results are likely to be improved by crawling new pages.
(Details on how we identify and exploit such queries are
given in the body of the paper.)

1.3 Contributions
The main contributions of this paper are:

• We formulate the problem of ordering pages to crawl
based on the impact on search result quality (Sec-
tion 3).

• We give the computational complexity of the problem
(Section 4).

• We propose a practical impact-driven crawling pol-
icy (Section 5).

• We demonstrate the effectiveness of our crawling pol-
icy via experiments over real world data (Section 6).

Before proceeding, we discuss related work.

2. RELATED WORK
Web crawling is a well-studied problem. The crawling

problem has three main aspects: (1) discovery of new URLs,
typically by monitoring pages that link to new pages (2)
acquisition of the content associated with a subset of the
discovered URLs, and (3) periodic synchronization of pre-
viously acquired pages to maintain freshness. This paper
focuses on acquisition; the discovery and synchronization
aspects are largely orthogonal and have been studied else-
where, e.g. [6, 9, 10, 15, 20]. We leave the problem of di-
viding crawling resources among these three tasks as future
work.

Prior work on choosing the order in which to acquire new
content (also known as “prioritizing the crawling frontier”)
focused on ordering pages according to a query-independent
notion of page importance [1, 7, 14]. In this paper we argue
that the crawl ordering problem should instead be viewed
through the lens of queries. Viewed in this manner, pages
that would receive a good rank position for users’ queries
should be crawled, even if they have a relatively low page
importance score (e.g. because they pertain to an obscure
“tail topic,” or are new and have not yet accumulated many
in-links [8]).

Our query-centric approach is reminiscent of focused crawl-
ing [5]. Focused crawling scours the Web in search of pages
relevant to a particular topic (or small set of topics). In
contrast, our approach biases a “full-Web” crawler toward
picking up pages that match any topic for which the search
engine currently does not have enough relevant, high-quality

content. Also, our optimization objective (maximizing im-
pact) differs from the one studied in focused crawling (maxi-
mizing the harvest rate); optimizing for impact requires tech-
niques that are driven by search result ranking, rather than
topic classification as used in focused crawling.

3. PROBLEM STATEMENT
We give a formal definition of impact (Section 3.1), and

use this definition to formalize the problem of impact-driven
crawl ordering (Section 3.2).

3.1 Impact Definition
Let S(p, q) denote the search engine scoring function, where

p is a page and q is a query. Let R(p, q) denote the rank of
page p in the ranked result list of query q, as computed using
S(p, q) over all crawled and uncrawled pages. We define the
impact of page p with respect to query q as:

I(p, q) = V (R(p, q))

where V (r) denotes the visibility of rank r in the result list of
a query. Formally, the visibility of rank r is the probability
of an average user to view a page when displayed at rank
r in a result list. Since users mostly pay attention to the
top-ranked pages [13], we expect V to be larger for smaller
ranks (i.e., ranks closer to 1).

Given a query workload Q consisting of queries and their
associated frequencies, we define the total impact of page p
as:

I(p,Q) =
X
q∈Q

f(q) · I(p, q)

=
X
q∈Q

f(q) · V (R(p, q))

where f(q) is the frequency of query q in workload Q.

3.2 Crawl Ordering Optimization Problem
Our goal is to fetch pages in order of impact. Since crawl-

ing is generally performed in batches or cycles, the problem
then becomes that of selecting pages to fetch in the next
cycle.

As stated in Section 1.2, we propose the following ap-
proach for estimating impact. We define a new scoring func-
tion S′(p, q) which takes the content-independent features of
page p and query q as input and outputs a probability dis-
tribution of S(p, q), i.e., values that S(p, q) can take along
with their probabilities.

A query sketch consists of the set of pages relevant to
a query and their associated score (for crawled pages) or
score distribution (for uncrawled pages), as illustrated in
Figure 3 (we depict distributions as intervals). From the set
of query sketches for queries in a workload, it is possible to
derive bounds or construct probability distributions for rank
R(p, q) and impact I(p, q). For example, from Figure 3 it is
evident that uncrawled page P3 will receive a rank between
3 and 5, and hence in the worst case its impact for query q
is I(p, q) = V (5).

Given the above framework we state the crawl selection
problem. We are given n crawled and m uncrawled pages,
and the sketches of all queries in the workload Q. The ob-
jective is to select the c pages of maximum total impact (in
either the expected sense or the worst-case sense), where
c � m.

P

P6

P7

Pages

Sc
or

e
1

2

P3
P4

P5

P8 P9

P

Figure 3: A query sketch.

