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Abstract

The Web is becoming a universal information dis-
semination medium, due to a number of factors
including its support for content dynamicity. A
growing number of Web information providers
post near real-time updates in domains such as
auctions, stock markets, bulletin boards, news,
weather, roadway conditions, sports scores, etc.
External parties often wish to capture this infor-
mation for a wide variety of purposes ranging
from online data mining to automated synthesis
of information from multiple sources. There has
been a great deal of work on the design of sys-
tems that can process streams of data from Web
sources, but little attention has been paid to how to
produce these data streams, given that Web pages
generally require “pull-based” access.

In this paper we introduce a new general-
purpose algorithm for monitoring Web informa-
tion sources, effectively converting pull-based
sources into push-based ones. Our algorithm can
be used in conjunction with continuous query
systems that assume information is fed into the
guery engine in a push-based fashion. Ideally, a
Web monitoring algorithm for this purpose should
achieve two objectives: (1) timeliness and (2)
completeness of information captured. However,
we demonstrate both analytically and empirically
using real-world data that these objectives are fun-
damentally at odds. When resources available for
Web monitoring are limited, and the number of
sources to monitor is large, it may be necessary to
sacrifice some timeliness to achieve better com-
pleteness, or vice versa. To take this fact into ac-

count, our algorithm is highly parameterized and
targets an application-specified balance between
timeliness and completeness. In this paper we
formalize the problem of optimizing for a flexi-
ble combination of timeliness and completeness,
and prove that our parameterized algorithm is a 2-
approximation in all cases, and in certain cases is
optimal.

1 Introduction

The Web is becoming a universal medium for disseminat-
ing information of all kinds, including highly dynamic in-
formation. A significant amount of valuable dynamic in-
formation is being posted to the Web, and people want to
access it. In many situations, direct manual viewing of dy-
namic Web pages is not an adequate mode of access for one
or both of the following two reasons. First, most informa-
tion posted on the Web is not made available forever, and
may disappear or be replaced by new information at any
time [5]. This aspect presents a challenge, especially for
applications in which historical information is of interest.
Second, many applications require automated synthesis of
information from multiple dynamic Web sources [10].

As a result, there is significant interest in systems that
monitor and process updates to frequently updated Web
pages automatically. These systems perform a variety
of information management functions including synthe-
sis, archiving, and continuous query processing. Web-
based continuous query (CQ) processing systems proposed
in the literature include CONQUER [9], Niagara [10],
OpenCQ [7] and WebCQ [8].

The main focus of this work has been on language de-
sign and efficient query processing, and the crucial issue
of how to capture information from dynamically changing
Web pages has largely been ignored. Most work on contin-
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oriented Web sources into push-oriented data streams. The 1

designers of Niagara [10] and other CQ systems for the

Web have suggested that simple periodic polling be used

for this purpose. However, periodic polling breaks down in

the presence of a large number of frequently-updated Web

sources, when resources become inadequate for polling all

Web pages at a fast rate. The work in [13] was the first to a

study ways to improve upon simple periodic polling, but

the algorithm proposed in [13], called CAM, has a num-

ber of serious drawbacks: (1) CAM is only suitable for a 0 Delay

narrow range of applications in which timeliness of infor-

mation captured is of utmost importance, whereas many Figure 1: Urgency functions.

real-life applications must balance timeliness with com-

pleteness, a serious issue we discuss shortly, (2) even fefose as possible to that ideal. Hence, scheduling polling of

the specialized set of applications handled by CAM, thergyages for Web monitoring can be viewed as a constrained

is no formal guarantee that CAM performs well at captur-optimization problem with two objectives:

ing information, and (3) CAM relies on a computationally

intensive, offline algorithm to schedule monitoring. 1. Completeness: Maximize the number of changes
In this paper we introduce a new general-purpose Web  captured.

monitoring algorithm called th&Veb Information Collec-

tor (WIC), which is suitable for use in conjunction with a

variety of CQ systemsWIC has the following desirable In certain cases these two objectives are at odds with each

properties: (1) it handles a wide range of application sceother. We illustrate this property through a very simple ex-

narios, (2) it provably performs within a factor of two of the ample. Suppose we wish to capture changes to a single

optimal offline Web monitoring algorithm in all cases, and Web page that is updated in such a way that new infor-

(3) it is highly efficient and executes in an online fashion, mation is always appended (thus, information is never re-

b

Utility

o

2. Timeliness: Minimize the delay in capturing changes.

making it practical for real-world use. moved from the page). Given a single opportunity to down-
load a shapshot of this page, we are clearly faced with a
1.1 Web Monitoring Objectives tradeoff between timeliness and completeness. If we down-

load the page early, we will only capture a few changes, but

In continuous Web monitoring applications, it is usually with little delay. Conversely, if we wait a long time before
desirable to capture as much information as possible, withlownloading the page, we may capture more changes, but
as little delay as possible. Dynamic Web pages undergthere will be a high delay, on average, between the time at
updates over time, and each updated version of the pagehich a change occurs and the time at which it is captured.
potentially contains new information of value to the appli-  When facing resource-constrained situations, the appro-
cation. Therefore, an ideal Web monitoring system wouldpriate balance to strike between timeliness and complete-
capture every change to each page of interest, immediatelyess depends on the application. Applications that need to
following the update that causes the change. react rapidly to new information, such as stock market day-

