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Abstract

The Web is becoming a universal information dis-
semination medium, due to a number of factors
including its support for content dynamicity. A
growing number of Web information providers
post near real-time updates in domains such as
auctions, stock markets, bulletin boards, news,
weather, roadway conditions, sports scores, etc.
External parties often wish to capture this infor-
mation for a wide variety of purposes ranging
from online data mining to automated synthesis
of information from multiple sources. There has
been a great deal of work on the design of sys-
tems that can process streams of data from Web
sources, but little attention has been paid to how to
produce these data streams, given that Web pages
generally require “pull-based” access.

In this paper we introduce a new general-
purpose algorithm for monitoring Web informa-
tion sources, effectively converting pull-based
sources into push-based ones. Our algorithm can
be used in conjunction with continuous query
systems that assume information is fed into the
guery engine in a push-based fashion. Ideally, a
Web monitoring algorithm for this purpose should
achieve two objectives: (1) timeliness and (2)
completeness of information captured. However,
we demonstrate both analytically and empirically
using real-world data that these objectives are fun-
damentally at odds. When resources available for
Web monitoring are limited, and the number of
sources to monitor is large, it may be necessary to
sacrifice some timeliness to achieve better com-
pleteness, or vice versa. To take this fact into ac-
count, our algorithm is highly parameterized and
targets an application-specified balance between
timeliness and completeness. In this paper we
formalize the problem of optimizing for a flexi-
ble combination of timeliness and completeness,
and prove that our parameterized algorithm is a

2-approximation in all cases, and in certain cases
is optimal.

1 Introduction

The Web is becoming a universal medium for disseminat-
ing information of all kinds, including highly dynamic in-
formation. A significant amount of valuable dynamic in-
formation is being posted to the Web, and people want to
access it. In many situations, direct manual viewing of dy-
namic Web pages is not an adequate mode of access for one
or both of the following two reasons. First, most informa-
tion posted on the Web is not made available forever, and
may disappear or be replaced by new information at any
time [5]. This aspect presents a challenge, especially for
applications in which historical information is of interest.
Second, many applications require automated synthesis of
information from multiple dynamic Web sources [10].

As a result, there is significant interest in systems that
monitor and process updates to frequently updated Web
pages automatically. These systems perform a variety
of information management functions including synthe-
sis, archiving, and continuous query processing. Web-
based continuous query (CQ) processing systems proposed
in the literature include CONQUER [9], Niagara [10],
OpenCQ [7] and WebCQ [8].

The main focus of this work has been on language de-
sign and efficient query processing, and the crucial issue
of how to capture information from dynamically changing
Web pages has largely been ignored. Most work on contin-
uous query processing assumes that data is “pushed” into
the query engine in the form afata streams However,
generally speaking, Web data must be “pulleg’, contin-
uous query systems must explicitly download Web pages,
check for changes, and submit any resulting new data to the
guery processor.

So far, only heuristics with no formal guarantees on
effectiveness have been proposed for converting pull-
oriented Web sources into push-oriented data streams. The
designers of Niagara [10] and other CQ systems for the
Web have suggested that simple periodic polling be used
for this purpose. However, periodic polling breaks down in
the presence of a large number of frequently-updated Web
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Web pages at a fast rate. The work in [12] was the first to 1
study ways to improve upon simple periodic polling, but
the algorithm proposed in [12], called CAM, has a num-
ber of serious drawbacks: (1) CAM is only suitable for a
narrow range of applications in which timeliness of infor-
mation captured is of utmost importance, whereas many
real-life applications must balance timeliness with com- a
pleteness, a serious issue we discuss shortly, (2) even for
the specialized set of applications handled by CAM, there
is no formal guarantee that CAM performs well at captur- 0 Delay
ing information, and (3) CAM relies on a computationally
intensive, offline algorithm to schedule monitoring. Figure 1: Urgency functions.

In this paper we introduce a new general-purpose Web
monitoring algorithm called th&eb Information Collec-
tor (WIC), which is suitable for use in conjunction with a 2. Timeliness: Minimize the delay in capturing changes.
variety of CQ systemsWIC has the following desirable
properties: (1) it handles a wide range of application sce- In certain cases these two objectives are at odds with
narios, (2) it provably performs within a factor of two of the each other. We illustrate this property through a very sim-
optimal offline Web monitoring algorithm in all cases, and ple example. Suppose we wish to capture changes to a sin-
(3) it is highly efficient and executes in an online fashion, gle Web page that is updated in such a way that new infor-

b

Utility

o

making it practical for real-world use. mation is always appended (thus, information is never re-
moved from the page). Given a single opportunity to down-
1.1 Web Monitoring Objectives load a shapshot of this page, we are clearly faced with a

tradeoff between timeliness and completeness. If we down-
In continuous Web monitoring applications, it is usually load the page early, we will only capture a few changes, but
desirable to capture as much information as possible, withwith little delay. Conversely, if we wait a long time before
as little delay as possible. Dynamic Web pages undergdownloading the page, we may capture more changes, but
updates over time, and each updated version of the paghere will be a high delay, on average, between the time at
potentially contains new information of value to the appli- which a change occurs and the time at which it is captured.
cation. Therefore, an ideal Web monitoring system would When facing resource-constrained situations, the appro-
capture every change to each page of interest, immediatelyriate balance to strike between timeliness and complete-
following the update that causes the change. ness depends on the application. Applications that need to
Unfortunately, this ideal situation is often difficult to react rapidly to new information, such as stock market day-
achieve in practice. Due to the nature of Web protocolsfrading programs, may value timeliness over completeness
obtaining updates to Web pages generally requires pollingvhen both cannot be had. On the other hand, applications
those pages. For applications that monitor a large numbarhose purpose is to compile historical archives for offline
of Web pages, high-frequency polling and processing of aluerying may opt for completeness.
pages of interest can be prohibitively expensive. Typically To accommodate a diverse variety of applications with
it is not feasible or desirable to provision systems with ad-differing requirements, we introduce a flexible method
equate communication bandwidth and processing power tof specifying the relative importance of timeliness and
support exhaustive and rapid polling of a large number oicompleteness: application designers supply a function
Web pages. urgency : ZT — [0, 1] specifying theutility of a captured
As a result, polling must be performed selectively, andchange as a function of the delay between the occurrence
some criteria for deciding when to poll each page must bef the change and the time of capture. Example urgency
established. Although it may not be possible to capturdunctions are illustrated in Figure 1. For applications in
all changes to all pages of interest in a timely fashion duevhich timeliness is critical, an urgency function with steep
to resource limitations, it is generally desirable to come aslownward slope, such as functiarin Figure 1, should be
close as possible to that ideal. Hence, scheduling polling ofised. Conversely, for applications that value completeness
pages for Web monitoring can be viewed as a constrainedver timeliness, a more gradually decreasing function such
optimization problem with two objectives: as functionb is more appropriate.
In this paper we formalize our notions of timeliness,
1. Completeness: Maximize the number of changes completeness, and utility, and provide both analytical and
captured. empirical evidence of the existence of a tradeoff between
timeliness and completeness. We formulate the problem of
While processing of unchanged pages may be avoided using fasscheduling polling of remote Web pages as an optimization