Formally, let indicator variable Xp ∈ {0, 1} denote the
event of fetching uncrawled page p, i.e., Xp = 1 if p is
fetched and 0 otherwise. Then, the crawl selection optimiza-
tion problem for the expected case objective can be stated
as follows (a similar formulation can be given for the worst
case objective):

maximize E
“X

p

`
Xp · I(p,Q)

´”
where X

p

Xp = c

4. PROBLEM COMPLEXITY
In this section we analyze the complexity of the crawl

selection optimization problem under the worst case and ex-
pected case objectives. Readers interested only in our pro-
posed crawling policy may skip to Section 5.

4.1 Worst Case Impact Maximization
Under the objective of maximizing impact in the worst

case, our problem is NP-hard to solve exactly and does
not admit an FPTAS approximation scheme, for any form
of score distributions S′(p, q) (except point distributions)
and any nonconstant monotonically nonincreasing visibility
function V (·).

We illustrate the difficulty of this problem via an exam-
ple. Suppose the query workload consists of only one query
q, and say that the sketch of q has no crawled pages and
exactly two uncrawled pages, P1 and P2, with overlapping
score distributions (the shapes of the distributions do not
matter for the worst case reasoning). The worst case im-
pact of fetching only page P1 is f(q) · V (2), because in the
worst case, page P1 is of lower score (S(p, q)) than P2 and
thus its rank R(p, q) = 2. Similarly, the worst case impact
of fetching page P2 is f(q) · V (2). However, if both pages
P1 and P2 are fetched, then the total worst case impact is
f(q) · (V (1) + V (2)), because of the two pages one has to
be at rank 1 and the other at rank 2. If V (1) > V (2),
then the total worst case impact of fetching the two pages
is greater than the sum of their individual worst case im-
pact values computed in isolation. Hence, the worst case
impact ofTHM:1 fetching a page depends on which other
pages are fetched at the same time. This property makes

the impact maximization problem non-trivial to solve. In
fact, the problem is NP-hard.

Theorem 1 The problem of finding K pages that have the
highest total impact in the worst case, is NP-hard for any
nonconstant monotonically nonincreasing function V (·).

Proof See Appendix A.

In addition to being NP-hard, it turns out that the prob-
lem does not admit a fully polynomial-time approximation
scheme (FPTAS) [18], assuming NP * ∩ε>0BPTIME(2nε

).
Moreover, the problem does not have a polynomial-time ap-
proximation scheme (PTAS) if the visibility function goes
to zero (i.e., ∃ r such that V (r) = 0). The intuition behind
this result is similar to that of NP-hardness proof given in
Appendix A, where we show that the number of edges in
a subgraph, ns, is related to the total worst-case impact
of the corresponding set of pages. An approximation for
the worst-case impact translates to an approximation for
ns, which is shown in [12] not to be possible, assuming

NP * ∩ε>0BPTIME(2nε

).

Theorem 2 The problem of finding K pages that have the
highest total impact in the worst case, does not admit FP-
TAS for any nonconstant monotonically nonincreasing func-
tion, assuming NP * ∩ε>0BPTIME(2nε

). Moreover, the
problem does not admit PTAS if there exists an integer con-
stant R such that V (R) = 0.

Proof See Appendix B.

4.2 Expected Case Impact Maximization
We give an optimal algorithm for the expected case im-

pact maximization problem. The running time of the algo-
rithm depends largely on the complexity of computing the
rank distributions of random variables (in the vein of or-
der statistics [3]), which can be expensive in practice as it
involves solving convoluted integrals.

The key property we exploit in the algorithm is that ex-
pectation distributes over the sum of random variables. Hence,
the total expected impact of fetching c pages is equal to the
sum of their individual expected impact values.

Algorithm to Maximize Expected Impact

• For each page p and query q, compute the probabil-
ity distribution of R(p, q), denoted by P(p, q, r), in the
manner described below.

• Compute the expected impact of page p as:

E(I(p)) =
X
q∈Q

∞X
r=1

f(q) · V (r) · P(p, q, r)

• Select the c pages of highest expected impact.

The rank distribution P(p, q, r) can be computed using
the methods of order statistics [3], if the sketch of query
q consists of independent identically distributed score dis-
tributions. In case that is not true, as is predominantly
the case in search result ranking, there are more expensive
monte-carlo methods that can be used.

This optimal algorithm requires computing a large num-
ber of rank distributions (m · |Q| of them, where m is the
number of uncrawled pages and |Q| is the number of queries
in the workload). Performing this computation on Web-scale
data, in the inner loop of a crawler, is not realistic.

5. IMPACT-DRIVEN CRAWLING POLICY
In Section 4 we showed that solving the crawl selection

problem exactly (for the worst case or the expected case)
is prohibitively expensive. Hence, in the remainder of this
paper we focus on developing practical approximate meth-
ods. Due to the especially bad complexity of the worst case
variant (it is hard even to approximate), we focus on ap-
proximate methods for expected impact.