Unfortunately, this ideal situation is often difficult to trading programs, may value timeliness over completeness
achieve in practice. Due to the nature of Web protocolswhen both cannot be had. On the other hand, applications
obtaining updates to Web pages generally requires pollingvhose purpose is to compile historical archives for offline
those pages. For applications that monitor a large numbeguerying may opt for completeness.
of Web pages, high-frequency polling and processing of all To accommodate a diverse variety of applications with
pages of interest can be prohibitively expensive. Typicallydiffering requirements, we introduce a flexible method
it is not feasible or desirable to provision systems with ad-of specifying the relative importance of timeliness and
equate communication bandwidth and processing power toompleteness: application designers supply a function
support exhaustive and rapid polling of a large number ofurgency : Z+ — [0, 1] specifying theutility of a captured
Web pages. change as a function of the delay between the occurrence

As a result, polling must be performed selectively, andof the change and the time of capture. Example urgency
some criteria for deciding when to poll each page must bdunctions are illustrated in Figure 1. For applications in
established. Although it may not be possible to capturevhich timeliness is critical, an urgency function with steep
all changes to all pages of interest in a timely fashion duedownward slope, such as functiarin Figure 1, should be
to resource limitations, it is generally desirable to come asised. Conversely, for applications that value completeness
over timeliness, a more gradually decreasing function such
lwhile processing of unchanged pages may be avoided using fasgs functiorb is more appropriate.

checksum comparisons or by outfitting HTTP requests with an “if- In this paper we formalize our notions of timeliness
modified-since” qualifier, such techniques are usually ineffective in the ’

presence of frequently changing superficial content such as advertis&ompl_etenes_sy and utility, an_d provide both analytical and
ments, counters, etc. empirical evidence of the existence of a tradeoff between




Changes append information
Timeliness is not critical

Changes overwrite information
Timeliness is not critical

Example:

Creating and maintaining
a searchable resume database

Example:

Collecting ‘‘front—page’’
news stories for long term
archival

Changes append information
Timeliness is critical

Changes overwrite information
Timeliness is critical

Example:

Capturing new Internet
security bulletins, health risk
alerts etc. for selective
automatic dissemination
within an organization

Example:

Reacting in real—time to
stock market price
fluctuations, or online
auction maximum bid
increases

makes it suitable for a large variety of Web monitoring ap-
plications. The only previous approach we are aware of,
CAM [13], only handles applications that fit into the shaded
region of Figure 2.

It is important to note that our classification of applica-
tions into quadrants in Figure 2 is very rough, and variants
of these applications may fit more or less well into their as-
signed category (which represent extremes in terms of in-
formation lifetime and criticality of delay). Our approach
accommodates this fact, and can handle applications falling
in between these extreme categories since our urgency and
lifetime specifications are highly adjustable, as we shall see
later in the paper.

1.3 Contributions
The specific contributions of this paper are as follows:

e We formalize the scheduling problem in Web moni-

. . toring as a parameterized optimization problem.
Figure 2: Extreme scenarios. ¢ P P P

e We demonstrate that there exists a fundamental trade-
off between timeliness and completeness, which
makes our parameterized formulation necessary.

timeliness and completeness. We formulate the problem of
scheduling polling of remote Web pages as an optimization
problem whose objective is to maximize utility under the
constraint of limited resources available for polling. Our
formulation is parameterized by an application-dictated ur-
gency function, allowing the solution to be customized to
the needs of specific applications. Of course, the appro- e We prove that our algorithm is a 2-approximation for
priate polling schedule also depends heavily on the way in  all cases, and is optimal for the shaded region of Fig-
which the Web pages being monitored change over time,  ure 2.

discussed next.

e We present an efficient, online Web monitoring algo-
rithm that meets the needs of all applications encom-
passed by Figure 2.

1.4 Ouitline

. The remainder of this paper is organized as follows. In
We define ahangeto a Web page as an update that causegection 2 we formalize the scheduling problem in Web
information of value to the application to be added to themonitoring as a parameterized optimization problem. We
page. The information added during a change to a p_aggresent an efficient, online algorithm and prove that it is a
may not remain on the page forever. For example, typica -approximation for our Web monitoring scheduling prob-
financial reporting sites only display the most recent newgem in Section 3. Then, in Section 4 we show analytically
reports. Similarly, some online auction sites only show thethat, when resources are limited, a fundamental tradeoff ex-
most recent bids. To model this fact, we assume a certaifts petween timeliness and completeness. In Section 5 we
lifetime of information, which may vary among pages and report the results of extensive experiments on real-world
by application. Lifetime indicates the probability that in- gata. We confirm that a tradeoff does exist between time-
formation made available by a change at timeremoved  |iness and completeness, and that our urgency parameter

atany future time + . _ enables application designers to control that tradeoff.
It is instructive to consider the two extreme possibili-

e ok oG e, spperd-only pages. 2 Monitoring the Wb
opposite extreme, some pages are updated such that each Models and Assumptions
change overwrites the information presented by the previOur models for the Web monitoring scheduling problem
ous change completely. In the case of complete overwritesand the way in which Web pages change extend the frame-
the lifetime of information made available due to a givenwork introduced in [13, 14]. LeP be the set of Web pages
change extends only to the time of the subsequent changeinder consideration for monitoring. Each pal§e € P
Figure 2 provides examples of application scenarios thahas an associateghportance weightV; € [0, 1], denoting
can roughly be categorized into each of these two extremethe relative importance of capturing change$foTime is
in terms of information lifetime. The applications are also divided into discrete time instants, and monitoring is per-
categorized based on the orthogonal dimension of whethdormed in epochs ofV consecutive time instants7” de-
timeliness is critical (see Section 1.1), resulting in four ex-notes the sequence of time instafits T, ..., Ty in an
treme categories overall. The flexibility of our formulation epoch.