checksum comparisons or by outfitting HTTP requests with an “it- i rh1em whose objective is to maximize utility under the
modified-since” qualifier, such techniques are usually ineffective in the

presence of frequently changing superficial content such as advertis&ons'[raim O_f limited resources aV&ilab'_e fo_r poll_ing. Our
ments, counters, etc. formulation is parameterized by an application-dictated ur-




It is important to note that our classification of applica-
Changes overwrite information tions into quadrants in Figure 2 is very rough, and variants
Timeliness is not critical . . . . .

of these applications may fit more or less well into their as-
signed category (which represent extremes in terms of in-

Changes append information
Timeliness is not critical

Example: Example: formation lifetime and criticality of delay). Our approach
Creating and maintaining Collecting **front—page”’ accommodates this fact, and can handle applications falling
a searchable resume database news stories for long term in between these extreme categories since our urgency and

lifetime specifications are highly adjustable, as we shall see
later in the paper.

Changes append information Changes overwrite information

Timeliness is critical Timeliness is critical 1.3 Contributions

Example: Example: The specific contributions of this paper are as follows:
Capturing new Internet Reacting in real—time to . i . X
security bulletins, health risk stock market price e We formalize the scheduling problem in Web moni-
alerts etc. for selective fluctuations, or online toring as a parameterized optimization prob'em_
automatic dissemination auction maximum bid

within an organization increases

e \We demonstrate that there exists a fundamental trade-
off between timeliness and completeness, which
makes our parameterized formulation necessary.

Figure 2: Extreme scenarios.

e We present an efficient, online Web monitoring algo-
rithm that meets the needs of all applications encom-

gency function, allowing the solution to be customized to passed by Figure 2.

the needs of specific applications. Of course, the appro-

priate polling schedule also depends heavily on the way in ¢ \We prove that our algorithm is a 2-approximation for

which the Web pages being monitored change over time, 3| cases, and is optimal for the shaded region of Fig-
discussed next. ure 2.

1.2 Modeling Changes to Web Pages 1.4 Outline

We define achangeto a Web page as an update that causeghe remainder of this paper is organized as follows. In
information of value to the application to be added to theSection 2 we formalize the scheduling problem in Web
page. The information added during a change to a paggonitoring as a parameterized optimization problem. We
may not remain on the page forever. For example, typicapresent an efficient, online algorithm and prove that it is a
financial reporting sites only display the most recent news-approximation for our Web monitoring scheduling prob-
reports. Similarly, some online auction sites only show thélem in Section 3. Then, in Section 4 we show analytically
most recent bids. To model this fact, we assume a certaithat, when resources are limited, a fundamental tradeoff ex-
lifetime of information, which may vary among pages andists between timeliness and completeness. In Section 5 we
by application. Lifetime indicates the probability that in- report the results of extensive experiments on real-world
formation made available by a change at timgremoved  data. We confirm that a tradeoff does exist between time-
at any future time + x. liness and completeness, and that our urgency parameter

It is instructive to consider the two extreme possibili- enables application designers to control that tradeoff.
ties for lifetime. First, on long-lived, append-only pages,

the lifetime of information is essentially infinite. In the o Monitoring the Web:
opposite extreme, some pages are updated such that each :
change overwrites the information presented by the previ- Models and Assumptions
ous change completely. In the case of complete overwriteQur models for the Web monitoring scheduling problem
the lifetime of information made available due to a givenand the way in which Web pages change extend the frame-
change extends only to the time of the subsequent changevork introduced in [12,13]. LeP be the set of Web pages
Figure 2 provides examples of application scenarios thatinder consideration for monitoring. Each paBe € P
can roughly be categorized into each of these two extremesas an associatechportance weightV; € [0, 1], denoting
in terms of information lifetime. The applications are also the relative importance of capturing change#®foTime is
categorized based on the orthogonal dimension of whethativided into discrete time instants, and monitoring is per-
timeliness is critical (see Section 1.1), resulting in four ex-formed in epochs ofV consecutive time instants? de-
treme categories overall. The flexibility of our formulation notes the sequence of time instafits T, ..., T in an
makes it suitable for a large variety of Web monitoring ap-epoch.
plications. The only previous approach we are aware of, We focus on the problem of scheduling monitoring of
CAM [12], only handles applications that fit into the shadedthe pages ifP during a single epoch. Monitoring a page
region of Figure 2. includes the duties of fetching the page from its remote



source, determining whether it has undergone one or moreNotation | Definition

changes of interest and, if so, processing the change(s) apdP Set of pages that are considered for magni-
propagating them to the target application. We assume the toring. Variable: is used for iterating over
cost of monitoring a page to be uniform across all pages and this set.

across time. This simplification is based on the assumg-T Sequence of time instants
tion that the fixed overhead for the operations required ( {Th,T5,..., Ty} in an epoch. Vari-

polling, downloading, and processing a page) is the domi
nant factor, which is consistent with the assumption madg

ables j,k,q and z are used for iterating
over this set.