Most of the complexity of the expected case variant is due
to considering the score distributions of uncrawled pages.
Hence we make the following simplification: function S′(·)
outputs an expected score value instead of a score distribu-
tion.

We also consider a restricted visibility function V (·). Fol-
lowing [4] we let V (·) be a step function where V (r) = 1 for
r ≤ K and V (r) = 0 otherwise, for some K ≥ 1. This form
models the steep drop in attention between the top results
which are immediately visible on the user’s screen and the
subsequent results that come into view if the user scrolls or
clicks.

Under the above simplifications the impact maximization
problem can be stated as follows: given the query sketches2

find c pages of maximal total impact, where impact is:

I(p,Q) =
X
q∈Q

f(q) · V (R(p, q))

=
X
q∈Q

f(q) · T (p, q) (1)

where

T (p, q) =

1 if p is in the top K results in the sketch of q
0 otherwise

In other words, the impact of page p is equal to the sum of
the frequencies of the queries for which page p is among the
top K results. This number is easy to obtain from the query
sketches. (Note that the query sketches need only contain
the top K pages.)

To speed up the impact computation, we only build and
use sketches for a small subset of queries, in particular those
that (1) occur with non-negligible frequency, and (2) can po-
tentially have their results improved by crawling new pages.
In steady state, most frequently-occurring queries have al-
ready been supplied with plenty of high-quality relevant
pages, and queries that do require special attention from
the crawler typically constitute a small minority. We refer
to such queries as needy queries.

In the remainder of this section we describe our crawl
selection technique in detail, including our method of clas-
sifying queries as needy or non-needy.

2Since the output of S′(·) is now a scalar value, a query
sketch consists of scalar score values only, rather than a mix-
ture of scalar values and distributions.

5.1 Overview of Crawl Selection Technique
Figure 4 shows the process of selecting pages to fetch in the

next crawl cycle.3 Cylinders represent data; boxes represent
computation. The key components are:

• Queries + top K results: A representative workload of
search queries with associated frequencies (perhaps ob-
tained from historical logs combined with forecasting
methods), and the scores of the current top K search
results.

• Identify needy queries: Given the query workload and
top K result scores, classify queries as either needy or
non-needy using the method described below in Sec-
tion 5.2.

• Uncrawled page metadata: Known, content-independent
information about each uncrawled page, e.g. URL,
current in-link count or PageRank, known referring
anchortext. (This metadata can be collected during
previous crawl cycles.)

• Match + assign scores: For each needy query q, iden-
tify matching uncrawled pages p and compute the ex-
pected score S′(p, q). (A page “matches” a query if it
receives a nonzero (expected) score.) Matching is per-
formed in sublinear time using an index built over the
URLs and referring anchortext of the uncrawled pages;
see Section 5.3 for details.

• Create needy query sketches: For each needy query cre-
ate its query sketch, i.e. the top K (expected) scores,
among all crawled and matching uncrawled pages.

• Estimate impact : Estimate the impact of fetching each
uncrawled page from the needy query sketches using
Equation 1. Then, supplement this query-based im-
pact estimate with a query-independent estimate com-
puted from query-independent features such as in-link
count or PageRank. (This hybrid impact estimation
procedure is necessary in practice due to imperfect
query workload models.) Details of our hybrid esti-
mation procedure are given in Section 5.4 below.

• Select pages to fetch: Select the c pages of highest
estimated impact.

5.2 Identifying Needy Queries
Recall that a query is needy if impact can be had by bi-

asing the crawler toward pages estimated to be relevant to
it. If C is the set of pages fetched in a given crawl cycle, the
portion of impact achieved for a given query q is:

I(C, q) = f(q) ·
`X

p∈C

I(p, q)
´

= f(q) ·
`X

p∈C

T (p, q)
´

If we are to select a subset of queries to use in biasing the
crawler, a good strategy is to select the subset with maximal
total I according to the above expression. In other words, if
we define the neediness score of query q to be neediness(q) =

3In practice, rather than running this process from scratch
for each new crawl cycle, one would of course maintain key
data structures such as the query sketches incrementally.
Incremental maintenance of top-K structures such as our
query sketches can be done using known techniques [21].

Figure 4: Impact-driven crawl selection steps.

I(C, q), we should select the queries with highest neediness
scores.

The neediness score has two components: the query fre-
quency f(q), and a term that represents the improvement
to the result set of query q, which depends on the set C
of pages we fetch in the next cycle. The astute reader will
observe that we are faced with a circularity: in order to iden-
tify needy queries according our definition we need to know
which pages we will fetch next, yet our selection of pages to
fetch is based on needy queries. To eliminate the circular-
ity we require the ability to estimate the improvability (ex-
pected improvement) of a query based on some features of
the query such as its current score distribution. Given data
on query result improvement achieved in previous crawl cy-
cles, a function from query features to improvability can be
fit using regression.