1.2 Modeling Changes to Web Pages



We focus on the problem of scheduling monitoring of| Notation | Definition

the pages ir? during a single epoch. Monitoring a page | P Set of pages that are considered for moni-
includes the duties of fetching the page from its remote toring. Variable: is used for iterating over
source, determining whether it has undergone one or more this set.

changes of interest and, if so, processing the change(s) andr Sequence of time instants
propagating them to the target application. We assume the {Th,T5,..., Ty} in an epoch. Vari-
cost of monitoring a page to be uniform across all pages and ablesj,k,q and z are used for iterating
across time. This simplification is based on the assump- over this set.

tion that the fixed overhead for the operations required ( [ C Maximum number of monitorings allowefl

polling, downloading, and processing a page) is the domi in each time instant.
nant factor, which is consistent with the assumption made - gency; | A function to model the value of informal

in most work on Web crawlings.g, [2, 14]. tion of pageP; as a function of timeliness.
Let C' denote the maximum number of pages that can urgency(0) is always assumed to equal [L.

be monitored in a single time instant. The valuetbtle- lifel- A function to model the decay of existenge

pends on the availability of resources for monitoring, in- of information on page®; with time.

cluding CPU cycles, communication bandwidth, etc. If Tig The estimated probability that the pafe

C equals or exceeds the number of pag@y, then the ’ is updated at time instafit,.

scheduling problem is trivial: simply monitor each page[ gz A decision variable, set to if page P; is

at every instant. In practice, however, we expect that " monitored at time instarif; by algorithm

may be much less thalfP|, making careful scheduling a x (o for OPTIMAL algorithnj1 andy for wic

requirement. A legainonitoring scheduléor an epoch is algorithm), ando otherwise. For nota

one that performs at most monitorings of pages during tional convenience, we definé, = 0.

each time instanf, 75, ..., Ty. A monitoring schedule gz A monitoring schedule that consists ofla

S ={s11,51,2...S1,n, 52,1, 52,2... S|p| v } CONSists of a set of Boolean variables’ ;, wheres? . =

set of Boolean variables; ; € {0,1}, wheres; ; = 1 iff 1 iff page P; € P is scheduled to be mon-

pageP; € P is scheduled to be monitored at time instant

: itored at timeT; by algorithmz € {o, g},
T}, ands; ; = 0 otherwise. ands?, = 0 otherwise.

For convenience, a summary of the symbols used in thi prevt, The most recent time instant befors
paper is provided in Table 1. Some of these symbols are ng 7 at which pageP; was monitored by al-
introduced until later in the paper, and should be ignored gorithmz € {o,g}. prev?, is 0 if the

for now. page is never monitored before tirfie by
algorithmz. Mathematically,prevy; =
maz{j': 1 <j' <jAsi, =1}

A changeto a page is defined to be an update that causesseq? (j, k) | The sequence of time instants in the open

—

2.1 Nature of Changes

information of value to the application to be added to the interval (j, k) at which pageP; is mon-
page. We assume that the information presented with each itored by algorithmz. Mathematically,
change to a particular page carries equal value, or impot- seqi (4, k) = {J' 1 j <j' <kAsi; =1}
tance’ However, we do not assume that all pages are seqr For convenience, we refer taq? (0, N +
equally valuable to monitor. For example, in financial mon- 1) asseq?. We useseq? (k) to refer to the
itoring applications, pages providing periodic earnings re; k*® element of the sequenceseq®(0) is
ports may be of significantly higher importance for certain defined to b@. Also, seq” = U;cp(seq?).

purposes than those displaying stock prices, even though
stock prices are typically updated much more frequently.  Table 1: Summary of symbols and their meanings.
To model this fact we allow custom importance weights to
be associated with each page, as stated above. ~ inwhich all changes overwrite information supplied by pre-
As discussed in Section 1.2, we model informationvious changes, and covering situations in between. We sup-
posted to Web pages as having an associated lifetime. Lefly some examples later in Section 2.3.
life;(j, k) denote the probability that information made e assume that each page € P has an associated
available by a change at tin# to pager; remains avail- - probability of changer; ; € [0,1] at each time instant
able at timeT};. (Itis assumed that < j < k < N.) T, ¢ 7T that has been estimated in advance. This so-called
We assume that life is a monotonically nonincreasing funcyyasi-deterministienodel of change probability has been
tion of & — j. Our life function can be used to model a shown to be appropriate for modeling frequently updated
variety of common Web page update patterns ranging frompep pages [11, 14]. The problem of assigning probabilities
ones in which changes strictly append information to onegf change to Web pages is beyond the scope of this paper.
2While our model can be extended to enable differentiation among\Ne demonstrate in SeCtlpn 5.2 that (.)ur appro_ach is tolerant
changes in terms of importance, we believe that even with this restrictior?f & moderate degree of inaccuracy in the estimated change
it is adequate to capture the basic properties of most applications. probabilities.




2.2 Web Monitoring Objective

Given a life parametefife, () and change probabilities; .,

for each pageP; € P, we can compute the expected num-
ber of changes captured by monitorify at a particular
time instantZ’;. For any prior time instarify,, 1 < k < j,
the probability that a change occurred at tiffieand can
still be captured at tim&}; is m, ;. - life;(k, j). Suppose for
the moment that the first monitoring &f during the epoch
occurs at timel;. Summing over all time instants in the
epoch up tdl; we obtain:

D

k=1

(m—,k . lifei(k,j))

J

Now, consider a monitoring schedue which consists
of a set of Boolean variables ; giving monitoring times
for each of the pages iR during the epoch. The expected
total number of changes captured $yrom all pages dur-
ing the epoch is given by:

S5 %

P,eP j=1 =prev; j+1

Tik * lifei(k, ]))

whereprev; ; denotes the index of the most recent time
instant prior tol; at which pageP; was monitored.