%

in most work on Web crawlingg.g, [2, 13]. C Maximum number of monitorings allowed
Let C' denote the maximum number of pages that can in each time instant.

be monitored in a single time instant. The valueCbtie- urgency; | A function to model the value of informa-

pends on the availability of resources for monitoring, in- tion of pageP; as a function of timeliness.

cluding CPU cycles, communication bandwidth, etc. If urgency(0) is always assumed to equal [L.

C equals or exceeds the number of pagé¥, then the |77z, A function to model the decay of existence

scheduling problem is trivial: simply monitor each page of information on pagé®; with time.

at every instant. In practice, however, we expect that Tig The estimated probability that the page

may be much less thaP|, making careful scheduling a ’ is updated at time instafit;.

requirement. A legamonitoring scheduléor an epochis [z A decision variable, set to if page P; is

one that performs at most monitorings of pages during " monitored at time instarif; by algorithm

each time instant, Ts, ..., Tx. A monitoring sphedule z (o for OPTIMAL algorithm andy for wiC

S ={s1,1,51,2-.-51,N, 52,1, 52,2 ... |p| N} cONsists of a algorithm), and0 otherwise. For nota

set of Boolean variables, ; € {0,1}, wheres, ; = 1 iff tional convenience, we definé, = 0.

pagel; € P is scheduled to be monitored at time instant—g=
T;, ands; ; = 0 otherwise.

For convenience, a summary of the symbols used in thi
paper is provided in Table 1. Some of these symbols are ng

A monitoring schedule that consists of|a
set of Boolean variables’ ;, wheres? ; =
1 iff page P; € P is scheduled to be mon
itored at timeT; by algorithmz € {o, g},

(2]

—

introduced until later in the paper, and should be ignored ands? ; = 0 otherwise.
for now. prevy; The most recent time instant befof§

' at which pageP; was monitored by al;
2.1 Nature of Changes gorithmz € {o,g}. prevy; is 0 if the
A changeto a page is defined to be an update that causes page is never monitored before tiriig by
information of value to the application to be added to the algorithm z.  Mathematically,prevy; =
page. We assume that the information presented with each maz{j' : 1 <j' <jAst, =1}
change to a particular page carries equal value, or impot-seg? (4, k) | The sequence of time instants in the opgen
tance’ However, we do not assume that all pages are interval (j, k) at which pageP; is mon-
equally valuable to monitor. For example, in financial mon- itored by algorithmz. Mathematically,
itoring applications, pages providing periodic earnings rej seqi (4, k) = {J" 1 j <j' <kAsji; =1}
ports may be of significantly higher importance for certain| seq? For convenience, we refer taq? (0, N +
purposes than those displaying stock prices, even though 1) asseq”. We useseq? (k) to refer to the
stock prices are typically updated much more frequently] k*® element of the sequenceseq®(0) is
To model this fact we allow custom importance weights to defined to b@. Also, seq” = U;cp(seq?).

be associated with each page, as stated above.
As discussed in Section 1.2, we model information  Table 1: Summary of symbols and their meanings.

posted to Web pages as having an associated lifetime. Let

life;(j, k) denote the probability that information made

available by a change at tin¥g to pageP; remains avail-

able at timeTy. (Itis assumed that < j < k < N.)

We assume that life is a monotonically nonincreasing func- \ve assume that each page € P has an associated
tion of & — j. Our life function can be used to model a prohapility of changer; ; € [0,1] at each time instant
variety of common Web page update patterns ranging frony, ¢ 7 that has been estimated in advance. This so-called
ones in which changes strictly append information to oneg)yasi-deterministienodel of change probability has been
in which all changes overwrite information supplied by pre-shown to be appropriate for modeling frequently updated
vious changes, and covering situations in between. We SURyep pages [11,13]. The problem of assigning probabilities
ply some examples later in Section 2.3. of change to Web pages is beyond the scope of this paper.

2While our model can be extended to enable differentiation among\Ne demonstrate in SeCtlpn o.2 that (.)ur appro_ach s tolerant
changes in terms of importance, we believe that even with this restrictior?f & moderate degree of inaccuracy in the estimated change
it is adequate to capture the basic properties of most applications. probabilities.




2.2 Web Monitoring Objective

Given a life parametefife, () and change probabilities; .,

for each pageP; € P, we can compute the expected num-
ber of changes captured by monitorify at a particular
time instantZ’;. For any prior time instarify,, 1 < k < j,
the probability that a change occurred at tiffieand can
still be captured at tim&}; is m, ;. - life;(k, j). Suppose for
the moment that the first monitoring &f during the epoch
occurs at timel;. Summing over all time instants in the
epoch up tdl; we obtain:

D

k=1

(m—,k . lifei(k,j))

J

Now, consider a monitoring schedue which consists
of a set of Boolean variables ; giving monitoring times
for each of the pages iR during the epoch. The expected
total number of changes captured $yrom all pages dur-
ing the epoch is given by:

S5 %

P,eP j=1 =prev; j+1

Tik * lifei(k, ]))

whereprev; ; denotes the index of the most recent time
instant prior tol; at which pageP; was monitored.

Not all captured changes may be of equal value to an
application. Instead, each pag has an associated im-
portance weight?; < [0,1]. Furthermore, recall from
Section 1.1 that an application-specificgencyfunction
urgency, : 2+ — [0, 1] may be associated with each page
P;. Together,W; and P; specify theutility of a captured
change inP; as a function of the delay between the oc-
currence of the change and the time of capture. In par-
ticular, if a change inP; occurs at timely, and is cap-
tured later at timel}, j > k, then the utility of cap-
turing that change i3V, - urgency,(j — k). Note that
Wi, - urgency,;(j — k) < W; < 1. If a change is captured
during the same instant in which it occurrée,, at timeTy,
then the utility of capturing the changelig; - urgency, (0).

We require thatirgency, (0) = 1, so the utility of capturing
a change t&®; immediately isiV;.