There are many ways to learn such a function. One sim-
ple method that works well in our experience is to use the
average score of the current top K results for a query as a
feature, and use log-linear regression to fit a function from
this feature to improvability (we validate this method in
Section 6.3). The intuition is that queries with low-score
results (e.g. “tail queries” on nascent or obscure topics like
“Judy Inklesmurf”) are more likely to be improvable than
ones with high-score results (e.g. “head queries” such as
“NCAA Football” whose result pages are highly entrenched
and are unlikely to be displaced by newcomers), as discussed
in Section 1. Of course, improvability does not only depend

on the result scores, but also on the scores of uncrawled
pages; however this information is not available while se-
lecting needy queries, so we make due without it.

5.3 Matching Uncrawled Pages With Queries
Given a query q, we are to identify uncrawled pages p that

“match” q, i.e. have a nonzero score S(p, q). Since we are
dealing with uncrawled pages, the only information available
for matching is content-independent metadata such as URL
strings and referring anchortext strings, and we of course
cannot determine matches with full accuracy.

Instead, we label page p as a match for query q if the
amount of textual overlap between the query string and p’s
URL and referring anchortext strings is above some thresh-
old. In particular, we convert each of these strings into
word-level n-grams for all n ∈ [1, g] where g is a constant
giving the maximum n-gram length, and declare a match if
at least ρ fraction of the query n-grams match one of the
page n-grams, for some ρ ∈ [0, 1]. Using a smaller value
of ρ results in greater accuracy in the subsequent impact
estimation step but also greater overhead, and vice-versa.
(In our experiments, to make our results conservative we set
ρ = 1, which favors efficiency over accuracy; see Section 6.)
To identify matches efficiently, we maintain an index over
the uncrawled page n-grams and perform lookups with each
needy query n-gram.

5.4 Hybrid Impact Estimation
Selecting pages to fetch based solely on matching URL and

anchortext strings with needy queries, has some fundamen-
tal limitations. Of course one problem is that some pages
have little or no referring anchortext and lack a meaningful
URL, yet still turn out to be impactful for other reasons
such as high PageRank, and therefore worth fetching. Per-
haps a more significant concern is the assumption that the
query workload model covers all important future queries,
which is of course dubious. For these reasons we propose a
hybrid impact estimation scheme, which combines a query-
based estimate that takes into account query neediness and
relevance considerations, with a query-independent estimate
that is not vulnerable to the problems just mentioned.

We learn a function from query-independent page fea-
tures such as PageRank to impact, using a training set of
previously-crawled pages. In our experiments we used re-
gression to fit a quadratic function. (As expected the fit
is not very good, due to the lack of strong correlation be-
tween query-independent importance and impact, as illus-
trated in Figure 2. The inability to translate importance to
impact reliably is precisely the motivation behind our query-
based approach. In Section 6.2 we show that by combin-
ing this query-independent impact prediction with a query-
based prediction we get a good overall results.)

To combine this query-independent impact estimate with
our query-based estimate we simply take a weighted average.
In our experiments we set the weight of the query-based
estimate to 0.9 and the weight of the query-independent
estimate to 0.1, which yielded good results. (The results
were not especially sensitive to the exact weights used.)

6. EVALUATION
In this section we evaluate the effectiveness of our impact-

based crawl ordering technique. Throughout our experi-
ments we set parameter K (the bottom-most rank position

in a query result list that is considered likely to be viewed)
to K = 10.

6.1 Data
Our experiments simulate crawl ordering policies over real

web data, guided by real search queries.

Query workload. We used the complete query log of
a major search engine for a five-day period (9/16/2006 to
9/20/2006).

Web pages (Dataset 1). We took a random sample of ap-
proximately 110,000 pages from the crawl of a major search
engine, and for the purpose of our experiments treated them
as “uncrawled.” The remaining pages (many billions) were
treated as“crawled.” 4 We refer to this data set as Dataset 1.

Web pages (Dataset 2). Search engine crawlers (including
a hypothetical crawler that uses our technique) are gener-
ally biased toward acquiring pages that have a high query-
independent importance score (e.g., high PageRank). So,
one would expect uncrawled pages to have lower average
importance score than crawled ones, which is not the case
in Dataset 1. To simulate this situation we took Dataset
1 and promoted the top 20% pages of highest importance
from the “uncrawled” set to the “crawled” set. We refer to
this new data set as Dataset 2.

Scoring function. We used the query result scoring func-
tion employed by a major search engine for S(·). We then
learned the content-independent S′(·) function as a regres-
sion tree, using a publicly available machine learning tool
called WEKA [19].