Not all captured changes may be of equal value to an
application. Instead, each pag has an associated im-
portance weight?; < [0,1]. Furthermore, recall from
Section 1.1 that an application-specificgencyfunction
urgency, : 2+ — [0, 1] may be associated with each page
P;. Together,W; and P; specify theutility of a captured
change inP; as a function of the delay between the oc-
currence of the change and the time of capture. In par-
ticular, if a change inP; occurs at timely, and is cap-
tured later at timel}, j > k, then the utility of cap-
turing that change i3V, - urgency,(j — k). Note that
Wi, - urgency,;(j — k) < W; < 1. If a change is captured
during the same instant in which it occurrée,, at timeTy,
then the utility of capturing the changelig; - urgency, (0).

We require thatirgency, (0) = 1, so the utility of capturing
a change t&®; immediately isiV;.

The expected total utility/ accrued by executing mon-

itoring schedules in the epoch is given by:

N J
U= Z Z (8” Z Wi'urgencyi(j—k)'Wi,k'lifei(k7j))

P,eP j=1 k=prev; j+1
The objective when selecting a monitoring schedule is to
maximizeU.
2.3 Life and Urgency Parameters

Note that life and urgency are tuning parameters in the
above obijective function. Life is used to model different

life and urgency can be set in order to model various data
and application scenarios that arise in practice.

o life(k,j), for k< j:

1. Unbounded-Append: All changes are of an
append-only nature and information is never
deleted:

2. Time-window—Append(W): Changes append
new information, and old information is re-
moved afted¥ time instants:

. . 1 ifj—k<W

lifei (k. j) = { 0 otherwise

3. Change-window—Appendf): Changes ap-
pend new information, and old information is
removed afterZ subsequent changes occur. In
general, it is difficult to write a concise formula
for this scenario. For the special case in which
the change probability for pag@ has the same
valuem; at all time instants, it can be written as:

‘ NSy N1
zzfexk,y):Z( )wiu—m—) ‘

q=0 q

4. Overwrite: Each change completely obliter-
ates all information made available by previous
changes:

life;(k,j) = ] (1—mig)

q=k+1

e urgency(t), for ¢ > 0:

1. Uniform: Ultility is independent of delay:
urgency(t) =1

2. Exponential Decay(r): For a decay parameter
r e [0,1]:
urgency(t) = r

3. Sliding Window(W): For a window size pa-
rameterlV > 0 :

1 ift<WwW
urgency(t) =9 o otherwise

Other decay functions may also be used to specify ur-
gency, such as polynomial decay, polyexponential de-
cay, and chordal decay (see [3]).

Web page change behaviors, while urgency can be tuned Figure 3 shows how our life and urgency parameters
according to application requirements in terms of timeli-should be set in order to model the extreme data and ap-
ness and completeness. Below are some examples of hgwication scenarios represented in Figure 2.



subject to the resource constraint:

Vj, Z Si,j S C

Changes overwrite information

Changes append information
Timeliness is not critical

Timeliness is not critical

life: unbounded—append life: overwrite PieP
urgency: uniform urgency: uniform

wheres; ; € {0,1}.
’ Changes overwrite information 31 Optlmal Offline Algorlthm

Timeliness is critical

Changes append infor
Timeliness is critical

This problem can be formulated as a nonserial constrained
optimization problem, and solved using nonserial dynamic
life: unbounded-append life: overwrite programming [1]. The running time complexity of nonse-
urgency: sliding window(0) urgency: sliding window(0) rial dynamic programs depends on the interaction among
decision variables [1, 6]. It turns out that in our problem
the decision variables.¢., s; ; variables) are highly inter-

. ) . . twined, so the optimal dynamic programming algorithm is
Figure 3: Life and urgency under various scenarios. |ikely to be too expensive for large-scale applications.

We address this issue by proposing a greedy algorithm

Relaxed versions of these extreme life and urgency sefat Serves as a 2-approximation and runs in time linear in
tings, such as the windowed and exponentially decayind€ number of decision variablés., O(|P| - [T1).
functions outlined above, can be used to accommodate ap- - . .
plications falling in between these extreme scenarios. Fop-2  Efficient Online Algorithm
example, some online auction sites display a sliding winiwe present the following greedy algorithm for scheduling
dow of recent bids for each item, which can be modelednonitoring of dynamic Web pages, which we callC for
using Time-window—Append or Change-window—-Append“Web Information Collector:
for life. Auction monitoring applications needing access
to bid histories up to the last hour may specify urgency asAlgorithm 1 (WIC):
Sliding-window(1 hour).

We note that the RIR objective presented in [13] as- 1. For all pagesP; € P and time instant§; € 7 :
sumes that any nonzero delay in capturing changes is un-
acceptable and that changes in the target pages are fully
overwritten, which corresponds to the shaded region of Fig- 2 Forj = 1 to N:
ure 3. Hence, by setting life and urgency to Overwrite

Initialize s; ; < 0.

and Sliding-window(0), respectively, our utility objective For eachP; € P letu; = g;(prev; ;, j).
is equivalent to RIR as a special case. Let £ contain the page®; with the topC' values
of Uj.