The expected total utility/ accrued by executing mon-

itoring schedules in the epoch is given by:

N J
U= Z Z (8” Z Wi'urgencyi(j—k)'Wi,k'lifei(k7j))

P,eP j=1 k=prev; j+1
The objective when selecting a monitoring schedule is to
maximizeU.
2.3 Life and Urgency Parameters

Note that life and urgency are tuning parameters in the
above obijective function. Life is used to model different

life and urgency can be set in order to model various data
and application scenarios that arise in practice.

o life(k,j), for k< j:

1. Unbounded-Append: All changes are of an
append-only nature and information is never
deleted:

2. Time-window—Append(W): Changes append
new information, and old information is re-
moved afted¥ time instants:

. . 1 ifj—k<W

lifei (k. j) = { 0 otherwise

3. Change-window—Appendf): Changes ap-
pend new information, and old information is
removed afterZ subsequent changes occur. In
general, it is difficult to write a concise formula
for this scenario. For the special case in which
the change probability for pag@ has the same
valuem; at all time instants, it can be written as:

‘ NSy N1
zzfexk,y):Z( )wiu—m—) ‘

q=0 q

4. Overwrite: Each change completely obliter-
ates all information made available by previous
changes:

life;(k,j) = ] (1—mig)

q=k+1

e urgency(t), for ¢ > 0:

1. Uniform: Ultility is independent of delay:
urgency(t) =1

2. Exponential Decay(r): For a decay parameter
r e [0,1]:
urgency(t) = r

3. Sliding Window(W): For a window size pa-
rameterlV > 0 :

1 ift<WwW
urgency(t) =9 o otherwise

Other decay functions may also be used to specify ur-
gency, such as polynomial decay, polyexponential de-
cay, and chordal decay (see [3]).

Web page change behaviors, while urgency can be tuned Figure 3 shows how our life and urgency parameters
according to application requirements in terms of timeli-should be set in order to model the extreme data and ap-
ness and completeness. Below are some examples of hgwication scenarios represented in Figure 2.



subject to the resource constraint:

Vj, Z Si,j S C

Changes overwrite information

Changes append information
Timeliness is not critical

Timeliness is not critical

life: unbounded—append life: overwrite PieP
urgency: uniform urgency: uniform

wheres; ; € {0,1}.
’ Changes overwrite information 31 Optlmal Offline Algorlthm

Timeliness is critical

Changes append infor
Timeliness is critical

This problem can be formulated as a nonserial constrained
optimization problem, and solved using nonserial dynamic
life: unbounded-append life: overwrite programming [1]. The running time complexity of nonse-
urgency: sliding window(0) urgency: sliding window(0) rial dynamic programs depends on the interaction among
decision variables [1, 6]. It turns out that in our problem
the decision variables.¢., s; ; variables) are highly inter-

. ) . . twined, so the optimal dynamic programming algorithm is
Figure 3: Life and urgency under various scenarios. |ikely to be too expensive for large-scale applications.

We address this issue by proposing a greedy algorithm

Relaxed versions of these extreme life and urgency sefat Serves as a 2-approximation and runs in time linear in
tings, such as the windowed and exponentially decayind€ number of decision variablés., O(|P| - [T1).
functions outlined above, can be used to accommodate ap- - . .
plications falling in between these extreme scenarios. Fop-2  Efficient Online Algorithm
example, some online auction sites display a sliding winiwe present the following greedy algorithm for scheduling
dow of recent bids for each item, which can be modelednonitoring of dynamic Web pages, which we callC for
using Time-window—Append or Change-window—-Append“Web Information Collector:
for life. Auction monitoring applications needing access
to bid histories up to the last hour may specify urgency asAlgorithm 1 (WIC):
Sliding-window(1 hour).

We note that the RIR objective presented in [12] as- 1. For all pagesP; € P and time instant§; € 7 :
sumes that any nonzero delay in capturing changes is un-
acceptable and that changes in the target pages are fully
overwritten, which corresponds to the shaded region of Fig- 2 Forj = 1 to N:
ure 3. Hence, by setting life and urgency to Overwrite

Initialize s; ; < 0.

and Sliding-window(0), respectively, our utility objective For eachP; € P letu; = g;(prev; ;, j).
is equivalent to RIR as a special case. Let £ contain the page®; with the topC' values
of Uj.

neral-Pur Web Monitoring Algo-

3 C_Ee eral-Purpose Web Monitoring Algo For eachP, € £ sets; ; — 1.
rithm '

] o ] For eachp;,
In selecting a monitoring schedutewe are faced with the P er
optimization problem of choosing values for the boolean e L, _
variabless; j, P, € P, T; € T so that the total utility/ setprevi jy1 = J
is maximized, given a constraift on the number of mon- else,
itorings allowed at each time instant. To simplify exposi- setprev; j11 = prev; ;

tion in this and subsequent sections, we define a function

N + o
gi+ 2% x 27 — Rior pageP; as: Recall thatg, (prev; ;,j) denotes the utility accrued by

ja monitoring page’; on instantl;. Since at each instant the

9i(j1, j2) = W; Z (’U/f'g@nczﬁ(jQ_k)"/Tiyk'lifei(k,jQ)) above algorithm monitors those pages which offer maxi-
k=j141 mum current utility, it operates in a greedy mann@fcC

maximizes utility locally, at each time instant, but does not

This quantity represents the utility accrued by monitoringnecessarily maximize overall utility accrued during the en-
pageP; at timeT},, assuming that the most recent moni- tire epoch.

toring of P; occurred aff;,, ji < ja. _ We now examine the running-time complexity \Wic,
We can express our optimization problem in termg;of \vhich depends on the nature of the life and urgency pa-
as follows: rameters. For all example settings of life and urgency
N outlined in Section 2.3 except for life = Change-window—
maximize Z Z sij - gi(previ j, ) Append, the value ofj;(prev; ;,j) can be computed in

PeP j=1 constant time from its value in the previous time instant,



gi(prev; j_1,5 — 1), andm; ;. In those cases the running
time of WIC is linear in the number of decision variables,
i.e, O(|P|-|T)).

