
WIC: A General-Purpose Algorithm for Monitoring
Web Information Sources

Sandeep Pandey, Kedar Dhamdhere∗, Christopher Olston

Carnegie Mellon University
Pittsburgh, PA 15213

{spandey, kedar, olston}@cs.cmu.edu

Abstract

The Web is becoming a universal information dis-
semination medium, due to a number of factors
including its support for content dynamicity. A
growing number of Web information providers
post near real-time updates in domains such as
auctions, stock markets, bulletin boards, news,
weather, roadway conditions, sports scores, etc.
External parties often wish to capture this infor-
mation for a wide variety of purposes ranging
from online data mining to automated synthesis
of information from multiple sources. There has
been a great deal of work on the design of sys-
tems that can process streams of data from Web
sources, but little attention has been paid to how to
produce these data streams, given that Web pages
generally require “pull-based” access.

In this paper we introduce a new general-
purpose algorithm for monitoring Web informa-
tion sources, effectively converting pull-based
sources into push-based ones. Our algorithm can
be used in conjunction with continuous query
systems that assume information is fed into the
query engine in a push-based fashion. Ideally, a
Web monitoring algorithm for this purpose should
achieve two objectives: (1) timeliness and (2)
completeness of information captured. However,
we demonstrate both analytically and empirically
using real-world data that these objectives are fun-
damentally at odds. When resources available for
Web monitoring are limited, and the number of
sources to monitor is large, it may be necessary to
sacrifice some timeliness to achieve better com-
pleteness, or vice versa. To take this fact into ac-
count, our algorithm is highly parameterized and
targets an application-specified balance between
timeliness and completeness. In this paper we
formalize the problem of optimizing for a flexi-
ble combination of timeliness and completeness,
and prove that our parameterized algorithm is a

∗ Supported by NSF ITR grants CCR-0085982 and CCR-0122581.

2-approximation in all cases, and in certain cases
is optimal.

1 Introduction
The Web is becoming a universal medium for disseminat-
ing information of all kinds, including highly dynamic in-
formation. A significant amount of valuable dynamic in-
formation is being posted to the Web, and people want to
access it. In many situations, direct manual viewing of dy-
namic Web pages is not an adequate mode of access for one
or both of the following two reasons. First, most informa-
tion posted on the Web is not made available forever, and
may disappear or be replaced by new information at any
time [5]. This aspect presents a challenge, especially for
applications in which historical information is of interest.
Second, many applications require automated synthesis of
information from multiple dynamic Web sources [10].

As a result, there is significant interest in systems that
monitor and process updates to frequently updated Web
pages automatically. These systems perform a variety
of information management functions including synthe-
sis, archiving, and continuous query processing. Web-
based continuous query (CQ) processing systems proposed
in the literature include CONQUER [9], Niagara [10],
OpenCQ [7] and WebCQ [8].

The main focus of this work has been on language de-
sign and efficient query processing, and the crucial issue
of how to capture information from dynamically changing
Web pages has largely been ignored. Most work on contin-
uous query processing assumes that data is “pushed” into
the query engine in the form ofdata streams. However,
generally speaking, Web data must be “pulled,”i.e., contin-
uous query systems must explicitly download Web pages,
check for changes, and submit any resulting new data to the
query processor.

So far, only heuristics with no formal guarantees on
effectiveness have been proposed for converting pull-
oriented Web sources into push-oriented data streams. The
designers of Niagara [10] and other CQ systems for the
Web have suggested that simple periodic polling be used
for this purpose. However, periodic polling breaks down in
the presence of a large number of frequently-updated Web
sources, when resources become inadequate for polling all



Web pages at a fast rate. The work in [12] was the first to
study ways to improve upon simple periodic polling, but
the algorithm proposed in [12], called CAM, has a num-
ber of serious drawbacks: (1) CAM is only suitable for a
narrow range of applications in which timeliness of infor-
mation captured is of utmost importance, whereas many
real-life applications must balance timeliness with com-
pleteness, a serious issue we discuss shortly, (2) even for
the specialized set of applications handled by CAM, there
is no formal guarantee that CAM performs well at captur-
ing information, and (3) CAM relies on a computationally
intensive, offline algorithm to schedule monitoring.

In this paper we introduce a new general-purpose Web
monitoring algorithm called theWeb Information Collec-
tor (WIC), which is suitable for use in conjunction with a
variety of CQ systems.WIC has the following desirable
properties: (1) it handles a wide range of application sce-
narios, (2) it provably performs within a factor of two of the
optimal offline Web monitoring algorithm in all cases, and
(3) it is highly efficient and executes in an online fashion,
making it practical for real-world use.

1.1 Web Monitoring Objectives

In continuous Web monitoring applications, it is usually
desirable to capture as much information as possible, with
as little delay as possible. Dynamic Web pages undergo
updates over time, and each updated version of the page
potentially contains new information of value to the appli-
cation. Therefore, an ideal Web monitoring system would
capture every change to each page of interest, immediately
following the update that causes the change.

Unfortunately, this ideal situation is often difficult to
achieve in practice. Due to the nature of Web protocols,
obtaining updates to Web pages generally requires polling
those pages. For applications that monitor a large number
of Web pages, high-frequency polling and processing of all
pages of interest can be prohibitively expensive. Typically
it is not feasible or desirable to provision systems with ad-
equate communication bandwidth and processing power to
support exhaustive and rapid polling of a large number of
Web pages.1

As a result, polling must be performed selectively, and
some criteria for deciding when to poll each page must be
established. Although it may not be possible to capture
all changes to all pages of interest in a timely fashion due
to resource limitations, it is generally desirable to come as
close as possible to that ideal. Hence, scheduling polling of
pages for Web monitoring can be viewed as a constrained
optimization problem with two objectives:

1. Completeness: Maximize the number of changes
captured.

1While processing of unchanged pages may be avoided using fast
checksum comparisons or by outfitting HTTP requests with an “if-
modified-since” qualifier, such techniques are usually ineffective in the
presence of frequently changing superficial content such as advertise-
ments, counters, etc.

a

b

0

1

0 Delay

U
ti

lit
y

Figure 1: Urgency functions.

2. Timeliness:Minimize the delay in capturing changes.

In certain cases these two objectives are at odds with
each other. We illustrate this property through a very sim-
ple example. Suppose we wish to capture changes to a sin-
gle Web page that is updated in such a way that new infor-
mation is always appended (thus, information is never re-
moved from the page). Given a single opportunity to down-
load a snapshot of this page, we are clearly faced with a
tradeoff between timeliness and completeness. If we down-
load the page early, we will only capture a few changes, but
with little delay. Conversely, if we wait a long time before
downloading the page, we may capture more changes, but
there will be a high delay, on average, between the time at
which a change occurs and the time at which it is captured.

When facing resource-constrained situations, the appro-
priate balance to strike between timeliness and complete-
ness depends on the application. Applications that need to
react rapidly to new information, such as stock market day-
trading programs, may value timeliness over completeness
when both cannot be had. On the other hand, applications
whose purpose is to compile historical archives for offline
querying may opt for completeness.

To accommodate a diverse variety of applications with
differing requirements, we introduce a flexible method
of specifying the relative importance of timeliness and
completeness: application designers supply a function
urgency : Z+ → [0, 1] specifying theutility of a captured
change as a function of the delay between the occurrence
of the change and the time of capture. Example urgency
functions are illustrated in Figure 1. For applications in
which timeliness is critical, an urgency function with steep
downward slope, such as functiona in Figure 1, should be
used. Conversely, for applications that value completeness
over timeliness, a more gradually decreasing function such
as functionb is more appropriate.