neral-Pur Web Monitoring Algo-

3 C_Ee eral-Purpose Web Monitoring Algo For eachP, € £ sets; ; — 1.
rithm '

] o ] For eachp;,
In selecting a monitoring schedutewe are faced with the P er
optimization problem of choosing values for the boolean e L, _
variabless; j, P, € P, T; € T so that the total utility/ setprevi jy1 = J
is maximized, given a constraift on the number of mon- else,
itorings allowed at each time instant. To simplify exposi- setprev; j11 = prev; ;

tion in this and subsequent sections, we define a function

N + o
gi+ 2% x 27 — Rior pageP; as: Recall thatg, (prev; ;,j) denotes the utility accrued by

ja monitoring page’; on instantl;. Since at each instant the

9i(j1, j2) = W; Z (’U/f'g@nczﬁ(jQ_k)"/Tiyk'lifei(k,jQ)) above algorithm monitors those pages which offer maxi-
k=j141 mum current utility, it operates in a greedy mann@fcC

maximizes utility locally, at each time instant, but does not

This quantity represents the utility accrued by monitoringnecessarily maximize overall utility accrued during the en-
pageP; at timeT},, assuming that the most recent moni- tire epoch.

toring of P; occurred aff;,, ji < ja. _ We now examine the running-time complexity \Wic,
We can express our optimization problem in termg;of \vhich depends on the nature of the life and urgency pa-
as follows: rameters. For all example settings of life and urgency
N outlined in Section 2.3 except for life = Change-window—
maximize Z Z sij - gi(previ j, ) Append, the value ofj;(prev; ;,j) can be computed in

PeP j=1 constant time from its value in the previous time instant,



gi(prev; j_1,5 — 1), andm; ;. In those cases the running

time of WIC is linear in the number of decision variables,

i.e, O(|P|-|T)).

WIC can be executed in anlinefashion, meaning that
the values of decision variables ; are assigned imme-
diately prior to timeT;. Therefore, it is compatible with

algorithms for estimating change probabilities at the “last

prevy, ; = 0, so it must be the case thatev), ; <
prevg, ;. By Lemma 1 in [12], this fact im-
plies gin (prevy, ;,5) < gin(prev, ;, 7). Combin-

ing this result Wlth Equation 1, WhICh states that
Gir (prevl,,’j,j) < gy (prevl,’],j) we obtain;

Girr (pre’(}io,,J,j) S gi’ (prev Y _77.])

minute,”i.e., ones that assign change probability estimates

7.; as late as tim@;_,. When executed in an online fash-
ion, WIC requires onlyO(|P|) computations per time in-
stant.

3.3 WIC is a 2-Approximation

which means that the utility accrued By at timeT);
is not greater than the utility accrued KY.

e P, is monitored inSY at some tim@y, 1 < k < j: In
this case the WIC and optimal schedules ¢ may
look as follows, for example:

We show that for monotonic urgency functionscC is a 2- Time Instant| 7y | T» T, 1 | 1,
approximation algorithm for the optimization problem for- 50, > % | % | * * 1
mulated above. LetY denote the schedule selectediC 379,3 0 11 [ol1l0l0 *
and .S° denote an optimal schedule. Our claim is that the td

expected total utility accrued b¥? is not less than half of Here the inequality;- (prevy, ;, j) < gir (prevs, ,j)

that accrued by °. Mathematically, our claim is:

N
SO st gilprev? ;. q) <

PeP j=1
N
a)- Yo > st gilprevy,, )
P,eP j=1

where the superscripts “g” and “0” denote aspectsdf
andsS?, respectively, and depends on urgency as follows:

)

If urgency is a monotonically nonincreasing function,
0 < a < 1 and this inequality implies thawIC is a 2-
approximation.

a4 = max max

(urgencyi(t +1)
it

urgency; (t)

Our complete formal proof is rather involved, and is
given in the extended technical report version of this pa-
per [12]. Here we present the main idea behind our proof,

focusing on the special case@f= 1 for simplicity.
We begin by stating a simple property WiC that fol-
lows from its construction:

s, =1 =VYPy €P, gi(prev};,j) > gi/(prevf/,j,{)
1

Suppose that at a certain time instd@itin the schedule
selected bywiIC , S9, pageP;, is monitored, and inS°
pagepP; is monitored, wheré’, and P;» may be the same
or different. Consider two cases:

e P, is not monitored iS¢ at any timel,, 1 < k < j:
In this case the WIC and optimal schedules#pr are
as follows (* denotes eithéror 1):

Time Instant| T | 15 T;1 | T;
SQ// . * * * * * * 1
1,7

sf’,,_j O |0O |[0|OfO]O *

does not necessarily hold. However we prove in[12]
that the differencey; (prevy, ;,5) — gir(prev;, i)

is bounded byu times the utility accrued ng for
pageP;~ in the time intervalprev, jodl e

<

gir (previy ;,7) gir(prev) ;,j) +

> gwlrevd .q)

ququ,, (prevf/, K )

a -

where seg’, (prevy, J,]) denotes the set of time in-
stantsT;, with prev), ; < ¢ < jands}, = 1.

Combining both cases and making two simple transfor-
mations, we find that for all paged,» € P and all time
instantsl; € 7

D sy gv(preny j,9) +

Py eP

q€seqf,/ (Prevf// K

o o -
Sgn ; + gir (previn 5, j)

a- gir (previ, ,,q)
9)

By summing over allP,» € P and allT; € 7 and
transforming the resulting expression (see [12]) we obtain
our desired result:

> stg’ (prevy . j)

P,eP j=1

(1+a)- Z st gi(prevy ;, j)

PeP j=1

Corollaries:
(i) For monotonic urgency functions,< 1, so

N N
DD stygilrevy ) <2y Y st igiprevy;. )

P,eP j=1 PeP j=1
andwiIC is a 2-approximation.
(i) For the Sliding Window(0) setting of urgency (see Sec-

tion 2.3),a = 0 andWIC is guaranteed to produce an opti-
mal schedule.