WIC can be executed in anlinefashion, meaning that
the values of decision variables ; are assigned imme-
diately prior to timeT;. Therefore, it is compatible with
algorithms for estimating change probabilities at the “last
minute,”i.e., ones that assign change probability estimates
7.; as late as tim@;_,. When executed in an online fash-
ion, WIC requires onlyO(|P|) computations per time in-
stant.

3.3 WIC is a 2-Approximation

We show that for monotonic urgency functiomsc is a 2-
approximation algorithm for the optimization problem for-
mulated above. Lei¢ denote the schedule selectedt\C

and .S° denote an optimal schedule. Our claim is that the
expected total utility accrued b¥? is not less than half of
that accrued by °. Mathematically, our claim is:

N
SO st gilprev? ;. q) <

PeP j=1
N

a)- Yo > st gilprevy,, )
P,eP j=1

where the superscripts “g” and “0” denote aspectsdf
andsS?, respectively, and depends on urgency as follows:

(urgencyi(t + 1))

a = max max
urgency; (t)

% t

prevy, ; = 0, so it must be the case thatev], ; <
prevg, ;. By Lemma 1 in Appendix A, this fact
|mpI|es gir (previ ;,73) < g (prevy, .,j). Com-
bining this result with Equation 1, leuch states that
gir (prevl,,’j,j) < gy (prev, j»J), we obtain:

girr (prevf,,mj) < gi (preu J, ]73)

which means that the utility accrued By at timeT);
is not greater than the utility accrued 5Y.

P; is monitored inSY at some timé,, 1 < k < j: In
this case the WIC and optimal schedules Ry may
look as follows, for example:

Timelnstant| 77 | To | - | - | - | Tj—1 | T;
51'/ j * * * * * * l
s, J O |1 |0j1[0]0O *

Here the inequality; (prevy, ;, j) < gir (prev, . 7)
does not necessarily hold. However, we prove in
Appendix A that the differencey; (prevy, ;,5) —
gi/(prevf,’j,j) is bounded bya times the utility
accrued InSY for page P;» in the time interval
[prevy, ;. 7], 1.e:

gin(previs ;,5) < gulprev ;. j) +

a- Y gw(prevd, ,.q)

queqf,, (prevf,, ¥ )

where seq?, (prevg,, »J) denotes the set of time in-
stantsT, with prev} v SA<] ands?, g =L

Combining both cases and making two simple transfor-

mations, we find that for all paged,» € P and all time
If wurgency is a monotonically nonincreasing function, instantsl; € 7:

0 < a < 1 and this inequality implies thawIC is a 2-
approximation.

Our complete formal proof is rather involved, and is
given in Appendix A. Here we present the main idea be-
hind our proof, focusing on the special case’bf= 1 for
simplicity.

We begin by stating a simple property WiC that fol-
lows from its construction:

s - gir(previs ;. 5) <Y

si ;- gir(prev) ,j) +
P, eP

a- Y gw(prevd, ,.q)

qeseq;}l/ (p/r.evfll vj 7])

By summing over allP;» € P and allT; € 7 and
transforming the resulting expression (see Appendix A) we

obtain our desired result:

s, =1 =VYPy €P, gi(prev};,j) > gi/(prevf/,j,{)
1

Suppose that at a certain time instd@itin the schedule
selected bywiC , S9, pageP;, is monitored, and inS°
pagepP; is monitored, wheré’, and P;» may be the same
or different. Consider two cases:

e P, is not monitored iS¢ at any timel,, 1 < k < j:
In this case the WIC and optimal schedules#pr are
as follows (* denotes eithéror 1):

Timelnstant| 77 | 1o | - | - | - | Tj—1 | 1
SQ// . * * * * * * 1
1,7

sf’,,_j O |0O |[0|OfO]O *

Z Z zy "gi pTeUz]v.]

P;eP j=1

Corollaries:
(i) For monotonic urgency functiong,< 1, so

N
SN 80 gilpreny;, )

P,eP j=1

(1+a)- Z Z 87 ;-gi(prevy ;. )

P;eP j=1

N
<2 > styailpren;d)

P,eP j=1

andwiIC is a 2-approximation.

(i) For the Sliding Window(0) setting of urgency (see Sec-
tion 2.3),a = 0 andWIC is guaranteed to produce an opti-
mal schedule.



4 Timeliness-Completeness Tradeoff

In this section we study the tradeoff between timeliness and
completeness analytically, and show that this tradeoff can

time instantsl’ _p|+1,- - -» Tv—1 monitor each page
P; € P, i # i’ exactly once in some order. Finally, at
the last time instarif’y monitor P;; again.

be controlled by adjusting the urgency parameter. (In Sec-  We now argue informally that this schedule is optimal

tion 5 we measure this effect empirically.)

For our analysis we focus on the following simple ex-

in terms of expected total utility accrued. A formal
proof is omitted for brevity. Since changes only ap-

ample scenario for which optimal schedules are easy to  pend information and timeliness has no bearing, only
find. (Comprehensive analytical study of the nature of the  the last monitoring of each page during the epoch is
timeliness-completeness tradeoff in a wider context is left ~ important. Furthermore, the last monitoring of a given
as future work.) Suppose that all changes are append-only  page captures the most information if itis as late in the

in nature,i.e,, for all pagesP; € P, life;(k,j) = 1, inde-
pendent oft and;. Further suppose that for all pagesfn
except a special page,, the probability of change; ; is
uniform and equal to some constanfor all time instants
T;,1 < j < N. For pagePy, letw; ; = ' at each time
instantT’;, wherer’ > w. PageP;, is more likely to change
than any other page at each time instant.

schedule as possible. Therefore, an optimal schedule
for this scenario is one that monitors a different page
in each of the finaJP| time instants, in ascending or-
der of probability of change. The monitorings sched-
uled for time instants betweeh and7'y_p| are ir-
relevant in terms of utility.