In this paper we formalize our notions of timeliness,
completeness, and utility, and provide both analytical and
empirical evidence of the existence of a tradeoff between
timeliness and completeness. We formulate the problem of
scheduling polling of remote Web pages as an optimization
problem whose objective is to maximize utility under the
constraint of limited resources available for polling. Our
formulation is parameterized by an application-dictated ur-



increases

auction maximum bid

stock market price 

Reacting in real−time to

news stories for long term 

archival

Collecting ‘‘front−page’’ 

Example:

Example:

fluctuations, or online

Changes append information

Timeliness is not critical

Changes overwrite information

Timeliness is not critical

Timeliness is critical

Changes overwrite informationChanges append information

Timeliness is critical

Example:

Example:

Capturing new Internet 

security bulletins, health risk

alerts etc. for selective 

automatic dissemination

within an organization 

Creating and maintaining

a searchable resume database

Figure 2: Extreme scenarios.

gency function, allowing the solution to be customized to
the needs of specific applications. Of course, the appro-
priate polling schedule also depends heavily on the way in
which the Web pages being monitored change over time,
discussed next.

1.2 Modeling Changes to Web Pages

We define achangeto a Web page as an update that causes
information of value to the application to be added to the
page. The information added during a change to a page
may not remain on the page forever. For example, typical
financial reporting sites only display the most recent news
reports. Similarly, some online auction sites only show the
most recent bids. To model this fact, we assume a certain
lifetimeof information, which may vary among pages and
by application. Lifetime indicates the probability that in-
formation made available by a change at timet is removed
at any future timet + x.

It is instructive to consider the two extreme possibili-
ties for lifetime. First, on long-lived, append-only pages,
the lifetime of information is essentially infinite. In the
opposite extreme, some pages are updated such that each
change overwrites the information presented by the previ-
ous change completely. In the case of complete overwrites,
the lifetime of information made available due to a given
change extends only to the time of the subsequent change.

Figure 2 provides examples of application scenarios that
can roughly be categorized into each of these two extremes
in terms of information lifetime. The applications are also
categorized based on the orthogonal dimension of whether
timeliness is critical (see Section 1.1), resulting in four ex-
treme categories overall. The flexibility of our formulation
makes it suitable for a large variety of Web monitoring ap-
plications. The only previous approach we are aware of,
CAM [12], only handles applications that fit into the shaded
region of Figure 2.

It is important to note that our classification of applica-
tions into quadrants in Figure 2 is very rough, and variants
of these applications may fit more or less well into their as-
signed category (which represent extremes in terms of in-
formation lifetime and criticality of delay). Our approach
accommodates this fact, and can handle applications falling
in between these extreme categories since our urgency and
lifetime specifications are highly adjustable, as we shall see
later in the paper.

1.3 Contributions

The specific contributions of this paper are as follows:

• We formalize the scheduling problem in Web moni-
toring as a parameterized optimization problem.

•• We demonstrate that there exists a fundamental trade-
off between timeliness and completeness, which
makes our parameterized formulation necessary.

• We present an efficient, online Web monitoring algo-
rithm that meets the needs of all applications encom-
passed by Figure 2.

• We prove that our algorithm is a 2-approximation for
all cases, and is optimal for the shaded region of Fig-
ure 2.

1.4 Outline

The remainder of this paper is organized as follows. In
Section 2 we formalize the scheduling problem in Web
monitoring as a parameterized optimization problem. We
present an efficient, online algorithm and prove that it is a
2-approximation for our Web monitoring scheduling prob-
lem in Section 3. Then, in Section 4 we show analytically
that, when resources are limited, a fundamental tradeoff ex-
ists between timeliness and completeness. In Section 5 we
report the results of extensive experiments on real-world
data. We confirm that a tradeoff does exist between time-
liness and completeness, and that our urgency parameter
enables application designers to control that tradeoff.

2 Monitoring the Web:
Models and Assumptions

Our models for the Web monitoring scheduling problem
and the way in which Web pages change extend the frame-
work introduced in [12,13]. LetP be the set of Web pages
under consideration for monitoring. Each pagePi ∈ P
has an associatedimportance weightWi ∈ [0, 1], denoting
the relative importance of capturing changes toPi. Time is
divided into discrete time instants, and monitoring is per-
formed in epochs ofN consecutive time instants.T de-
notes the sequence of time instantsT1, T2, . . . , TN in an
epoch.

We focus on the problem of scheduling monitoring of
the pages inP during a single epoch. Monitoring a page
includes the duties of fetching the page from its remote



source, determining whether it has undergone one or more
changes of interest and, if so, processing the change(s) and
propagating them to the target application. We assume the
cost of monitoring a page to be uniform across all pages and
across time. This simplification is based on the assump-
tion that the fixed overhead for the operations required (i.e.,
polling, downloading, and processing a page) is the domi-
nant factor, which is consistent with the assumption made
in most work on Web crawling,e.g., [2,13].

Let C denote the maximum number of pages that can
be monitored in a single time instant. The value ofC de-
pends on the availability of resources for monitoring, in-
cluding CPU cycles, communication bandwidth, etc. If
C equals or exceeds the number of pages,|P|, then the
scheduling problem is trivial: simply monitor each page
at every instant. In practice, however, we expect thatC
may be much less than|P|, making careful scheduling a
requirement. A legalmonitoring schedulefor an epoch is
one that performs at mostC monitorings of pages during
each time instantT1, T2, . . . , TN . A monitoring schedule
S = {s1,1, s1,2 . . . s1,N , s2,1, s2,2 . . . s|P|,N} consists of a
set of Boolean variablessi,j ∈ {0, 1}, wheresi,j = 1 iff
pagePi ∈ P is scheduled to be monitored at time instant
Tj , andsi,j = 0 otherwise.

For convenience, a summary of the symbols used in this
paper is provided in Table 1. Some of these symbols are not
introduced until later in the paper, and should be ignored
for now.

2.1 Nature of Changes

A changeto a page is defined to be an update that causes
information of value to the application to be added to the
page. We assume that the information presented with each
change to a particular page carries equal value, or impor-
tance.2 However, we do not assume that all pages are
equally valuable to monitor. For example, in financial mon-
itoring applications, pages providing periodic earnings re-
ports may be of significantly higher importance for certain
purposes than those displaying stock prices, even though
stock prices are typically updated much more frequently.
To model this fact we allow custom importance weights to
be associated with each page, as stated above.

As discussed in Section 1.2, we model information
posted to Web pages as having an associated lifetime. Let
lifei(j, k) denote the probability that information made
available by a change at timeTj to pagePi remains avail-
able at timeTk. (It is assumed that1 ≤ j ≤ k ≤ N .)
We assume that life is a monotonically nonincreasing func-
tion of k − j. Our life function can be used to model a
variety of common Web page update patterns ranging from
ones in which changes strictly append information to ones
in which all changes overwrite information supplied by pre-
vious changes, and covering situations in between. We sup-
ply some examples later in Section 2.3.

2While our model can be extended to enable differentiation among
changes in terms of importance, we believe that even with this restriction
it is adequate to capture the basic properties of most applications.

Notation Definition
P Set of pages that are considered for moni-

toring. Variablei is used for iterating over
this set.

T Sequence of time instants
{T1, T2, . . . , TN} in an epoch. Vari-
ables j,k,q and z are used for iterating
over this set.

C Maximum number of monitorings allowed
in each time instant.

urgencyi A function to model the value of informa-
tion of pagePi as a function of timeliness.
urgency(0) is always assumed to equal 1.

lifei A function to model the decay of existence
of information on pagePi with time.