4 Timeliness-Completeness Tradeoff

In this section we study the tradeoff between timeliness and
completeness analytically, and show that this tradeoff can

time instantsl’ _p|+1,- - -» Tv—1 monitor each page
P; € P, i # i’ exactly once in some order. Finally, at
the last time instarif’y monitor P;; again.

be controlled by adjusting the urgency parameter. (In Sec-  We now argue informally that this schedule is optimal

tion 5 we measure this effect empirically.)

For our analysis we focus on the following simple ex-

in terms of expected total utility accrued. A formal
proof is omitted for brevity. Since changes only ap-

ample scenario for which optimal schedules are easy to  pend information and timeliness has no bearing, only
find. (Comprehensive analytical study of the nature of the  the last monitoring of each page during the epoch is
timeliness-completeness tradeoff in a wider context is left ~ important. Furthermore, the last monitoring of a given
as future work.) Suppose that all changes are append-only  page captures the most information if itis as late in the

in nature,i.e,, for all pagesP; € P, life;(k,j) = 1, inde-
pendent oft and;. Further suppose that for all pagesfn
except a special page,, the probability of change; ; is
uniform and equal to some constanfor all time instants
T;,1 < j < N. For pagePy, letw; ; = ' at each time
instantT’;, wherer’ > w. PageP;, is more likely to change
than any other page at each time instant.

schedule as possible. Therefore, an optimal schedule
for this scenario is one that monitors a different page
in each of the finaJP| time instants, in ascending or-
der of probability of change. The monitorings sched-
uled for time instants betweeh and7'y_p| are ir-
relevant in terms of utility.

Furthermore, let the number of time instants in an epoch Below we tabulate the number of changes captured as
be much larger than the number of pages under considerdell as the number captured with zero delay between oc-

tion for monitoring,i.e, N > |P| > 2, and letW; = 1 for

all P; € P. Finally, assume that at most one page can b

monitored at each time instamng., C' = 1.
Now consider two extreme scenarios for urgency:

e Timeliness-Only. No delay in capturing information
is acceptable.Information not captured immediately

is of no value to the application. This is the Slid-
ing Window(0) scenario for urgency described in Sec-

tion 2.3, in whichurgency(0) = 1 andurgency(t) =
0 for all ¢ > 0. In this scenario,

. m ifi#
gi(previj,j) = { ' otherwise

currence and capture:

I Urgency Number of changes Number  captured
setting captured with zero delay
Timeliness- | N -«’ N -7
Only
CompletenessA - n'+ [(|[P|—-1)- | < N -a' — (|P] —
Only N_W] | D7 =)

In the Timeliness-Only case, all changesio are cap-
tured, and all are captured in the same time instant in which
they occur. The expected number of such changas is’,
which represents the maximum number of changes that can
be captured with zero delay under any schedule, on expec-
tation. In the Completeness-Only case, not only are all
N - 7’ changes taP; captured, but most of the changes

Herg, _th_e optimization problem reduces to ?hat Ofto the other pages are captured as well. The expected num-
maximizing the number of changes captured with zerq, - o¢ < \ch changesi§P|—1)-N —|P|-(|P|-1)/2] -7

delay. The unique optimal schedule in this case is aPverall N - 7/ + (P = 1) -N—[P|- (P -1)/2] - =
LOHOWtS: Mq:utor pagttra]Py at eacr} t|tr2_e Instant, anq changes are captured, which represents the maximum num-

0 hot monitor any other pages. In this Scenario pridfye, ¢ changes that can be captured under any schedule, on
changes have no bearing and overall utility is MaXl- ey pectation. Since we assutve> |P|/2, the expected to-
mized t_)y always monitoring the page W't.h the h|ghestta| number of changes captured in the Completeness-Only
probability of change in the current time instant. case is greater than in the Timeliness-Only case.

Completeness-Only Any delay in capturing the Although more changes are captured in the
changes is acceptableThis is the uniform scenario Completeness-Only case, the delay between the time

for urgency described in Section 2.3, in which urgencyOf occurrence and time of capture of those changes tends

is set tourgency(t) = 1, independent of. In this sce- to be longer than in the Timeliness-Only case. We quantify
nario ' the difference by comparing the expected number of

changes captured immediately, with zero delay, in the
ij it two cases. First observe that the particular choice of
k=previ,;+1 optimal schedule given above for the Completeness-Only
scenario represents the best case for expected number of
changes captured with zero delay. In that best case, the
Here, the optimization problem reduces to that ofexpected total number of zero-delay changes captured is
maximizing the total number of changes captured, re{N —|P|)-7'+(|P|-1)-7+7’ = N-7'—(|P|-1)- (7' —7).
gardless of delay. One optimal schedule for this sceThis quantity is less than the number of zero-delay changes
nario is as follows: During time instantg, 75, ..., captured in the Timeliness-Only cas¥, - ' (recall that
Tn_p| monitor pageP; repeatedly. Then, during 7’ > 7). Hence, more changes are captured immediately

gi(PV’e’Ui,jaj) = {

D keprev; ;41T Otherwise



after they occur in the Timeliness-Only case than in the

Completeness-Only case, even though the total number of
changes captured is fewer. |
In this example scenario, if we maximize the expected — L
r=0.8
total number of changes captured, the expected number © =05
captured with zero delay is less than maximal. Conversely, = 0504 =03
if we maximize the expected number captured with zero g r=0
delay, the total number of changes we expect to capture is
less than maximal. Based on our analysis of this example
scenario we conclude that the following two facts appear to
be true:
0.004 )
) o 0 4 8 2 16 20
1. A fundamental tradeoff exists between timeliness and delay (number of instants)
completeness of information captured during monitor-
ng. Figure 4: Urgency function for different values xaf
2. t?;dreuor?rency parameter serves as a knob to control this randomly-selected time insta, i.e., setr, ; — 1.