Furthermore, let the number of time instants in an epoch Below we tabulate the number of changes captured as
be much larger than the number of pages under considerdell as the number captured with zero delay between oc-

tion for monitoring,i.e, N > |P| > 2, and letW; = 1 for

all P; € P. Finally, assume that at most one page can b

monitored at each time instamng., C' = 1.
Now consider two extreme scenarios for urgency:

e Timeliness-Only. No delay in capturing information
is acceptable.Information not captured immediately

is of no value to the application. This is the Slid-
ing Window(0) scenario for urgency described in Sec-

tion 2.3, in whichurgency(0) = 1 andurgency(t) =
0 for all ¢ > 0. In this scenario,

. m ifi#
gi(previj,j) = { ' otherwise

currence and capture:

I Urgency Number of changes Number  captured
setting captured with zero delay
Timeliness- | N -«’ N -7
Only
CompletenessA - n'+ [(|[P|—-1)- | < N -a' — (|P] —
Only N_W] | D7 =)

In the Timeliness-Only case, all changesio are cap-
tured, and all are captured in the same time instant in which
they occur. The expected number of such changas is’,
which represents the maximum number of changes that can
be captured with zero delay under any schedule, on expec-
tation. In the Completeness-Only case, not only are all
N - 7’ changes taP; captured, but most of the changes

Herg, _th_e optimization problem reduces to ?hat Ofto the other pages are captured as well. The expected num-
maximizing the number of changes captured with zerq, - o¢ < \ch changesi§P|—1)-N —|P|-(|P|-1)/2] -7

delay. The unique optimal schedule in this case is aPverall N - 7/ + (P = 1) -N—[P|- (P -1)/2] - =
LOHOWtS: Mq:utor pagttra]Py at eacr} t|tr2_e Instant, anq changes are captured, which represents the maximum num-

0 hot monitor any other pages. In this Scenario pridfye, ¢ changes that can be captured under any schedule, on
changes have no bearing and overall utility is MaXl- ey pectation. Since we assutve> |P|/2, the expected to-
mized t_)y always monitoring the page W't.h the h|ghestta| number of changes captured in the Completeness-Only
probability of change in the current time instant. case is greater than in the Timeliness-Only case.

Completeness-Only Any delay in capturing the Although more changes are captured in the
changes is acceptableThis is the uniform scenario Completeness-Only case, the delay between the time

for urgency described in Section 2.3, in which urgencyOf occurrence and time of capture of those changes tends

is set tourgency(t) = 1, independent of. In this sce- to be longer than in the Timeliness-Only case. We quantify
nario ' the difference by comparing the expected number of

changes captured immediately, with zero delay, in the
ij it two cases. First observe that the particular choice of
k=previ,;+1 optimal schedule given above for the Completeness-Only
scenario represents the best case for expected number of
changes captured with zero delay. In that best case, the
Here, the optimization problem reduces to that ofexpected total number of zero-delay changes captured is
maximizing the total number of changes captured, re{N —|P|)-7'+(|P|-1)-7+7’ = N-7'—(|P|-1)- (7' —7).
gardless of delay. One optimal schedule for this sceThis quantity is less than the number of zero-delay changes
nario is as follows: During time instantg, 75, ..., captured in the Timeliness-Only cas¥, - ' (recall that
Tn_p| monitor pageP; repeatedly. Then, during 7’ > 7). Hence, more changes are captured immediately

gi(PV’e’Ui,jaj) = {

D keprev; ;41T Otherwise



after they occur in the Timeliness-Only case than in the

Completeness-Only case, even though the total number of
changes captured is fewer. |
In this example scenario, if we maximize the expected — L
r=0.8
total number of changes captured, the expected number © =05
captured with zero delay is less than maximal. Conversely, = 0504 =03
if we maximize the expected number captured with zero g r=0
delay, the total number of changes we expect to capture is
less than maximal. Based on our analysis of this example
scenario we conclude that the following two facts appear to
be true:
0.004 )
) o 0 4 8 2 16 20
1. A fundamental tradeoff exists between timeliness and delay (number of instants)
completeness of information captured during monitor-
ng. Figure 4: Urgency function for different values «af
2. Oururgency parameter serves as a knob to control this
tradeoff.

randomly-selected time instaffit/, i.e., setm; j; = 1.

Extending our analysis to encompass a broader range of ~ 1he smallerPN is, the more accurate the change
scenarios appears nontrivial and is left as a topic of future ~ Probability estimates are.
work. In the rest of this paper we prefer to focus on empir-

ical measurements. e Spread For each change to pade at time instant

T;, we spread the probability of change according to a

; Gaussian distribution parameterized by standard devi-
5 Experiments ationo > 0 (in units of time instants). As witli'PN,
To evaluate ouwIC algorithm empirically, we used real- the smallers is, the more accurate the change proba-
world online auction data from a major auction site. Auc- bility estimates are.
tion bids are of significant interest to monitor for pur-
poses of offline trend analysis as well as real-time counterg 1 Metric and Parameters
bidding.

We obtained7550 Web pages from the site, each of We evaluate the performance of monitoring scheduling al-
which contains bidding histories for one item up for auc-gorithms in terms of total utility accrued. To normalize our
tion. Since bids have timestamps, we were able to reconmneasurements in the ranffe 1] we divide total utility by
struct the past temporal behavior of these pages. Each patfee total number of changes undergone by all pages at all
is updated whenever a new bid is made for the correspondime instants in the epoch. If a scheduling algorithm cap-
ing item, at which time information about the new bid (in- tures all changes with zero delay, the normalized utility is
cluding bidder, price, time) is appended to the bidding his-1.
tory. However, for the sake of testing the flexibility of our ~ Recall that utility is parameterized by an urgency spec-
approach, some of our experiments assume that each pagieation. For our experiments we used exponential decay
displays only the most recent, or maximum, bid for thewith parameter € [0, 1] for urgency. Figure 4 shows ur-
item, and prior bids are erased. Some auction sites onlgency functions for different values of By tuningr, the
display the maximum bid. desired balance between timeliness and completeness can