Query-page matching. Recall from Section 5.3 that pa-
rameter ρ ∈ [0, 1] controls how conservative the query-page
matching process is: small ρ leads to many matches, and
large ρ leads to few matches. This parameter governs a
tradeoff between overhead (many query-page matches means
slower sketch construction) and accuracy (few query-page
matches means sketches may be incomplete). We desire to
measure the worst-case accuracy, i.e., the accuracy a system
would have if tuned for least overhead. Hence in all of our
experiments we set ρ = 1.

We used n-grams of length up to g = 3.

6.2 Effectiveness of Page Ordering Policies
Our first experiment compares the end-to-end performance

of various policies for ordering pages for fetching, where the
goal is to fetch the pages of highest (actual) impact first. For
now we assume that sketches for all queries are available (we
study the case in which only a select subset of query sketches
are used in Section 6.4). The policies we compare are:

• random: orders pages according to a random permu-
tation.

• query-independent: orders pages in descending or-
der of query-independent importance score.

4In a real crawling scenario, the uncrawled pages would out-
number the crawled ones. Our simulation chooses an order
for a small subset of the uncrawled pages—in particular the
ones that were acquired by the real search engine’s crawler.

• query-driven: orders pages in descending order of
impact, as estimated from query sketches.

• hybrid: orders pages according to an impact estimate
that combines a strictly query-independent estimate
with a strictly query-based estimate, as discussed in
Section 5.4.

Figure 5 shows the performance of these policies on our
two Web page data sets. In each graph the x-axis plots the
fraction of uncrawled pages fetched, and the y-axis plots the
cumulative impact accrued by a given policy.

The query-driven policy performs very well at first, be-
cause the query-page matching and scoring yields excellent
suggestions of high-impact pages to fetch first. However, as
the query relevance clues “dry up,” so to speak, the purely
query-driven policy starts to perform less well than the query-
independent policy. The hybrid policy, which incorporates
both types of information, does the best. The superiority
of the hybrid policy is especially pronounced on Dataset 2,
which we consider to be the more realistic of the two, as
discussed in Section 6.1.

Under the hybrid crawl ordering policy, pages with a rel-
atively low importance score but that are expected to have
high impact can be said to be promoted to an earlier posi-
tion, compared with query-independent ordering. An exam-
ple is www.texhoma.us/history.htm (shown in Figure 6(a)),
which is about Texhoma, a town on the Oklahoma-Texas
state line in the United States that has generated some pub-
licity due to its intriguing geographical location. The major
search engines Google, MSN and Yahoo! all rank this page
in the top 10 results for the query “texhoma,” which oc-
curred with moderate frequency in our query log. Yet this
page does not have a particularly high link-based impor-
tance score. The hybrid policy places it much earlier in the
crawl order than the query-independent policy, due to tex-
tual matching between the query string and the page’s URL
and referring anchortext.

Texahoma is an example of a “tail topic,” i.e. one that
garners some interest among the user population, but not
enough to generate a large number of in-links to pages on
the topic. Another tail topic example is “toyota forums,” for
which the page www.topix.net/forum/autos/toyota (shown
in Figure 6(b)) is one of the top 10 results. The query “toy-
ota forums” is somewhat frequent and hence this page has
more impact than most pages, yet this page has a low link-
based importance score. Again, the hybrid policy treats this
page preferentially despite its weak importance score, due to
matches of its URL and referring anchortext with the query.
Our data set contains many examples of this form, which col-
lectively account for the difference in performance between
the hybrid and query-independent policies.

6.3 Ability to Learn Query Improvability
Next we study the ability to prune the state required by

the query-driven and hybrid policies. In particular we wish
to limit the number of queries for which we must compute,
maintain and read sketches, without sacrificing effectiveness.
Recall from Section 5.2 that our method of selecting queries
is to rank them according to neediness, which is the product
of query frequency with improvability. Improvability is the
extent to which we expect to be able to alter the top K query
results by crawling new pages. The key issue is whether we

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.02 0.04 0.06 0.08 0.1

im
pa

ct
 a

cc
ru

ed

pages crawled

Dataset 1

hybrid policy
query-driven policy

query-independent policy
random policy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.02 0.04 0.06 0.08 0.1

pages crawled

Dataset 2

hybrid policy
query-driven policy

query-independent policy
random policy

Figure 5: Effectiveness of different crawl ordering policies.

Figure 6: Examples of pages crawled earlier by our impact-driven approach, compared with a query-
independent approach.

can learn query improvability as a function of features of the
query result score distribution prior to crawling.