πi,j The estimated probability that the pagePi

is updated at time instantTj .
sx

i,j A decision variable, set to1 if pagePi is
monitored at time instantTj by algorithm
x (o for OPTIMAL algorithm andg for WIC
algorithm), and0 otherwise. For nota-
tional convenience, we definesx

i,0 = 0.
Sx A monitoring schedule that consists of a

set of Boolean variablessx
i,j , wheresx

i,j =
1 iff pagePi ∈ P is scheduled to be mon-
itored at timeTj by algorithmx ∈ {o, g},
andsx

i,j = 0 otherwise.
prevx

i,j The most recent time instant beforeTj

at which pagePi was monitored by al-
gorithm x ∈ {o, g}. prevx

i,j is 0 if the
page is never monitored before timeTj by
algorithm x. Mathematically,prevx

i,j =
max{j′ : 1 ≤ j′ < j ∧ sx

i,j′ = 1}.
seqx

i (j, k) The sequence of time instants in the open
interval (j, k) at which pagePi is mon-
itored by algorithmx. Mathematically,
seqx

i (j, k) = {j′ : j < j′ < k∧sx
i,j′ = 1}.

seqx
i For convenience, we refer toseqx

i (0, N +
1) asseqx

i . We useseqx
i (k) to refer to the

kth element of the sequence.seqx
i (0) is

defined to be0. Also,seqx = ∪i∈P(seqx
i ).

Table 1: Summary of symbols and their meanings.

We assume that each pagePi ∈ P has an associated
probability of changeπi,j ∈ [0, 1] at each time instant
Tj ∈ T that has been estimated in advance. This so-called
quasi-deterministicmodel of change probability has been
shown to be appropriate for modeling frequently updated
Web pages [11,13]. The problem of assigning probabilities
of change to Web pages is beyond the scope of this paper.
We demonstrate in Section 5.2 that our approach is tolerant
of a moderate degree of inaccuracy in the estimated change
probabilities.



2.2 Web Monitoring Objective

Given a life parameterlifei() and change probabilitiesπi,∗
for each pagePi ∈ P, we can compute the expected num-
ber of changes captured by monitoringPi at a particular
time instantTj . For any prior time instantTk, 1 ≤ k ≤ j,
the probability that a change occurred at timeTk and can
still be captured at timeTj is πi,k · lifei(k, j). Suppose for
the moment that the first monitoring ofPi during the epoch
occurs at timeTj . Summing over all time instants in the
epoch up toTj we obtain:

j∑
k=1

(
πi,k · lifei(k, j)

)
Now, consider a monitoring scheduleS, which consists

of a set of Boolean variablessi,j giving monitoring times
for each of the pages inP during the epoch. The expected
total number of changes captured byS from all pages dur-
ing the epoch is given by:

∑
Pi∈P

N∑
j=1

(
si,j ·

j∑
k=previ,j+1

πi,k · lifei(k, j)
)

whereprevi,j denotes the index of the most recent time
instant prior toTj at which pagePi was monitored.

Not all captured changes may be of equal value to an
application. Instead, each pagePi has an associated im-
portance weightWi ∈ [0, 1]. Furthermore, recall from
Section 1.1 that an application-specificurgencyfunction
urgency i : Z+ → [0, 1] may be associated with each page
Pi. Together,Wi andPi specify theutility of a captured
change inPi as a function of the delay between the oc-
currence of the change and the time of capture. In par-
ticular, if a change inPi occurs at timeTk, and is cap-
tured later at timeTj , j > k, then the utility of cap-
turing that change isWi · urgency i(j − k). Note that
Wi · urgency i(j − k) ≤ Wi ≤ 1. If a change is captured
during the same instant in which it occurred,i.e., at timeTk,
then the utility of capturing the change isWi ·urgency i(0).
We require thaturgency i(0) = 1, so the utility of capturing
a change toPi immediately isWi.

The expected total utilityU accrued by executing mon-
itoring scheduleS in the epoch is given by:

U =
∑

Pi∈P

N∑
j=1

(
si,j

j∑
k=previ,j+1

Wi·urgencyi(j−k)·πi,k·lifei(k, j)
)

The objective when selecting a monitoring schedule is to
maximizeU .

2.3 Life and Urgency Parameters

Note that life and urgency are tuning parameters in the
above objective function. Life is used to model different
Web page change behaviors, while urgency can be tuned
according to application requirements in terms of timeli-
ness and completeness. Below are some examples of how

life and urgency can be set in order to model various data
and application scenarios that arise in practice.

• life(k, j), for k ≤ j :

1. Unbounded-Append: All changes are of an
append-only nature and information is never
deleted:

lifei(k, j) = 1.

2. Time-window–Append(W ): Changes append
new information, and old information is re-
moved afterW time instants:

lifei(k, j) =
{

1 if j − k ≤W
0 otherwise

3. Change-window–Append(Z): Changes ap-
pend new information, and old information is
removed afterZ subsequent changes occur. In
general, it is difficult to write a concise formula
for this scenario. For the special case in which
the change probability for pagePi has the same
valueπi at all time instants, it can be written as:

lifei(k, j) =
Z−1∑
q=0

(
j − k

q

)
πq

i (1− πi)N−1−q

4. Overwrite: Each change completely obliter-
ates all information made available by previous
changes:

lifei(k, j) =
j∏

q=k+1

(1− πi,q)

• urgency(t), for t ≥ 0:

1. Uniform: Utility is independent of delay:

urgency(t) = 1

2. Exponential Decay(r): For a decay parameter
r ∈ [0, 1]:

urgency(t) = rt

3. Sliding Window(W ): For a window size pa-
rameterW ≥ 0 :

urgency(t) =
{

1 if t ≤W
0 otherwise

Other decay functions may also be used to specify ur-
gency, such as polynomial decay, polyexponential de-
cay, and chordal decay (see [3]).

Figure 3 shows how our life and urgency parameters
should be set in order to model the extreme data and ap-
plication scenarios represented in Figure 2.



life: overwrite

urgency: uniform

Changes append information

Timeliness is not critical

Changes append information

Timeliness is critical

Changes overwrite information

Timeliness is not critical

Timeliness is critical

Changes overwrite information

life: unbounded−append

urgency: uniform

urgency: sliding window(0)

life: unbounded−append

urgency: sliding window(0)

life: overwrite

Figure 3: Life and urgency under various scenarios.

Relaxed versions of these extreme life and urgency set-
tings, such as the windowed and exponentially decaying
functions outlined above, can be used to accommodate ap-
plications falling in between these extreme scenarios. For
example, some online auction sites display a sliding win-
dow of recent bids for each item, which can be modeled
using Time-window–Append or Change-window–Append
for life. Auction monitoring applications needing access
to bid histories up to the last hour may specify urgency as
Sliding-window(1 hour).

We note that the RIR objective presented in [12] as-
sumes that any nonzero delay in capturing changes is un-
acceptable and that changes in the target pages are fully
overwritten, which corresponds to the shaded region of Fig-
ure 3. Hence, by setting life and urgency to Overwrite
and Sliding-window(0), respectively, our utility objective
is equivalent to RIR as a special case.