For our experiments we treated one day as an epocHne specified. Using a small value for timeliness is pre-
with time instants corresponding to one-minute intervalsferred over completeness. In the extreme, setting 0
Hence,N = 60 - 24 = 1440 time instants. The num- signals that changes not captured immediafedy, during
ber of pagedP| = 7550. We setW; = 1 for all pages the same time instant in which they occur, are of no value
P, € P. Change probabilitiesn, .) are determined as and do notincrease utility. On the other hand, using a large
follows: we begin with the “exact probabilities,” in which value forr, completeness is preferred over timeliness. In
eachr; ; € {0,1}, depending on whether pagg under-  the extreme, setting = 1 signals that timeliness has no
goes a change at time instdfit. Then, we add noise to bearing and utility depends only on completeness.
simulate inaccuracies introduced by a change probability

estimation algorithm in the following two ways: 5.2 Effect of Inaccuracies in Change Probability Esti-

" . . mation
e False positives and false negativesGiven an error

factor FPN € [0, 1], we remove each change with In our first experiment we investigate how inaccuracies in
probability FPN, i.e, setw; ; = 0 when originally  change probability estimation effect the performance of our
m;,; = 1. Eachtime a change to pageattime instant ~ WIC algorithm (Section 3.2). First we vary the estimation

T; is removed, we insert a spurious change’lat a  accuracy by changing the value®f{standard deviation of
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Figure 5: Effect of change probability estimation inaccu-Figure 6: Effect of change probability estimation inaccu-
racy in terms of spreadr-{ on performance. racy in terms of false positives and negativé&’(V) on
performance.

spread), while fixingF’PN = 0. Figure 5 shows the re-

sult. In each graph, the x-axis plots the resource constrairtioth in terms of spread and false positives and negatives,

C (maximum number of pages that can be monitored pethe degree to which estimation inaccuracy undermines the

time instant), and the y-axis plots utility captured. In both ability to achieve high utility is highly dependent on the life

graphs the utility obtained decreases with increasings  and urgency parameters. We i’ N = 0.1 ando = 2 for

would be expected. The two graphs shown correspond tthe rest of our experiments.

the best and worst cases in terms of loss in utility due to

spread in qhaqge propability estimation.. The graphs fog 5 Timeliness-Completeness Tradeoff

other combinations of life and urgency fall in between these

two extremes, so we omit them. In our next experiment we demonstrate the control pro-
As we can see from Figure 5, our algorithm is fairly vided by our urgency parameter in trading off timeliness

tolerant of a modest degree of spread on this data. Wheagainst completeness. We #%’N = 0.1 ando = 2, and

o = 4, the height of the central peak of the distribution of life is set to Unbounded-Append for all pagesAr(similar

change probability estimates falls at around (it is well ~ results were obtained with life set to Overwrite).

below0.1 for o = 5). In other words, witho = 4 the esti- In Figure 7 we show the number of changes captured

mate only indicates &% probability of change at the time by our WIC algorithm, as a fraction of the total number of

instants in which a change does occur, yet our approach stithanges that occurred, under different urgency functions.

performs reasonably well. The resource constraiit is plotted on the: — azis. As
Next we measure the effect of introducing false posi-we expect, in each case &Sincreases, more changes are

tives and false negatives by varyidgPN, fixing o = 0  captured. The number of changes captured also increases

(no spread). Figure 6 shows the result. As before, we shows r (the urgency parameter) increases. (Recall that in-

the two graphs corresponding to the settings of life and urcreasingr increases the relative importance of complete-

gency yielding the best and worst cases in terms of utilness compared with that of timeliness.) When availabil-

ity lost due to inaccuracy in change probability estimation.ity of resources is relatively low({ < 12 in this case),

Again, our algorithm appears to be fairly intolerant of a our algorithm captures between aro@¥ and80% more

modest degree of inaccuracy in estimation of change probshanges when = 1 than when = 0.

ability due to false positives and negatives. Furthermore, We now turn to timeliness. Figure 8 plots the distri-
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Figure 7: Number of changes captured under various expa=igure 8: Distribution of delay in changes captured un-
nential urgency functions. Life is Unbounded-Append. der various exponential urgency functions.( Life is
Unbounded-Append.

bution of delay between the times of occurrence and cap-

ture of the changes captured, with= 8 and for different
settings ofr (urgency). Delay that exceed$® minutes is 1 total number of changes captured
shown in the rightmost bar, labeled “10+.” For= 0, over = 1.004 number captured with zero delay
90% of the changes captured are captured with zero de- = ]
lay. However, this figure drops belo2$% for the case of § 0.80+
r = 1, in which roughly50% of the changes captured are g ] m
captured with a delay df0 minutes or more. 5 0.604

These results indicate a tradeoff does indeed exist be- §
tween timeliness and completeness, and it can be controlled g 0.40-
by adjusting our urgency parameter, as our analytical re- %
sults of Section 4 indicated. The tradeoff is perhaps best S 0.20-
visualized as plotted in Figure 9. This graph shows the to-
tal number of changes captured (as a fraction of the total 0.001— : : .
number of changes that occurred), as well as the total num- Timé:i?]%rzo-3 r=05 r=08 Corrnzlletenas-
ber captured with zero delay (again as a fraction of the total Only gnly

number that occurred), wher = 8, for different settings
of urgency ¢). It can clearly be seen that by adjusting the

urgency parameter, timeliness can be traded off against rigyre 9: Tradeoff between timeliness and completeness.
completeness.

5.4 Comparison Against Prior Approach sumes the other. o
We compared the two approaches on the scenario in

For our final experiment we compare our approach againsghich they overlap, namely: scheduling unit-time monitor-
the only prior work we are aware of on scheduling mon-ings of pages that undergo changes that completely over-
itoring of dynamic Web pages, CAM [12]. Since CAM write information, while optimizing for timeliness. Note
was designed to optimize for the “returned information ra-that our WIC algorithm is guaranteed to find the optimal
tio” (RIR) objective, we set our life parameter to Overwrite monitoring schedule in this case (Section 3.3). We mea-
andr = 0 (equivalently, Sliding Window(0) urgency) to sured total utility accrued for different values 6f (avail-
make utility equivalent to RIR. Note that the RIR objec- gple resources), under the two algorithms, WitRN =

tive strongly favors timeliness over completeness and asj.1 ando = 2. Our WIC algorithm outperformed CAM by
sumes that all changes overwrite information due to preas much as a factor of two.