To test our ability to learn query improvability, we ran-
domly divided our query workload in half, into a training
set and a test set. We then fed the training set to our hy-
brid impact-based crawl ordering policy, which selected c
uncrawled pages to fetch, and we measured the resulting
improvement to each query (in terms of number of new top
K results fetched). Next we used the training data to fit
a function from average top-K score (prior to crawling), to
improvement. (To fit this function, we first grouped queries
into buckets according to average top K score, and com-
puted the average improvement for each bucket; then we
used log-linear regression to fit a curve.) Lastly we com-
pared the function learned on the training data to the test
data, as shown in Figure 7.

There are two graphs: one for each of our Web page data
sets. Each graph plots average top K score on the x-axis
and improvability on the y-axis. The ‘×’ symbols show data

points from the test set (one point per query bucket), and
the smooth curve shows the function learned over the train-
ing set. As we can see, the learned function predicts the
behavior of the test set with fairly high accuracy. (We used
c = 1000 for these graphs; similar results were observed for
other values of c.)

This result demonstrates that the relationship between av-
erage top K score and improvability remains stable across
two disjoint query samples, and hence it is reasonable to
model query improvability as a function of the average top
K score feature. Of course, since we are using average im-
provability values, the prediction for a given query may be
off due to variance around the mean. The main source of
variance is the variation in relevance of uncrawled pages—
given two queries whose crawled relevant pages have roughly
the same scores, it may still be the case that the scores of
the uncrawled relevant pages differ between the two queries.
This variation cannot be modeled without incurring the un-
acceptable additional overhead of matching all queries (not

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.2 0.4 0.6 0.8 1

im
pr

ov
ab

ili
ty

average score of the top K results

Dataset 1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.2 0.4 0.6 0.8 1

average score of the top K results

Dataset 2

Figure 7: Learning query improvability as a function of the average score of the top K results.

just needy ones) with uncrawled pages, so we do not attempt
to do so. Fortunately it turns out that nonetheless the im-
provability predictor we learn just from features of crawled
pages serves us well, as we demonstrate next.

6.4 Effectiveness with Limited Query Sketches
Now we are ready to evaluate the effectiveness of our

impact-based crawl ordering technique when we use only
selected query sketches rather than all of them. For this
experiment we learned a query improvability function from
the training query set (as described in Section 6.3), and then
used it on the test query set, along with query frequency
data, to select the most needy queries. We then simulated
our hybrid crawl ordering policy, and only allowed it to ac-
cess sketches for the selected queries.

Figure 8 shows the result, over our two Web page data
sets as usual. The x-axis of each graph plots the fraction of
query sketches retained, and the y-axis plots total impact
yielded. The different curves correspond to different crawl
budgets c. Most of the impact can be had even if we only
retain a small fraction (roughly 0.0007) of query sketches.

Figure 9 plots performance as a function of the crawl bud-
get c for (a) the hybrid policy using all sketches and (b) the
hybrid policy with 0.0007 fraction of sketches (for the queries
estimated to be the most needy). (The performance curves
differ from the ones plotted in Figure 5 because the evalu-
ation was done on different query sets: Figure 5 is on the
full query set and Figure 9 is on the test set only.) From
Figure 9 we can see that the hybrid policy with only a small
fraction of sketches performs almost as well as when using
all sketches.

Our method of selecting “needy” queries succeeds in sig-
nificantly shrinking the space and time requirements of a
query-driven crawler. Only a minor reduction in effective-
ness is felt.

7. SUMMARY
The job of a crawler is to narrow the gap between the

pages the search engine currently returns in response to user
queries, and the ones it could return if the appropriate con-

tent was crawled. We approached the crawling problem from
this standpoint, and derived a new query-centric crawl or-
dering technique. The key components are: (1) identifying
queries that can potentially have their results improved via
crawling, and (2) selecting pages to fetch given these queries,
the search engine’s scoring function, and features of a page
that are available prior to fetching it. We demonstrated that
our approach achieves substantially greater impact on search
results than the conventional query-independent approach.
Our approach is especially impactful for“tail queries,”which
in aggregate represent a substantial fraction of all queries,
yet are not necessarily well served by conventional query-
independent techniques.

8. REFERENCES
[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive

On-line Page Importance Computation. In Proc.
WWW, 2003.

[2] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In Proc. WWW,
1998.

[3] G. Casella and R. L. Berger. Statistical Inference.
Duxbury, 2001.

[4] S. Chakrabarti, A. M. Frieze, and J. Vera. The
influence of search engines on preferential attachment.
In Proc. Symposium on Discrete Algorithms, 2005.

[5] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused Crawling: A New Approach to Topic-Specific
Web Resource Discovery. In Proc. WWW, 1999.

[6] J. Cho and H. Garcia-Molina. Synchronizing a
Database to Improve Freshness. In Proc. ACM
SIGMOD, 2000.