3 General-Purpose Web Monitoring Algo-
rithm

In selecting a monitoring scheduleS we are faced with the
optimization problem of choosing values for the boolean
variablessi,j , Pi ∈ P, Tj ∈ T so that the total utilityU
is maximized, given a constraintC on the number of mon-
itorings allowed at each time instant. To simplify exposi-
tion in this and subsequent sections, we define a function
gi : Z+ ×Z+ → R for pagePi as:

gi(j1, j2) = Wi

j2∑
k=j1+1

(
urgencyi(j2−k)·πi,k·lifei(k, j2)

)
This quantity represents the utility accrued by monitoring
pagePi at timeTj2 , assuming that the most recent moni-
toring ofPi occurred atTj1 , j1 < j2.

We can express our optimization problem in terms ofgi

as follows:

maximize
∑

Pi∈P

N∑
j=1

si,j · gi(previ,j , j)

subject to the resource constraint:

∀j,
∑

Pi∈P
si,j ≤ C

wheresi,j ∈ {0, 1}.

3.1 Optimal Offline Algorithm

This problem can be formulated as a nonserial constrained
optimization problem, and solved using nonserial dynamic
programming [1]. The running time complexity of nonse-
rial dynamic programs depends on the interaction among
decision variables [1, 6]. It turns out that in our problem
the decision variables (i.e., si,j variables) are highly inter-
twined, so the optimal dynamic programming algorithm is
likely to be too expensive for large-scale applications.

We address this issue by proposing a greedy algorithm
that serves as a 2-approximation and runs in time linear in
the number of decision variables,i.e., O(|P| · |T |).

3.2 Efficient Online Algorithm

We present the following greedy algorithm for scheduling
monitoring of dynamic Web pages, which we callWIC for
“Web Information Collector”:

Algorithm 1 (WIC):

1. For all pagesPi ∈ P and time instantsTj ∈ T :

Initialize si,j ← 0.

2. For j = 1 to N :

For eachPi ∈ P let ui = gi(previ,j , j).

LetL contain the pagesPi with the topC values
of ui.

For eachPi ∈ L setsi,j = 1.

For eachPi,

if Pi ∈ L,
setprevi,j+1 = j

else,
setprevi,j+1 = previ,j

Recall thatgi(previ,j , j) denotes the utility accrued by
monitoring pagePi on instantTj . Since at each instant the
above algorithm monitors those pages which offer maxi-
mum current utility, it operates in a greedy manner.WIC
maximizes utility locally, at each time instant, but does not
necessarily maximize overall utility accrued during the en-
tire epoch.

We now examine the running-time complexity ofWIC,
which depends on the nature of the life and urgency pa-
rameters. For all example settings of life and urgency
outlined in Section 2.3 except for life = Change-window–
Append, the value ofgi(previ,j , j) can be computed in
constant time from its value in the previous time instant,



gi(previ,j−1, j − 1), andπi,j . In those cases the running
time of WIC is linear in the number of decision variables,
i.e., O(|P| · |T |).

WIC can be executed in anonline fashion, meaning that
the values of decision variabless∗,j are assigned imme-
diately prior to timeTj . Therefore, it is compatible with
algorithms for estimating change probabilities at the “last
minute,” i.e., ones that assign change probability estimates
π∗,j as late as timeTj−1. When executed in an online fash-
ion, WIC requires onlyO(|P|) computations per time in-
stant.

3.3 WIC is a 2-Approximation

We show that for monotonic urgency functionsWIC is a 2-
approximation algorithm for the optimization problem for-
mulated above. LetSg denote the schedule selected byWIC
andSo denote an optimal schedule. Our claim is that the
expected total utility accrued bySg is not less than half of
that accrued bySo. Mathematically, our claim is:

∑
Pi∈P

N∑
j=1

so
i,j · gi(prevo

i,j , j) ≤

(1 + a) ·
∑

Pi∈P

N∑
j=1

sg
i,j · gi(prevg

i,j , j)

where the superscripts “g” and “o” denote aspects ofSg

andSo, respectively, anda depends on urgency as follows:

a = max
i

max
t

(
urgencyi(t + 1)

urgencyi(t)

)
If urgency is a monotonically nonincreasing function,
0 ≤ a ≤ 1 and this inequality implies thatWIC is a 2-
approximation.

Our complete formal proof is rather involved, and is
given in Appendix A. Here we present the main idea be-
hind our proof, focusing on the special case ofC = 1 for
simplicity.

We begin by stating a simple property ofWIC that fol-
lows from its construction:

sg
i,j = 1 =⇒ ∀Pi′ ∈ P, gi(prevg

i,j , j) ≥ gi′(prevg
i′,j , j)

(1)
Suppose that at a certain time instantTj , in the schedule

selected byWIC , Sg, pagePi′ is monitored, and inSo

pagePi′′ is monitored, wherePi′ andPi′′ may be the same
or different. Consider two cases:

• Pi′′ is not monitored inSg at any timeTk, 1 ≤ k ≤ j:
In this case the WIC and optimal schedules forPi′′ are
as follows (* denotes either0 or 1):

Time Instant T1 T2 · · · Tj−1 Tj

so
i′′,j * * * * * * 1

sg
i′′,j 0 0 0 0 0 0 *

prevg
i′′,j = 0, so it must be the case thatprevg

i′′,j ≤
prevo

i′′,j . By Lemma 1 in Appendix A, this fact
implies gi′′(prevo

i′′,j , j) ≤ gi′′(prevg
i′′,j , j). Com-

bining this result with Equation 1, which states that
gi′′(prevg

i′′,j , j) ≤ gi′(prevg
i′,j , j), we obtain:

gi′′(prevo
i′′,j , j) ≤ gi′(prevg

i′,j , j)

which means that the utility accrued bySo at timeTj

is not greater than the utility accrued bySg.

• Pi′′ is monitored inSg at some timeTk, 1 ≤ k ≤ j: In
this case the WIC and optimal schedules forPi′′ may
look as follows, for example:

Time Instant T1 T2 · · · Tj−1 Tj

so
i′′,j * * * * * * 1

sg
i′′,j 0 1 0 1 0 0 *

Here the inequalitygi′′(prevo
i′′,j , j) ≤ gi′(prevg

i′,j , j)
does not necessarily hold. However, we prove in
Appendix A that the differencegi′′(prevo

i′′,j , j) −
gi′(prevg

i′,j , j) is bounded bya times the utility
accrued inSg for page Pi′′ in the time interval
[prevg

i′′,j , j], i.e.:

gi′′(prevo
i′′,j , j) ≤ gi′(prevg

i′,j , j) +

a ·
∑

q∈seqg

i′′ (prevg

i′′,j
,j)

gi′′(prevg
i′′,q, q)

whereseqg
i′′(prevg

i′′,j , j) denotes the set of time in-
stantsTq with prevg

i′′,j ≤ q ≤ j andsg
i′′,q = 1.

Combining both cases and making two simple transfor-
mations, we find that for all pagesPi′′ ∈ P and all time
instantsTj ∈ T :

so
i′′,j · gi′′(prevo

i′′,j , j) ≤
∑

Pi′∈P
sg

i′,j · gi′(prevg
i′,j , j) +

a ·
∑

q∈seqg

i′′ (prevg

i′′,j
,j)

gi′′(prevg
i′′,q, q)

By summing over allPi′′ ∈ P and all Tj ∈ T and
transforming the resulting expression (see Appendix A) we
obtain our desired result:∑
Pi∈P

N∑
j=1

so
i,j ·gi(prevo

i,j , j) ≤ (1+a)·
∑

Pi∈P

N∑
j=1

sg
i,j ·gi(prevg

i,j , j)

Corollaries:
(i) For monotonic urgency functions,a ≤ 1, so∑
Pi∈P

N∑
j=1

so
i,j ·gi(prevo

i,j , j) ≤ 2
∑

Pi∈P

N∑
j=1

sg
i,j ·gi(prevg

i,j , j)

andWIC is a 2-approximation.