The smallerFPN is, the more accurate the change

Extending our analysis to encompass a broader range of ~ Probability estimates are.

scenarios appears nontrivial and is left as a topic of future
work. In the rest of this paper we prefer to focus on empir-
ical measurements.

e Spread For each change to pade at time instant
T;, we spread the probability of change according to a
Gaussian distribution parameterized by standard devi-

. ationo > 0 (in units of time instants). As witli'PN,

S Experiments the smallew is, the more accurate the change proba-

To evaluate ouwIC algorithm empirically, we used real- bility estimates are.
world online auction data from a major auction site. Auc- )
tion bids are of significant interest to monitor for pur- 5.1 Metric and Parameters

poses of offline trend analysis as well as real-time counterye evaluate the performance of monitoring scheduling al-
bidding. _ gorithms in terms of total utility accrued. To normalize our
We obtained7550 Web pages from the site, each of measyrements in the ranffe 1] we divide total utility by
WhICh gontalr)s b|dd|ng_ histories for one item up for auc-ihe total number of changes undergone by all pages at all
tion. Since bids have timestamps, we were able t0 reconyme instants in the epoch. If a scheduling algorithm cap-
struct the past temporal behavior of these pages. Each pagges all changes with zero delay, the normalized utility is
is updated whenever a new bid is made for the correspond-
ing item, at which time information about the new bid (in-  Reca]l that utility is parameterized by an urgency spec-
cluding bidder, price, time) is appended to the bidding his-tication. For our experiments we used exponential decay
tory. However, for the sake of testing the flexibility of our ;i parameter € [0, 1] for urgency. Figure 4 shows ur-
approach, some of our experiments assume that each paggncy functions for different values of By tuningr, the
displays only the most recent, or maximum, bid for the jegjred balance between timeliness and completeness can
item, and prior bids are erased. Some auction sites onlye gpecified. Using a small value for timeliness is pre-
display the maximum bid. ferred over completeness. In the extreme, setting 0
_For our experiments we treated one day as an epoclyigna|s that changes not captured immediategy, during
with time instants corresponding to one-minute intervalshe same time instant in which they occur, are of no value
Hence,N' = 60 - 24 = 1440 time instants. The num- 514 4o not increase utility. On the other hand, using a large
ber of pagesP| = 7550. We setlV; = 1 for all pages a\ye forr, completeness is preferred over timeliness. In
P, € P. Change probabilitiesr( ,) are determined as e extreme, setting = 1 signals that timeliness has no
follows: we begin with the “exact probabilities,” in which bearing and utility depends only on completeness.
eachr; ; € {0,1}, depending on whether pagg under-
goes a change at time instafif. Then, we add noise 10 55 Eftect of Inaccuracies in Change Probability Esti-
simulate inaccuracies introduced by a change probability mation

estimation algorithm in the following two ways:
In our first experiment we investigate how inaccuracies in

e False positives and false negativesGiven an error  change probability estimation effect the performance of our
factor FPN € [0, 1], we remove each change with WIC algorithm (Section 3.2). First we vary the estimation
probability PN, i.e, setw; ; = 0 when originally  accuracy by changing the value®f{standard deviation of
m;,; = 1. Eachtime a change to pageattime instant  spread), while fixingFkPN = 0. Figure 5 shows the re-

T; is removed, we insert a spurious change’lat a  sult. In each graph, the x-axis plots the resource constraint
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Figure 5: Effect of change probability estimation inaccu-Figure 6: Effect of change probability estimation inaccu-
racy in terms of spreadr-{ on performance. racy in terms of false positives and negativé&’(V) on
performance.

C (maximum number of pages that can be monitored per

time instant), and the y-axis plots utility captured. In bothability to achieve high utility is highly dependent on the life

graphs the utility obtained decreases with increasings  and urgency parameters. We f®°N = 0.1 ando = 2 for

would be expected. The two graphs shown correspond tthe rest of our experiments.

the best and worst cases in terms of loss in utility due to

spread in c_han_ge probability estimation.. The graphs fog 5 Timeliness-Completeness Tradeoff

other combinations of life and urgency fall in between these

two extremes, so we omit them. In our next experiment we demonstrate the control pro-
As we can see from Figure 5, our algorithm is fairly vided by our urgency parameter in trading off timeliness

tolerant of a modest degree of spread on this data. Wheagainst completeness. We #°N = 0.1 ando = 2, and

o = 4, the height of the central peak of the distribution of life is set to Unbounded-Append for all pagesAr(similar

change probability estimates falls at aroundl (it is well results were obtained with life set to Overwrite).

below0.1 for o = 5). In other words, withr = 4 the esti- In Figure 7 we show the number of changes captured

mate only indicates #0% probability of change at the time by our WIC algorithm, as a fraction of the total number of

instants in which a change does occur, yet our approach stithanges that occurred, under different urgency functions.

performs reasonably well. The resource constrailt is plotted on ther — axis. As
Next we measure the effect of introducing false posi-we expect, in each case &sincreases, more changes are

tives and false negatives by varyidgPN, fixing o = 0  captured. The number of changes captured also increases

(no spread). Figure 6 shows the result. As before, we shows r (the urgency parameter) increases. (Recall that in-

the two graphs corresponding to the settings of life and urcreasingr increases the relative importance of complete-

gency yielding the best and worst cases in terms of utilness compared with that of timeliness.) When availabil-

ity lost due to inaccuracy in change probability estimation.ity of resources is relatively low{ < 12 in this case),