vious changes. In this way our approach generalizes that

of [12]. However, ogr.approach is less general in the sens Related Work

that we assume unit time to monitor a page, whereas CA

handles cases in which each pages takes a different amowiteb monitoring has been addressed in the context of sys-
of time to download. Therefore, neither approach subtems that evaluate continuous queries over the Web [7-10].
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. . 3]
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in which information is posted to Web pages, are exposed|g] T. |baraki and N. Katoh. Resource allocation prob-
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Lemma 1 For j; < ji < j2, we havey; (41, j2) > g:(j1, jo2)-
Proof: The functiong; (j1, j2) is defined as:
J2
gi(d1,d2) = Wi+ Y [urgency,;(j2 — m) - Ti m - life;(m, j2)]
m=ji1+1
Sinceji < j1, 9:(j1,J2) — 9:(41, j2) is equal to
i1
Wi- S [urgency;(ja — m) - mim - life;(m, j2)),
m=j1+1

which is always nonnegative because the quantitiesncy, = andlife are nonnegative. Hencg,(j1, j2) > g:(j1, j2). O

Lemma?2 a.lf a = maz; ; <W) , then

9i(J1,J2) < gi(x, j2) + a - gi(j1, x)

wherez is an integer in [, jo].
b. If x is an increasing sequence of integers,

Ix|—1
gi(1,2y)) < gy -1 Tp) Far Y gilra1,x2)
z=2
wherez . denotes the'" element ofy.
Proof: Part a. We know that
xr
9i(j1,J2) — gi(w,j2) = Wi~ Z [urgency; (j2 — m) - i m - life;(m, j2)]

m=j1+1

W; Z [urgency;(jo —m) - T m - life;(m, x)]

m=j1+1

IN

This follows, sincelife,(m, j2) < life;,(m,z). Also note that, we havergency,(jz — m) < a - urgency;(x — m).
Therefore,

9i(j1,J2) — g9i(@,j2) < Wi~ Z [a - urgency,;(x —m) - T, - life;(m, x)]
m=j1+1

= a'gi(jlax)7

which gives us the result; (51, j2) < gi(z, j2) + a - gi(j1, ®).
Part b. Using parta, we split the expression fgy;(z1, z|,|) atws,

gi(x1, 7)) < a-gi(x1, ) + gi(w2, 2)y|)
We then repeatedly split the expressiongglrs, |, ):

gi(r1, ) < a-gi(wy,x2) + a-gi(r2,23) + gi(23, 7))
Ix|—1
< a- Z 9i(g—1,74) + 9i(T)x|=1,T|y|)
q=2
O

We are now ready to establish a relationship between the utility potentially accru@eiyAL for monitoring at page;
attimeT; (denoted byy; (prevy ;, j)) and that potentially accrued IGREEDY for the same page up to and including time
;.



Lemma3 Forall P, e Pandforallj (1 <j<T),

gi(prevy;, 3) < gi(prevy;, j)

Proof: We only consider the cageev;
Recall thatseq] (prevy ;, j) denote the set of tlme instanfs such thatprev?

j—1

+a- Z s .gi(prev , 2)

zzprev;’ 41

< prev .. The other case follows directly from Lemma 1.

¢, <z < jands] = 1. Letus denote

the sequencéprevy ;} U seq] (prevy;, j) U {j} by x. Note thatseq] (prevy ;,j) is non-empty and s¢x| > 3. Let
T1,T2,...,2|, be elements of the sequengeNote thatx; = prevy ; andz|,| = j. From lemma 2 it follows that,

gi(prevy ;, )

Hence,

<

IN

9i(T)x—1, T)x|)

gi(prev;,j) +a-

{sincex; = prevy

gi(prevy;,j) +a

{sincex,_1 = prev!

gi(prevy;,j) +a-

[x|—1

[x|—1

+a- Z gi(xzflvxz)

z=2
[x|—1
gi(prevy j, v2) +a- Z gi(x21,72)
7 s Tlx|—1 fprev and:p|X| =j}
[x|—1

- gi(prevy ;,x2) +a- Z gi(prevf’xz,a:z)

z=3
for3<z<|x|—-1}

1,T !

S1a, - 9i(Prevy j, o)

+a- Z 57 .. gilprevy, ,x.)

{sinces] ,

gi(prevy;,j) +a-

[x|—1

E g
+ a- si7mz : g’L
z=3

= 1for z € seq] (prevy;, j)}

g . g
87 0y gi(prevy ,,, w2)

(prevﬁzz ,Ty)

{ by Lemma 1, SinCQ)revigI2 < prevy; }

gi(prevy ;,j) +a-

gi(prevy ;,j) +a

[x|—1

g _ g
§ S, - gilprevy, ,x2)

z=2
g . g
E si. - gi(prevy ., 2)
z€seq] (prevy ;.5)

{ by construction of }

gi(prevy;,j) +a

Jj—1

Z si. - gi(prev] ,, 2)

z:prevfyj-l-l

{ aSS‘ZZ

=0if 2 ¢ seqf(pT6U2j7j) }

j—1

gi(prevy ;. j) < gilprevy ;i) +a- > s?_gi(previ,, 2).

z:prev;’j+1

Theorem 1 GREEDYis a (1 + a)-approximation algorithm. That is,

N
Zs g 9i prev”,j

P;e

P

J

j=0

XS alorert,

P;eP j=0



Proof: We begin by bounding the total utility accrued O®TIMAL at any instang. From lemma 3:
j—1
gi(prevy ;,5) < gi(prevy ;, j) +a- Z s, - gi(prev] ,, 2)]

z:prevg”j—kl
Multiplying both sides by ; and taking the sum for al; € P:
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By construction of th&sSREEDY algorithm, which selects the tap values ofg; (prevﬁj,j), it is plainly the case that:
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Substituting this inequality into Equation 2, we obtain:
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Summing over all time instantg; (1 < j < N), we obtain:
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We bound the second term on the right-hand side as follows:
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Substituting this into Equation 4 and simplifying, we obtain:
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