(ii) For the Sliding Window(0) setting of urgency (see Sec-
tion 2.3),a = 0 andWIC is guaranteed to produce an opti-
mal schedule.



4 Timeliness-Completeness Tradeoff
In this section we study the tradeoff between timeliness and
completeness analytically, and show that this tradeoff can
be controlled by adjusting the urgency parameter. (In Sec-
tion 5 we measure this effect empirically.)

For our analysis we focus on the following simple ex-
ample scenario for which optimal schedules are easy to
find. (Comprehensive analytical study of the nature of the
timeliness-completeness tradeoff in a wider context is left
as future work.) Suppose that all changes are append-only
in nature,i.e., for all pagesPi ∈ P, lifei(k, j) = 1, inde-
pendent ofk andj. Further suppose that for all pages inP
except a special pagePi′ , the probability of changeπi,j is
uniform and equal to some constantπ for all time instants
Tj , 1 ≤ j ≤ N . For pagePi′ , let πi′,j = π′ at each time
instantTj , whereπ′ > π. PagePi′ is more likely to change
than any other page at each time instant.

Furthermore, let the number of time instants in an epoch
be much larger than the number of pages under considera-
tion for monitoring,i.e., N ≥ |P| ≥ 2, and letWi = 1 for
all Pi ∈ P. Finally, assume that at most one page can be
monitored at each time instant,i.e., C = 1.

Now consider two extreme scenarios for urgency:

• Timeliness-Only: No delay in capturing information
is acceptable.Information not captured immediately
is of no value to the application. This is the Slid-
ing Window(0) scenario for urgency described in Sec-
tion 2.3, in whichurgency(0) = 1 andurgency(t) =
0 for all t > 0. In this scenario,

gi(previ,j , j) =
{

π if i 6= i′

π′ otherwise

Here, the optimization problem reduces to that of
maximizing the number of changes captured with zero
delay. The unique optimal schedule in this case is as
follows: Monitor pagePi′ at each time instant, and
do not monitor any other pages. In this scenario prior
changes have no bearing and overall utility is maxi-
mized by always monitoring the page with the highest
probability of change in the current time instant.

• Completeness-Only: Any delay in capturing the
changes is acceptable.This is the uniform scenario
for urgency described in Section 2.3, in which urgency
is set tourgency(t) = 1, independent oft. In this sce-
nario,

gi(previ,j , j) =

{ ∑j
k=previ,j+1 π if i 6= i′∑j
k=previ,j+1 π′ otherwise

Here, the optimization problem reduces to that of
maximizing the total number of changes captured, re-
gardless of delay. One optimal schedule for this sce-
nario is as follows: During time instantsT1, T2, . . .,
TN−|P| monitor pagePi′ repeatedly. Then, during

time instantsTN−|P|+1,. . ., TN−1 monitor each page
Pi ∈ P, i 6= i′ exactly once in some order. Finally, at
the last time instantTN monitorPi′ again.

We now argue informally that this schedule is optimal
in terms of expected total utility accrued. A formal
proof is omitted for brevity. Since changes only ap-
pend information and timeliness has no bearing, only
the last monitoring of each page during the epoch is
important. Furthermore, the last monitoring of a given
page captures the most information if it is as late in the
schedule as possible. Therefore, an optimal schedule
for this scenario is one that monitors a different page
in each of the final|P| time instants, in ascending or-
der of probability of change. The monitorings sched-
uled for time instants betweenT1 andTN−|P| are ir-
relevant in terms of utility.

Below we tabulate the number of changes captured as
well as the number captured with zero delay between oc-
currence and capture:

Urgency
setting

Number of changes
captured

Number captured
with zero delay

Timeliness-
Only

N · π′ N · π′

Completeness-
Only

N · π′+ [(|P|−1) ·
N− |P|·(|P|−1)

2 ] · π
≤ N · π′ − (|P| −
1) · (π′ − π)

In the Timeliness-Only case, all changes toPi′ are cap-
tured, and all are captured in the same time instant in which
they occur. The expected number of such changes isN ·π′,
which represents the maximum number of changes that can
be captured with zero delay under any schedule, on expec-
tation. In the Completeness-Only case, not only are all
N · π′ changes toPi′ captured, but most of the changes
to the other pages are captured as well. The expected num-
ber of such changes is[(|P|−1) ·N −|P| · (|P|−1)/2] ·π.
Overall,N · π′ + [(|P| − 1) · N − |P| · (|P| − 1)/2] · π
changes are captured, which represents the maximum num-
ber of changes that can be captured under any schedule, on
expectation. Since we assumeN > |P|/2, the expected to-
tal number of changes captured in the Completeness-Only
case is greater than in the Timeliness-Only case.

Although more changes are captured in the
Completeness-Only case, the delay between the time
of occurrence and time of capture of those changes tends
to be longer than in the Timeliness-Only case. We quantify
the difference by comparing the expected number of
changes captured immediately, with zero delay, in the
two cases. First observe that the particular choice of
optimal schedule given above for the Completeness-Only
scenario represents the best case for expected number of
changes captured with zero delay. In that best case, the
expected total number of zero-delay changes captured is
(N−|P|)·π′+(|P|−1)·π+π′ = N ·π′−(|P|−1)·(π′−π).
This quantity is less than the number of zero-delay changes
captured in the Timeliness-Only case,N · π′ (recall that
π′ > π). Hence, more changes are captured immediately



after they occur in the Timeliness-Only case than in the
Completeness-Only case, even though the total number of
changes captured is fewer.

In this example scenario, if we maximize the expected
total number of changes captured, the expected number
captured with zero delay is less than maximal. Conversely,
if we maximize the expected number captured with zero
delay, the total number of changes we expect to capture is
less than maximal. Based on our analysis of this example
scenario we conclude that the following two facts appear to
be true:

1. A fundamental tradeoff exists between timeliness and
completeness of information captured during monitor-
ing.

2. Our urgency parameter serves as a knob to control this
tradeoff.

Extending our analysis to encompass a broader range of
scenarios appears nontrivial and is left as a topic of future
work. In the rest of this paper we prefer to focus on empir-
ical measurements.

5 Experiments
To evaluate ourWIC algorithm empirically, we used real-
world online auction data from a major auction site. Auc-
tion bids are of significant interest to monitor for pur-
poses of offline trend analysis as well as real-time counter-
bidding.

We obtained7550 Web pages from the site, each of
which contains bidding histories for one item up for auc-
tion. Since bids have timestamps, we were able to recon-
struct the past temporal behavior of these pages. Each page
is updated whenever a new bid is made for the correspond-
ing item, at which time information about the new bid (in-
cluding bidder, price, time) is appended to the bidding his-
tory. However, for the sake of testing the flexibility of our
approach, some of our experiments assume that each page
displays only the most recent, or maximum, bid for the
item, and prior bids are erased. Some auction sites only
display the maximum bid.

For our experiments we treated one day as an epoch,
with time instants corresponding to one-minute intervals.
Hence,N = 60 · 24 = 1440 time instants. The num-
ber of pages|P| = 7550. We setWi = 1 for all pages
Pi ∈ P. Change probabilities (π∗,∗) are determined as
follows: we begin with the “exact probabilities,” in which
eachπi,j ∈ {0, 1}, depending on whether pagePi under-
goes a change at time instantTj . Then, we add noise to
simulate inaccuracies introduced by a change probability
estimation algorithm in the following two ways:

• False positives and false negatives: Given an error
factor FPN ∈ [0, 1], we remove each change with
probability FPN , i.e., setπi,j = 0 when originally
πi,j = 1. Each time a change to pagePi at time instant
Tj is removed, we insert a spurious change toPi at a

0 4 8 12 16 20
delay (number of instants)

0.00

0.50

1.00

va
lu

e

r=1
r=0.8
r=0.5
r=0.3
r=0

Figure 4: Urgency function for different values ofr.

randomly-selected time instantTj′ , i.e., setπi,j′ = 1.
The smallerFPN is, the more accurate the change
probability estimates are.