Again, our algorithm appears to be fairly intolerant of a our algorithm captures between aroid and80% more

modest degree of inaccuracy in estimation of change probshanges when = 1 than when- = 0.

ability due to false positives and negatives. Furthermore, We now turn to timeliness. Figure 8 plots the distri-

both in terms of spread and false positives and negativefution of delay between the times of occurrence and cap-

the degree to which estimation inaccuracy undermines theure of the changes captured, with= 8 and for different
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Figure 7: Number of changes captured under various expasigure 8: Distribution of delay in changes captured un-
nential urgency functions’. Life is Unbounded-Append.  der various exponential urgency functions.( Life is
Unbounded-Append.

settings ofr (urgency). Delay that exceed$® minutes is
shown in the rightmost bar, labeled “10+.” Foe= 0, over
90% of the changes captured are captured with zero de- ——total number of changes captured
lay. However, this figure drops belo$% for the case of 1.004 number captured with zero delay
r = 1, in which roughly50% of the changes captured are ]
captured with a delay afdo minutes or more.

These results indicate a tradeoff does indeed exist be-
tween timeliness and completeness, and it can be controlled
by adjusting our urgency parameter, as our analytical re-
sults of Section 4 indicated. The tradeoff is perhaps best
visualized as plotted in Figure 9. This graph shows the to-
tal number of changes captured (as a fraction of the total
number of changes that occurred), as well as the total num-

changes captured (fraction)
o o o o
3 5 8 8

ber captured with zero delay (again as a fraction of the total 0.001 T Y -
number that occurred), whefi = 8, for different settings =0 =03 r=05 r=08 r=1

oo Timeliness- Compl eteness-
of urgency ¢). It can clearly be seen that by adjusting the only Only

urgency parametet, timeliness can be traded off against

completeness. Figure 9: Tradeoff between timeliness and completeness.

5.4 Comparison Against Prior Approach i L _
P g PP which they overlap, namely: scheduling unit-time monitor-

For our final experiment we compare our approach againghgs of pages that undergo changes that completely over-

the only prior work we are aware of on scheduling mon-write information, while optimizing for timeliness. Note

itoring of dynamic Web pages, CAM [13]. Since CAM that our WIC algorithm is guaranteed to find the optimal

was designed to optimize for the “returned information ra-monitoring schedule in this case (Section 3.3). We mea-

tio” (RIR) objective, we set our life parameter to Overwrite sured total utility accrued for different values ©f (avail-

andr = 0 (equivalently, Sliding Window(0) urgency) to able resources), under the two algorithms, WitRN =

make utility equivalent to RIR. Note that the RIR objec- 0.1 ando = 2. Our WIC algorithm outperformed CAM by

tive strongly favors timeliness over completeness and asas much as a factor of two.

sumes that all changes overwrite information due to pre-

vious changes. In this way our approach gen(_arallzes thaé Related Work

of [13]. However, our approach is less general in the sense

that we assume unit time to monitor a page, whereas CAMVeb monitoring has been addressed in the context of sys-

handles cases in which each pages takes a different amougims that evaluate continuous queries over the Web [7—10].

of time to download. Therefore, neither approach sub-The main focus of this work has been on language design

sumes the other. and scalability of the query engine, rather than on how best
We compared the two approaches on the scenario ito capture information from sources requiring pull-based



access, like Web pages. Our work addresses this largely{3] E. Cohen and M. Strauss. Maintaining time-decaying

ignored yet important research topic.

The only prior work we are aware of that addresses
this topic in a nontrivial way is [13], which introduced
the CAM Web monitoring algorithm. CAM requires ac-

cess to predicted change probabilities in advaneg {t is

not an online algorithm), and is geared toward maximiz-
ing an objective called “returned information ratio” (RIR).

RIR strongly favors timeliness over completeness, and as-
sumes that all changes overwrite information due to previ- [5]
ous changes. RIR is a special case of our much broader
formulation, in which the tradeoff between timeliness and
completeness of information captured, as well as the way

in which information is posted to Web pages, are exposed
as parameters. When our algorithm parameters are set 146
match the RIR objective, our online algorithm (WIC) is
guaranteed to find the optimal solution. In all other cases
WIC is a 2-approximation. No formal guarantees about the 7]
effectiveness of CAM were provided in [13], although the
CAM heuristic does handle cases in which the cost of mon-

itoring is nonuniform across pagewiC does not).

Work on scheduling Web crawlers.g, [2,4,14] focuses
on maximizing the current “freshness” of a local repository
containing copies of Web pages. In contrast, in our work
the focus is on capturing the history of changes to pages.

7 Summary

In this paper we studied the problem of scheduling polling

of remote Web pages for the purpose of monitoring the dy-
namic Web. The goal is to use limited resources most effec-
tively in order to maximize the overall utility of information [10]
captured. Utility is a highly application-dependent notion,
and our approach is parameterized by custom specifications
of (1) the relative importance of information available from
individual pages under consideration and (2) the sensitivity

of the application to delay in captured information. Our
highly parameterized formulation makes it suitable for a

wide variety of Web monitoring applications.

We formalized the scheduling problem as a parameter 1
ized optimization problem. We then presented an efficient
online algorithm that we showed always achieves total util-
ity within a factor of two of the optimal offline solution
in all cases. Both analysis and experiments on real-world12]
online auction data confirmed that a fundamental tradeoff
exists between timeliness and completeness of information
captured during monitoring; our urgency parameter serves

as a knob to control this tradeoff.
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