[7] J. Cho, H. Garćıa-Molina, and L. Page. Efficient
Crawling Through URL Ordering. Computer Networks
and ISDN Systems, 30(1–7):161–172, 1998.

[8] J. Cho and S. Roy. Impact of Search Engines on Page
Popularity. In Proc. WWW, 2004.

[9] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston,
S. Pandey, and A. Tomkins. The Discoverability of the
Web. In Proc. WWW, 2007.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.0005 0.001 0.0015 0.002

im
pa

ct
 a

cc
ru

ed

query sketches

Dataset 1

c=100
c=1000

c=10000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.0005 0.001 0.0015 0.002

query sketches

Dataset 2

c=100
c=1000

c=10000

Figure 8: Performance of the hybrid policy on the test query set while varying the number of query sketches.
The different curves are for different values of the crawl budget c.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.02 0.04 0.06 0.08 0.1

im
pa

ct
 a

cc
ru

ed

pages crawled

Dataset 1

hybrid policy (0.0007 sketches)
hybrid policy (all sketches)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.02 0.04 0.06 0.08 0.1

pages crawled

Dataset 2

hybrid policy (0.0007 sketches)
hybrid policy (all sketches)

Figure 9: Effectiveness of hybrid crawl policy when only using a small fraction of query sketches (for the
queries estimated to be the “neediest” based on the training query set), evaluated over the test query set.

[10] J. Edwards, K. S. McCurley, and J. A. Tomlin. An
Adaptive Model for Optimizing Performance of an
Incremental Web Crawler. In Proc. WWW, 2001.

[11] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking
the Web Frontier. In Proc. WWW, 2004.

[12] S. Khot. Ruling Out PTAS for Graph Min-Bisection,
Densest Subgraph and Bipartite Clique. In Proc.
IEEE Symposium on Foundations of Computer
Science, 2004.

[13] R. Lempel and S. Moran. Predictive Caching and
Prefetching of Query Results in Search Engines. In
Proc. WWW, 2003.

[14] M. Najork and J. L. Wiener. Breadth-First Search
Crawling Yields High-Quality Pages. In Proc. WWW,
2001.

[15] S. Pandey and C. Olston. User-centric Web Crawling.
In Proc. WWW, 2005.

[16] M. Richardson, A. Prakash, and E. Brill. Beyond
PageRank: Machine Learning for Static Ranking. In
Proc. WWW, 2006.

[17] Search’s Long Tail. http://blog.
searchenginewatch.com/blog/050314-164653.

[18] V. Vazirani. Approximation Algorithms.
Springer-Verlag, 2001.

[19] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, 2005.

[20] J. Wolf, M. Squillante, P. Yu, J. Sethuraman, and
L. Ozsen. Optimal Crawling Strategies for Web Search
Engines. In Proc. WWW, 2002.

[21] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient
Maintenance of Materialized Top-k Views. In Proc.
International Conference on Data Engineering, 2003.

APPENDIX
A. PROOF OF THEOREM 1

Our proof consists of a reduction from the densest K-
vertex subgraph problem, which is known to be NP-hard [18].
(The densest K-vertex subgraph problem is the following:
given graph G and a parameter K, find a subgraph contain-
ing K vertices that has the maximum number of edges.)

Let G denote the input graph instance of the densest K-
vertex subgraph problem. Let U and E denote the set of
vertices and edges of G respectively. Let r denote an integer
constant such that V (r) > V (r + 1). For each ui ∈ U we
create a page, denoted by Pi,i, in our impact maximization
problem instance. Then we create three kinds of queries (let
d denote the largest degree in G):

• Kind A: For each edge ei,j = (ui, uj) we create a query
denoted by Ai,j . In the sketch of query Ai,j we put
pages Pi,i, Pj,j and r − 1 dummy pages denoted by
P 1

i,j , P
2
i,j . . . P r−1

i,j , and then we assign the same score
distribution to each of them.

• Kind B: For each ui ∈ U we create two queries B1
i,i

and B2
i,i and put only page Pi,i in their sketches.

• Kind C: For each ui ∈ U of degree di, we create
another d − di queries denoted by C1

i,i, C
2
i,i . . . Cd−di

i,i ,
where d is the largest degree in G. In the sketch of
query Ck

i,i we put page Pi,i and r dummy pages de-

noted by P k,1
i,i , P k,2

i,i . . . P k,r
i,i , and we assign the same

score distribution to each of them.

The frequency count is set to 1 for each query. Let P∗
denote the set of K pages that maximize the worst case
impact of the above instance. First, we claim that a dummy
page can never be present in P∗. This is true because a
dummy page is present in one and only one query sketch
and so the highest impact it can have is V (1). On the other
hand, each non-dummy page Pi,i contributes at least 2·V (1)
due to queries B1

i,i and B2
i,i since it is the only page present

in their sketches.
Next we show that the vertices that corresponds to the

pages in P∗ form the densest K-vertex subgraph. We prove
it by showing that in the aforementioned impact maximiza-
tion problem instance, the worst case impact of fetching any
set of K non-dummy pages, say C, is directly proportional
to the density of the corresponding K-vertex subgraph in G,
say Gs. Next we compute the worst case impact of set C.

As mentioned before, for each page Pi,i in the set, we get
the worst case impact of

`
2 · V (1)

´
due to queries B1

i,i and

B2
i,i. Also, page Pi,i has

`
d ·V (r+1)

´
worst case impact due

to di number of Ai,∗ and d−di number of C∗
i,i queries because

in the worst case the page is ranked last (i.e., r + 1) in all
these sketches. However, note that for edge ei,j = (ui, uj)
in Gs both pages Pi,i and Pj,j are present in C, and so in
the worst case one of them is ranked r +1 but the other one
has to be ranked r for query Ai,j . Hence, due to each query
sketch Ai,j that corresponds to edge ei,j = (ui, uj) in Gs

we get an additional worst case impact of V (r)− V (r + 1).
Hence, the total worst case impact is equal to (2 ·K ·V (1))+
(d·K ·V (r+1))+(ns ·(V (r)−V (r+1))) where ns denotes the
number of edges in Gs. Hence, it proves that the worst case
impact of set C is proportional to the density of subgraph
Gs.

B. PROOF OF THEOREM 2
We show that an FPTAS for our problem would allow us

to derive a PTAS for the densest K-vertex subgraph prob-
lem, which is not possible if NP * ∩ε>0BPTIME(2nε

)[12].
Let G denote the input graph instance of the densest K-

vertex subgraph problem. Let U and E denote the set of
vertices and edges of G respectively. Let r denote an integer
constant such that V (r) > V (r + 1). We create an instance
of our impact maximization problem as done in our proof of
Theorem 1 (Appendix A). Let Pε denote the set of K pages
output for this problem instance by an FPTAS scheme for a
given ε. By definition, it means that the worst case impact
of Pε, denoted by Iε, is within 1 − ε factor of the optimal
worst case impact I∗ achieved by, say, P∗.

First, we claim that a dummy page in Pε can be replaced
by a non-dummy page without decreasing the worst case
impact of Pε. This claim is true because, as shown in Ap-
pendix A, a dummy page cannot have more impact than
V (1), while the worst case impact of each non-dummy page
is at least

`
2 · V (1)

´
+
`
d · V (r + 1)

´
. Hence, we regard Pε

to consist of non-dummy pages henceforth.
Suppose Gs denote the subgraph of G corresponding to

the K pages in Pε. Then, as shown in Appendix A, the
total worst case impact of set Pε, Iε, is (2 ·K · V (1)) + (d ·
K ·V (r +1))+(ns · (V (r)−V (r +1))) where ns denotes the
number of edges in Gs. Similarly,

I∗ =
`
2 ·K · V (1)

´
+
`
d ·K · V (r + 1)

´
+
`
n∗ · (V (r)− V (r + 1))

´
where n∗ denote the number of edges in the densest K-vertex
subgraph of G.

Since Iε ≥ (1− ε) ·I∗, we can derive the following inequal-
ity:

nε ≥ n∗ ·

1− ε− ε ·K ·

`
2 · V (1)

´
+
`
d · V (r + 1)

´
n∗ ·

`
V (r)− V (r + 1)

´ !
Without loss of generality we assume that n∗ is at least K/2
(it is easy to see that deciding and solving the subgraph
problem is poly-time for graphs where n∗ < K

2
). Hence,

nε ≥ n∗ ·

1− ε− 2 · ε ·

`
2 · V (1)

´
+
`
d · V (r + 1)

´`
V (r)− V (r + 1)

´ !
= n∗ ·

`
1− ε ·O(d)

´
Hence, subgraph Gs is an ε′ optimal solution for the dens-

est K-vertex subgraph problem if we set ε = ε′

O(d)
. Since,

by definition, FPTAS runs in time polynomial in 1/ε, the ε′

optimal solution Gs that we just derived for the subgraph
problem is poly-time in its input. Hence, we have a PTAS
for the densest K-vertex subgraph problem which is a con-
tradiction [12]. Hence, our problem does not admit FPTAS.

To see why a PTAS cannot exist when V (R) = 0 for some
integer R, we set r = R−1 in the above inequality. Without
loss of generality we assume R to be the smallest integer
where V (R) = 0. Hence, we get nε ≥ n∗ · (1 − ε · O(1)).
This result implies that a PTAS for our problem allows us
to construct a PTAS for the subgraph problem which is a
contradiction.