• Spread: For each change to pagePi at time instant
Tj , we spread the probability of change according to a
Gaussian distribution parameterized by standard devi-
ationσ ≥ 0 (in units of time instants). As withFPN ,
the smallerσ is, the more accurate the change proba-
bility estimates are.

5.1 Metric and Parameters

We evaluate the performance of monitoring scheduling al-
gorithms in terms of total utility accrued. To normalize our
measurements in the range[0, 1] we divide total utility by
the total number of changes undergone by all pages at all
time instants in the epoch. If a scheduling algorithm cap-
tures all changes with zero delay, the normalized utility is
1.

Recall that utility is parameterized by an urgency spec-
ification. For our experiments we used exponential decay
with parameterr ∈ [0, 1] for urgency. Figure 4 shows ur-
gency functions for different values ofr. By tuningr, the
desired balance between timeliness and completeness can
be specified. Using a small value forr, timeliness is pre-
ferred over completeness. In the extreme, settingr = 0
signals that changes not captured immediately,i.e., during
the same time instant in which they occur, are of no value
and do not increase utility. On the other hand, using a large
value forr, completeness is preferred over timeliness. In
the extreme, settingr = 1 signals that timeliness has no
bearing and utility depends only on completeness.

5.2 Effect of Inaccuracies in Change Probability Esti-
mation

In our first experiment we investigate how inaccuracies in
change probability estimation effect the performance of our
WIC algorithm (Section 3.2). First we vary the estimation
accuracy by changing the value ofσ (standard deviation of



0 4 8 12
C

0.0

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

Life is unbounded-append; r = 1

exact
sigma=1
sigma=2
sigma=3
sigma=4
sigma=5

0 4 8 12
C

0.0

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

Life is overwrite; r = 0
exact
sigma=1
sigma=2
sigma=3
sigma=4
sigma=5

Figure 5: Effect of change probability estimation inaccu-
racy in terms of spread (σ) on performance.

spread), while fixingFPN = 0. Figure 5 shows the re-
sult. In each graph, the x-axis plots the resource constraint
C (maximum number of pages that can be monitored per
time instant), and the y-axis plots utility captured. In both
graphs the utility obtained decreases with increasingσ, as
would be expected. The two graphs shown correspond to
the best and worst cases in terms of loss in utility due to
spread in change probability estimation. The graphs for
other combinations of life and urgency fall in between these
two extremes, so we omit them.

As we can see from Figure 5, our algorithm is fairly
tolerant of a modest degree of spread on this data. When
σ = 4, the height of the central peak of the distribution of
change probability estimates falls at around0.1 (it is well
below0.1 for σ = 5). In other words, withσ = 4 the esti-
mate only indicates a10% probability of change at the time
instants in which a change does occur, yet our approach still
performs reasonably well.

Next we measure the effect of introducing false posi-
tives and false negatives by varyingFPN , fixing σ = 0
(no spread). Figure 6 shows the result. As before, we show
the two graphs corresponding to the settings of life and ur-
gency yielding the best and worst cases in terms of util-
ity lost due to inaccuracy in change probability estimation.
Again, our algorithm appears to be fairly intolerant of a
modest degree of inaccuracy in estimation of change prob-
ability due to false positives and negatives. Furthermore,

0 4 8 12
C

0.0

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

Life is unbounded-append; r = 1

FPN=0 
FPN=0.1
FPN=0.2
FPN=0.3
FPN=0.4

0 4 8 12
C

0.0

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

Life is overwrite; r = 0

FPN=0
FPN=0.1
FPN=0.2
FPN=0.3
FPN=0.4

Figure 6: Effect of change probability estimation inaccu-
racy in terms of false positives and negatives (FPN ) on
performance.

both in terms of spread and false positives and negatives,
the degree to which estimation inaccuracy undermines the
ability to achieve high utility is highly dependent on the life
and urgency parameters. We fixFPN = 0.1 andσ = 2 for
the rest of our experiments.

5.3 Timeliness-Completeness Tradeoff

In our next experiment we demonstrate the control pro-
vided by our urgency parameter in trading off timeliness
against completeness. We fixFPN = 0.1 andσ = 2, and
life is set to Unbounded-Append for all pages inP (similar
results were obtained with life set to Overwrite).

In Figure 7 we show the number of changes captured
by our WIC algorithm, as a fraction of the total number of
changes that occurred, under different urgency functions.
The resource constraintC is plotted on thex − axis. As
we expect, in each case asC increases, more changes are
captured. The number of changes captured also increases
as r (the urgency parameter) increases. (Recall that in-
creasingr increases the relative importance of complete-
ness compared with that of timeliness.) When availabil-
ity of resources is relatively low (C ≤ 12 in this case),
our algorithm captures between around20% and80% more
changes whenr = 1 than whenr = 0.

We now turn to timeliness. Figure 8 plots the distri-



0 4 8 12 16 20 24 28 32
C

0.0

0.2

0.4

0.6

0.8

1.0

ch
an

ge
s 

ca
pt

ur
ed

 (
fr

ac
tio

n)

r=1
r=0.8
r=0.5
r=0.3
r=0

Figure 7: Number of changes captured under various expo-
nential urgency functions (r). Life is Unbounded-Append.

bution of delay between the times of occurrence and cap-
ture of the changes captured, withC = 8 and for different
settings ofr (urgency). Delay that exceeds10 minutes is
shown in the rightmost bar, labeled “10+.” Forr = 0, over
90% of the changes captured are captured with zero de-
lay. However, this figure drops below25% for the case of
r = 1, in which roughly50% of the changes captured are
captured with a delay of10 minutes or more.

These results indicate a tradeoff does indeed exist be-
tween timeliness and completeness, and it can be controlled
by adjusting our urgency parameter, as our analytical re-
sults of Section 4 indicated. The tradeoff is perhaps best
visualized as plotted in Figure 9. This graph shows the to-
tal number of changes captured (as a fraction of the total
number of changes that occurred), as well as the total num-
ber captured with zero delay (again as a fraction of the total
number that occurred), whenC = 8, for different settings
of urgency (r). It can clearly be seen that by adjusting the
urgency parameterr, timeliness can be traded off against
completeness.

5.4 Comparison Against Prior Approach

For our final experiment we compare our approach against
the only prior work we are aware of on scheduling mon-
itoring of dynamic Web pages, CAM [12]. Since CAM
was designed to optimize for the “returned information ra-
tio” (RIR) objective, we set our life parameter to Overwrite
andr = 0 (equivalently, Sliding Window(0) urgency) to
make utility equivalent to RIR. Note that the RIR objec-
tive strongly favors timeliness over completeness and as-
sumes that all changes overwrite information due to pre-
vious changes. In this way our approach generalizes that
of [12]. However, our approach is less general in the sense
that we assume unit time to monitor a page, whereas CAM
handles cases in which each pages takes a different amount
of time to download. Therefore, neither approach sub-

0 1 2 3 4 5 6 7 8 9 10+
Delay (number of instants)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ch
an

ge
s 

ca
pt

ur
ed

 (
fr

ac
tio

n)

                                                                                

r=1
r=0.8
r=0.5
r=0.3
r=0

Figure 8: Distribution of delay in changes captured un-
der various exponential urgency functions (r). Life is
Unbounded-Append.

r=0 r=0.3 r=0.5 r=0.8 r=1
      Timeliness-                                  Completeness-

   Only                                               Only  

0.00

0.20

0.40

0.60

0.80

1.00

ch
an

ge
s 

ca
pt

ur
ed

 (
fr

ac
tio

n)

                                                                                

total number of changes captured
number captured with zero delay 

Figure 9: Tradeoff between timeliness and completeness.

sumes the other.
We compared the two approaches on the scenario in

which they overlap, namely: scheduling unit-time monitor-
ings of pages that undergo changes that completely over-
write information, while optimizing for timeliness. Note
that our WIC algorithm is guaranteed to find the optimal
monitoring schedule in this case (Section 3.3). We mea-
sured total utility accrued for different values ofC (avail-
able resources), under the two algorithms, withFPN =
0.1 andσ = 2. Our WIC algorithm outperformed CAM by
as much as a factor of two.

6 Related Work

Web monitoring has been addressed in the context of sys-
tems that evaluate continuous queries over the Web [7–10].



The main focus of this work has been on language design
and scalability of the query engine, rather than on how best
to capture information from sources requiring pull-based
access, like Web pages. Our work addresses this largely
ignored yet important research topic.

The only prior work we are aware of that addresses
this topic in a nontrivial way is [12], which introduced
the CAM Web monitoring algorithm. CAM requires ac-
cess to predicted change probabilities in advance (i.e., it is
not an online algorithm), and is geared toward maximiz-
ing an objective called “returned information ratio” (RIR).
RIR strongly favors timeliness over completeness, and as-
sumes that all changes overwrite information due to previ-
ous changes. RIR is a special case of our much broader
formulation, in which the tradeoff between timeliness and
completeness of information captured, as well as the way
in which information is posted to Web pages, are exposed
as parameters. When our algorithm parameters are set to
match the RIR objective, our online algorithm (WIC) is
guaranteed to find the optimal solution. In all other cases
WIC is a 2-approximation. No formal guarantees about the
effectiveness of CAM were provided in [12], although the
CAM heuristic does handle cases in which the cost of mon-
itoring is nonuniform across pages (WIC does not).

Work on scheduling Web crawlers,e.g., [2,4,13] focuses
on maximizing the current “freshness” of a local repository
containing copies of Web pages. In contrast, in our work
the focus is on capturing the history of changes to pages.

7 Summary
In this paper we studied the problem of scheduling polling
of remote Web pages for the purpose of monitoring the dy-
namic Web. The goal is to use limited resources most effec-
tively in order to maximize the overall utility of information
captured. Utility is a highly application-dependent notion,
and our approach is parameterized by custom specifications
of (1) the relative importance of information available from
individual pages under consideration and (2) the sensitivity
of the application to delay in captured information. Our
highly parameterized formulation makes it suitable for a
wide variety of Web monitoring applications.

We formalized the scheduling problem as a parameter-
ized optimization problem. We then presented an efficient
online algorithm that we showed always achieves total util-
ity within a factor of two of the optimal offline solution
in all cases. Both analysis and experiments on real-world
online auction data confirmed that a fundamental tradeoff
exists between timeliness and completeness of information
captured during monitoring; our urgency parameter serves
as a knob to control this tradeoff.

References
[1] U. Bertele and F. Brioschi.Nonserial Dynamic Pro-

gramming. Academic Press, New York, 1972.

[2] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. InProceedings of

the 2000 ACM SIGMOD International Conference on
Management of Data, May 2000.

[3] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. InProceedings of the Twenty-
Second ACM SIGMOD-SIGACT-SIGART, June 2003.

[4] J. Edwards, K. S. McCurley, and J. A. Tomlin.
An adaptive model for optimizing performance of
an incremental web crawler. InProceedings of
the Tenth International World Wide Web Conference,
May 2001.

[5] D. Fetterly, M. Manasse, M. Najork, and J. Wiener.
A large-scale study of the evolution of web pages.
In Proceedings of the 12th International World Wide
Web Conference, May 2003.

[6] T. Ibaraki and N. Katoh. Resource allocation prob-
lems: Algorithmic approaches.MIT Press, Cam-
bridge, MA, 1988.

[7] L. Liu, C. Pu, and W. Tang. Continual queries
for internet scale event-driven information delivery.
Knowledge and Data Engineering, 11(4):610–628,
1999.

[8] L. Liu, C. Pu, and W. Tang. WebCQ: Detecting and
delivering information changes on the web. InPro-
ceedings of International Conference on Information
and Knowledge Management, November 2000.

[9] L. Liu, C. Pu, W. Tang, and W. Han. CONQUER: A
continual query system for update monitoring in the
WWW. International Journal of Computer Systems,
Science and Engineering, 1999.

[10] J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga,
J. Chen, L. Galanis, J. Kang, R. Krishnamurthy,
Q. Luo, N. Prakash, R. Ramamurthy, J. Shanmuga-
sundaram, F. Tian, K. Tufte, E. Viglas, Y. Wang,
C. Zhang, B. Jackson, A. Gupta, and R. Chen. The
Niagara internet query system.IEEE Data Engineer-
ing Bulletin, 24(2):27–33, 2001.

[11] V. N. Padmanabhan and L. Qui. The content and ac-
cess dynamics of a busy web site: findings and impli-
cations. InProceedings of ACM SIGCOMM, August,
2000.

[12] S. Pandey, K. Ramamritham, and S. Chakrabarti.
Monitoring the dynamic web to respond to continu-
ous queries. InProceedings of the Twelfth Interna-
tional World Wide Web Conference, May 2003.

[13] J. Wolf, M. Squillante, P. Yu, J. Sethuraman, and
L. Ozsen. Optimal crawling strategies for web search
engines. InProceedings of the Eleventh International
World Wide Web Conference, May 2002.

A Appendix
We give a formal proof thatWIC is a(1+a)-approximation.



Lemma 1 For j1 ≤ j′1 ≤ j2, we havegi(j1, j2) ≥ gi(j′1, j2).

Proof: The functiongi(j1, j2) is defined as:

gi(j1, j2) = Wi ·
j2∑

m=j1+1

[urgency i(j2 −m) · πi,m · lifei(m, j2)]

Sincej1 ≤ j′1, gi(j1, j2)− gi(j′1, j2) is equal to

Wi ·
j′
1∑

m=j1+1

[urgency i(j2 −m) · πi,m · lifei(m, j2)],

which is always nonnegative because the quantitiesurgency , π andlife are nonnegative. Hence,gi(j1, j2) ≥ gi(j′1, j2). �

Lemma 2 a. If a = maxt,i

(
urgencyi(t+1)
urgencyi(t)

)
, then

gi(j1, j2) ≤ gi(x, j2) + a · gi(j1, x)

wherex is an integer in [j1, j2].
b. If χ is an increasing sequence of integers,

gi(x1, x|χ|) ≤ gi(x|χ|−1, x|χ|) + a ·
|χ|−1∑
z=2

gi(xz−1, xz)

wherexz denotes thezth element ofχ.

Proof: Part a. We know that

gi(j1, j2)− gi(x, j2) = Wi ·
x∑

m=j1+1

[urgency i(j2 −m) · πi,m · lifei(m, j2)]

≤ Wi

x∑
m=j1+1

[urgency i(j2 −m) · πi,m · lifei(m,x)]

This follows, sincelifei(m, j2) ≤ lifei(m,x). Also note that, we haveurgency i(j2 − m) ≤ a · urgency i(x − m).
Therefore,

gi(j1, j2)− gi(x, j2) ≤ Wi ·
x∑

m=j1+1

[a · urgency i(x−m) · πi,m · lifei(m,x)]

= a · gi(j1, x),

which gives us the resultgi(j1, j2) ≤ gi(x, j2) + a · gi(j1, x).
Part b. Using parta, we split the expression forgi(x1, x|χ|) atx2,

gi(x1, x|χ|) ≤ a · gi(x1, x2) + gi(x2, x|χ|)

We then repeatedly split the expression forgi(x2, x|χ|):

gi(x1, x|χ|) ≤ a · gi(x1, x2) + a · gi(x2, x3) + gi(x3, x|χ|)

≤ a ·
|χ|−1∑
q=2

gi(xq−1, xq) + gi(x|χ|−1, x|χ|)

�
We are now ready to establish a relationship between the utility potentially accrued byOPTIMAL for monitoring at pagePi

at timeTj (denoted bygi(prevo
i,j , j)) and that potentially accrued byGREEDY for the same page up to and including time

Tj .



Lemma 3 For all Pi ∈ P and for all j (1 ≤ j ≤ T ),

gi(prevo
i,j , j) ≤ gi(prevg

i,j , j) + a ·
j−1∑

z=prevo
i,j+1

sg
i,zgi(prevg

i,z, z)

Proof: We only consider the caseprevo
i,j < prevg

i,j . The other case follows directly from Lemma 1.
Recall thatseqg

i (prevo
i,j , j) denote the set of time instantsTz such thatprevo

i,j < z < j andsg
i,z = 1. Let us denote

the sequence{prevo
i,j} ∪ seqg

i (prevo
i,j , j) ∪ {j} by χ. Note thatseqg

i (prevo
i,j , j) is non-empty and so|χ| ≥ 3. Let

x1, x2, . . . , x|χ| be elements of the sequenceχ. Note that,x1 = prevo
i,j andx|χ| = j. From lemma 2 it follows that,

gi(prevo
i,j , j) ≤ gi(x|χ|−1, x|χ|) + a ·

|χ|−1∑
z=2

gi(xz−1, xz)

= gi(prevg
i,j , j) + a · gi(prevo

i,j , x2) + a ·
|χ|−1∑
z=3

gi(xz−1, xz)

{sincex1 = prevo
i,j , x|χ|−1 = prevg

i,j andx|χ| = j }

= gi(prevg
i,j , j) + a · gi(prevo

i,j , x2) + a ·
|χ|−1∑
z=3

gi(prevg
i,xz

, xz)

{sincexz−1 = prevg
i,xz

, for 3 ≤ z ≤ |χ| − 1 }
= gi(prevg

i,j , j) + a · sg
i,x2
· gi(prevo

i,j , x2)

+ a ·
|χ|−1∑
z=3

sg
i,xz
· gi(prevg

i,xz
, xz)

{sincesg
i,z = 1 for z ∈ seqg

i (prevo
i,j , j)}

≤ gi(prevg
i,j , j) + a · sg

i,x2
· gi(prevg

i,x2
, x2)

+ a ·
|χ|−1∑
z=3

sg
i,xz
· gi(prevg

i,xz
, xz)

{ by Lemma 1, since,prevg
i,x2
≤ prevo

i,j }

= gi(prevg
i,j , j) + a ·

|χ|−1∑
z=2

sg
i,xz
· gi(prevg

i,xz
, xz)

= gi(prevg
i,j , j) + a ·

∑
z∈seqg

i (prevo
i,j ,j)

sg
i,z · gi(prevg

i,z, z)

{ by construction ofχ }

= gi(prevg
i,j , j) + a ·

j−1∑
z=prevo

i,j+1

sg
i,z · gi(prevg

i,z, z)

{ assg
i,z = 0 if z 6∈ seqg

i (prevo
i,j , j) }

Hence,

gi(prevo
i,j , j) ≤ gi(prevg

i,j , j) + a ·
j−1∑

z=prevo
i,j+1

sg
i,zgi(prevg

i,z, z).

�

Theorem 1 GREEDYis a (1 + a)-approximation algorithm. That is,∑
Pi∈P

N∑
j=0

so
i,j · gi(prevo

i,j , j) ≤ (1 + a) ·
∑

Pi∈P

N∑
j=0

sg
i,j · gi(prevg

i,j , j)



Proof: We begin by bounding the total utility accrued byOPTIMAL at any instantj. From lemma 3:

gi(prevo
i,j , j) ≤ gi(prevg

i,j , j) + a ·
j−1∑

z=prevo
i,j+1

[sg
i,z · gi(prevg

i,z, z)]

Multiplying both sides byso
i,j and taking the sum for allPi ∈ P:

∑
Pi∈P

so
i,j · gi(prevo

i,j , j) ≤
∑

Pi∈P
so

i,j · gi(prevg
i,j , j) + a ·

∑
Pi∈P

(
so

i,j ·
j−1∑

z=prevo
i,j+1

[sg
i,z · gi(prevg

i,z, z)]
)

(2)

By construction of theGREEDYalgorithm, which selects the topC values ofgi(prevg
i,j , j), it is plainly the case that:∑

Pi∈P
sg

i,j · gi(prevg
i,j , j) ≥

∑
Pi∈P

so
i,j · gi(prevg

i,j , j)

Substituting this inequality into Equation 2, we obtain:

∑
Pi∈P

so
i,j · gi(prevo

i,j , j) ≤
∑

Pi∈P
sg

i,j · gi(prevg
i,j , j) + a ·

∑
Pi∈P

(
so

i,j ·
j−1∑

z=prevo
i,j+1

[sg
i,z · gi(prevg

i,z, z)]
)

(3)

Summing over all time instantsTj (1 ≤ j ≤ N), we obtain:

N∑
j=1

∑
Pi∈P

so
i,j · gi(prevo

i,j , j) ≤
N∑

j=1

∑
Pi∈P

sg
i,j · gi(prevg

i,j , j) + a ·
N∑

j=1

∑
Pi∈P

(
so

i,j ·
j−1∑

z=prevo
i,j+1

sg
i,z · gi(prevg

i,z, z)
)

(4)

We bound the second term on the right-hand side as follows:

a ·
N∑

j=1

∑
Pi∈P

(
so

i,j ·
j−1∑

z=prevo
i,j+1

sg
i,z · gi(prevg

i,z, z)
)

= a ·
∑

Pi∈P

N∑
j=1

(
so

i,j ·
j−1∑

z=prevo
i,j+1

[sg
i,z · gi(prevg

i,z, z)]
)

= a ·
∑

Pi∈P

|seqo
i |∑

q=1

seqo
i (q)−1∑

z=seqo
i (q−1)+1

sg
i,z · gi(prevg

i,z, z)

≤ a ·
∑

Pi∈P

seqo
i (|seqo

i |)−1∑
z=seqo

i (0)+1

sg
i,z · gi(prevg

i,z, z)

≤ a ·
∑

Pi∈P

N∑
j=1

sg
i,j · gi(prevg

i,j , j)

Substituting this into Equation 4 and simplifying, we obtain:

∑
Pi∈P

N∑
j=1

so
i,jgi(prevo

i,j , j) ≤ (1 + a) ·
∑

Pi∈P

j=N∑
j=1

sg
i,j · gi(prevg

i,j , j)

�


