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ABSTRACT
We study how best to schedule scans of large data files, in
the presence of many simultaneous requests to a common
set of files. The objective is to maximize the overall rate of
processing these files, by sharing scans of the same file as
aggressively as possible, without imposing undue wait time
on individual jobs. This scheduling problem arises in batch
data processing environments such as Map-Reduce systems,
some of which handle tens of thousands of processing re-
quests daily, over a shared set of files.

As we demonstrate, conventional scheduling techniques
such as shortest-job-first do not perform well in the presence
of cross-job sharing opportunities. We derive a new family
of scheduling policies specifically targeted to sharable work-
loads. Our scheduling policies revolve around the notion
that, all else being equal, it is good to schedule nonsharable
scans ahead of ones that can share IO work with future jobs,
if the arrival rate of sharable future jobs is expected to be
high. We evaluate our policies via simulation over varied
synthetic and real workloads, and demonstrate significant
performance gains compared with conventional scheduling
approaches.

1. INTRODUCTION
As disk seeks become increasingly expensive relative to

sequential access, data processing systems are being archi-
tected to favor bulk sequential scans of large files. Database,
warehouse and mining systems have incorporated scan-
centric access methods for a long time, but at the mo-
ment the most prominent example of scan-centric archi-
tectures is Map-Reduce [4]. Map-Reduce systems execute
UDF-enhanced group-by programs over extremely large, dis-
tributed files. Other architectures in this space include
Dryad [10] and River [1].

Large Map-Reduce installations handle tens of thousands
of jobs daily, where a job consists of a scan of a large file ac-
companied by some processing and perhaps communication
work. In many cases the processing is relatively light (e.g.,
count the number of times Britney Spears is mentioned on
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the web), and the communication is minimal (distributive
and algebraic aggregation functions enable early aggregation
on the Map side of the job, and the data transmitted to the
Reduce side is small). Many jobs even disable the Reduce
component, because they do not require global processing
(e.g., generate a hash-based synopsis of every document in
a large collection).

The execution time of these jobs is dominated by scanning
the input file. If the number of unique input files is small
relative to the number of daily jobs (e.g., in a search engine
company many jobs process the web crawl, user click log,
and search query log), then it is desirable to amortize the
work of scanning one of these files across multiple jobs. Un-
fortunately, caching is not good enough because often these
data sets are so large that they do not fit in memory, even
if spread across a large cluster of machines.

Cooperative scans [6, 8, 21] can help here: multiple jobs
that require scanning the same file can be executed simulta-
neously, with the scanning performed once and the scanned
data fed into each job’s processing component. The work on
cooperative scans has focused on mechanisms to realize IO
savings across multiple co-executing jobs. However there is
another opportunity here: In the Map-Reduce context jobs
tend to run for a long time, and users do not expect quick
turnaround. It is acceptable to reorder pending jobs, within
a reasonable limit on delaying individual jobs, if doing so
can improve the total amount of useful work performed by
the system.

In this paper we study how to schedule jobs that can ben-
efit from shared scans over a common set of files. To our
knowledge this scheduling problem has not been posed be-
fore. Existing scheduling techniques such as shortest-job-
first do not necessarily work well in the presence of sharable
jobs, and it is not obvious how to design ones that do work
well. We illustrate these points via a series of informal ex-
amples (rigorous formal analysis follows).

1.1 Motivating Examples

Example 1
Suppose the system’s work queue contains two pending jobs,
J1 and J2, which are unrelated (i.e., they scan different files),
and hence there is no benefit in executing them jointly.
Therefore we execute them sequentially, and we must de-
cide which one to execute first. We might consider execut-
ing them in order of arrival (FIFO), or perhaps in order of
expected running time (a policy known as shortest-job-first
scheduling, which aims for low average response time in non-



sharable workloads). If J1 arrived slightly earlier and has a
slightly shorter execution time than J2, then both FIFO
and shortest-job-first would schedule J1 first. This decision,
which is made without taking sharing into account, seems
reasonable because J1 and J2 are unrelated.

However, one might want to consider the fact that addi-
tional jobs may arrive in the queue while J1 and J2 are being
executed. Since future jobs may be sharable with J1 or J2,
they can influence the optimal execution order of J1 and J2.
Even if one does not anticipate the exact arrival schedule of
future jobs, a simple stochastic model of future job arrivals
can influence the decision of which of J1 or J2 to execute
first.

Suppose J1 scans file F1, and J2 scans file F2. Let λi
denote the frequency with which jobs that scan Fi are sub-
mitted. In our example, if λ1 > λ2, then all else being
equal it might make sense to schedule J2 first. While J2 is
executing, new jobs that are sharable with J1 may arrive,
permitting us to amortize J1’s work across multiple jobs.
This amortization of work, in turn, can lead to lower av-
erage job response times going forward. The schedule we
produced by considering future job arrival rates differs from
the one produced by FIFO and shortest-job-first.

Example 2
In a more subtle scenario, suppose instead that λ1 = λ2.
Suppose F1 is 1 TB in size, and F2 is 10 TB. Assume
each job’s execution time is dominated by scanning the file.
Hence, J2 takes about ten times as long to execute as J1.

Now, which one of J1 and J2 should we execute first?
Perhaps J1 should be executed first because J2 can benefit
more from sharing, and postponing J2’s execution permits
additional, sharable F2 jobs to accumulate in the queue. On
the other hand, perhaps J2 ought to be executed first since
it takes roughly ten times as long as J1, thereby allowing
ten times as many F1 jobs to accumulate for future joint
execution with J1.

Which of these opposing factors dominates in this case?
How can we reason about these issues in general, in order
to maximize system productivity or minimize average job
response time?

1.2 Contributions and Outline
In this paper we formalize and study the problem of schedul-

ing sharable jobs, using a combination of analytical and em-
pirical techniques. We demonstrate that scheduling policies
that work well in the traditional context of nonsharable jobs
can yield poor schedules in the presence of sharing. We
identify simple policies that do work well in the presence of
sharing, and are robust to fluctuations in the workload such
as bursts of job arrivals.

The remainder of this paper is structured as follows. We
discuss related work in Section 2, and give our formal model
of scheduling jobs with shared scans in Section 3. Then in
Section 4 we derive a family of scheduling policies, which
have some convenient properties that make them practical
as we discuss in Section 5. We perform some initial empirical
analysis of our policies in Section 6. Then in Section 7 we
extend our family of policies to include hybrid ones that
balance multiple scheduling objectives. We present our final
empirical evaluation in Section 8.

2. RELATED WORK
We are not aware of any prior work that addresses the

problem studied in this paper. That said, there is a tremen-
dous amount of work, in both the database and scheduling
theory communities, that is peripherally related. We survey
this work below.

2.1 Database Literature
Prior work on cooperative scans [6, 8, 21] focused on mech-

anisms for sharing scans across jobs or queries that get ex-
ecuted at the same time. Our work is complementary: we
consider how to schedule a queue of pending jobs to ensure
that sharable jobs get executed together and can benefit
from cooperative scan techniques.

Gupta et al. [7] study how to select an execution order for
enqueued jobs, to maximize the chance that data cached on
behalf of one job can be reused for a subsequent job. That
work only takes into account jobs that are already in the
queue, whereas our work focuses on scheduling in view of
anticipated future jobs.

2.2 Scheduling Literature
Scheduling theory is a vast field with countless variations

on the scheduling problem, including various performance
metrics, machine environments (such as single machine, par-
allel machines, and shop), and constraints (such as release
times, deadlines, precedence constraints, and preemption)
[11]. Some of the earliest complexity results for scheduling
problems are given in [13]. In particular, the problem of
minimizing the sum of completion times on a single proces-
sor in the presence of release dates (i.e. job arrival times)
is NP-hard. On the other hand, minimizing the maximum
absolute or relative wait times can be done in polynomial
time using the algorithm proposed in [12]. Both of these
problems are special cases of the problem considered in this
paper when all of the shared costs are zero.

In practice, the quality of a schedule depends on several
factors (such as maximum completion time, average com-
pletion time, maximum earliness, maximum lateness). Op-
timizing schedules with respect to several performance met-
rics is known as multicriteria scheduling [9].

Online scheduling algorithms [18, 20] make scheduling de-
cisions without knowledge of future jobs. In non-clairvoyant
scheduling [16], the characteristics of the jobs (such as run-
ning time) are not known until the job finishes. Online al-
gorithms are typically evaluated using competitive analysis
[18, 20]: if C(I) is the cost of an online schedule on instance
I and Copt(I) is the cost of the optimal schedule, then the
online algorithm is c-competitive if C(I) ≤ c ·Copt(I)+ b for
all instances I and for some constant b.

Divikaran and Saks [5] studied the online scheduling prob-
lem with setup times. In this scenario, jobs belong to job
families and a setup cost is incurred whenever the proces-
sor switches between jobs of different families. For example,
jobs in the same family can perform independent scans of
the same file, in which case the setup cost is the time it
takes to load a file into memory. The problem considered
in this paper differs in two ways: all jobs executed in one
batch have the same completion time since the scans occur
concurrently instead of serially; also, once a batch has been
processed, the next batch still has a shared cost even if it is
from the same job family (for example, if the entire file does
not fit into memory).



Figure 1: Model: input queues and job executor.

Stochastic scheduling [15] considers another variation on
the scheduling problem: the processing time of a job is a
random variable, usually with finite mean and variance, and
typically only the distribution or some of its moments are
known. Online versions of these problems for minimizing
expected weighted completion time have also been consid-
ered [3, 14, 19] in cases where there is no sharing of work
among jobs.

3. MODEL
Map-Reduce and related systems execute jobs on large

clusters, over data files that are spread across many nodes
(each node serves a dual storage and computation role).
Large files (e.g., a web crawl, or a multi-day search query and
result log) are spread across essentially all nodes, whereas
smaller files may only occupy a subset of nodes. Correspond-
ingly, jobs that access large files are spread onto the entire
cluster, and jobs over small files generally only use a subset
of nodes.

In this paper we focus on the issue of ordering jobs to
maximize shared scans, rather than the issue of how to al-
locate data and jobs onto individual cluster nodes. Hence
for the purpose of this paper we abstract away the per-node
details and model the cluster as a single unit of storage and
execution. For workloads dominated by large data sets and
jobs that get spread across the full cluster, this abstraction
is appropriate.

Our model of a data processing engine has two parts: an
executor module that processes jobs, and an input queue
that holds pending jobs. Each job Ji requires a scan over a
(large) input file Fi, and performs some custom processing
over the content of the file. Jobs can be categorized based
on their input file into job families, where all jobs that access
file Fi belong to family Fi. It is useful to think of the input
queue as being divided into a set of smaller queues, one per
job family, as shown in Figure 1.

The executor is capable of executing a batch of multiple
jobs from the same family, in which case the input file is
scanned once and each job’s custom processing is applied
over the stream of data generated by scanning the file. For
simplicity we assume that one batch is executed at a time,
although our techniques can easily be extended to the case
of k simultaneous batches.

The time to execute a batch consisting of n jobs from
family Fi equals tsi + n · tni , where tsi represents the cost of
scanning the input file Fi (i.e., the sharable execution cost),
and tni represents the custom processing cost incurred by
each job (i.e., the nonsharable cost). We assume that tsi is
large relative to tni , i.e., the jobs are IO-bound as discussed
in Section 1.

Given that tsi is the dominant cost, for simplicity we treat
the nonshared execution cost tni as being the same for all
jobs in a batch, even though in reality each job may incur a
different cost in its custom processing. We verify empirically
in Section 6 that nonuniform within-batch processing costs
do not throw off our results.

3.1 System Workload
For the purpose of our analysis we model job arrival as

a stationary process (in Section 8.2.2 we study the effect of
bursty job arrivals empirically). In our model, for each job
family Fi, jobs arrive according to a Poisson process with
rate parameter λi.

Obviously, a high enough aggregate job arrival rate can
overwhelm a given system, regardless of the scheduling pol-
icy. To reason about what job workload a system is capable
of handling, it is instructive to consider what happens if jobs
are executed in extremely large batches. In the asymptote,
as batch sizes approach infinity, the tn values dominate and
the ts values become insignificant, so system load converges
to
P
i λi · t

n
i . If this quantity exceeds the system’s intrin-

sic processing capacity, then it is impossible to keep queue
lengths from growing without bound, and the system can
never “catch up” with pending work under any scheduling
regime. Hence we impose a workload feasibility condition:

asymptotic load =
X
i

λi · tni < 1

3.2 Scheduling Objectives
The performance metric we use in this paper is average

perceived wait time. The perceived wait time (PWT) of job
J is the difference between the system’s response time in
handling J , and the minimum possible response time t(J).
(Response time is the total delay between submission and
completion of a job.)

As stated in Section 1, the class of systems we consider
is geared toward maximizing overall system productivity,
rather than committing to response time targets for indi-
vidual jobs. This stance would seem to suggest optimizing
for system throughput. However, in our context maximiz-
ing throughput means maximizing batch sizes, which leads
to indefinite job wait times. While these systems may find
it acceptable to delay some jobs in order to improve overall
throughput, it does not make sense to delay all jobs.

Optimizing for average PWT still gives an incentive to
batch multiple jobs together when the sharing opportunity
is large (thereby improving throughput), but not so much
that the queues grow indefinitely. Furthermore, PWT seems
like an appropriate metric because it corresponds to users’
end-to-end view of system performance. Informally, average
PWT can be thought of as an indicator of how unhappy
users are, on average, due to job processing delays. Another
consideration is the maximum PWT across all jobs, which
indicates how unhappy the least happy user is.

Our aim is to minimize average PWT, while keeping maxi-
mum PWT from being excessively high. We focus on steady-
state behavior, rather than a fixed time period such as one
day, to avoid knapsack-style tactics that “squeeze” short
jobs in at the end of the period. Knapsack-style behav-
ior only makes sense in the context of real-time scheduling,
which is not a concern in the class of systems we study.

For a given job J , PWT can either be measured on an ab-
solute scale as the difference between the system’s response



Figure 2: Ways to measure perceived wait time.

time and the minimum possible response time (e.g., 10 min-
utes), or on a relative scale as the ratio of the system’s re-
sponse time to the minimum possible response time (e.g.,
1.5× t(J)). (Relative PWT is also known as stretch [17].)

The space of PWT metric variants is shown in Figure 2.
For convenience we adopt the abbreviations AA, MA, AR
and MR to refer to the four variants.

3.3 Scheduling Policy
A scheduling policy is an online algorithm that is (re)invoked

each time the executor becomes idle. Upon invocation, the
policy leaves the executor idle for some period of time (pos-
sibly zero time), and then removes a nonempty subset of
jobs from the input queue, packages them into an execution
batch, and submits the batch to the executor.

In this paper, to simplify our analysis we impose two very
reasonable restrictions on our scheduling policies:

• No idle. If the input queue is nonempty, do not leave
the executor idle. Given the stochastic nature of job
arrivals, this policy seems appropriate.

• Always share. Whenever a job family Fi is scheduled
for execution, all enqueued jobs from family Fi are
included in the execution batch. While it is true that
if tn > ts, one achieves lower average absolute PWT
by scheduling jobs sequentially instead of in a batch,
in this paper we assume ts > tn, as stated above. If
ts > tn it is always beneficial to form large batches, in
terms of average absolute PWT of jobs in the batch.
In all cases, large batches reduce the wait time of jobs
outside the batch that are executed afterward.

4. BASIC SCHEDULING POLICIES
We derive scheduling policies aimed at minimizing each of

average absolute PWT (Section 4.1) and maximum absolute
PWT (Section 4.2).1

The notation we use in this section is summarized in Ta-
ble 1.

4.1 Average Absolute PWT
If there is no sharing, low average absolute PWT is achieved

via shortest-job-first (SJF) scheduling and its variants. (In
a stochastic setting, the generalization of SJF is asymptoti-
cally optimal [3].) We generalize SJF to the case of sharable
jobs as follows.

1We tried deriving policies that directly aim to minimize rel-
ative PWT, but the resulting policies did not perform well,
perhaps due to breakdowns in the approximation schemes
used to derive the policies.

symbol meaning
Fi ith job family
tsi sharable execution time for Fi jobs
tni nonsharable execution time for Fi jobs
λi arrival rate of Fi jobs
Bi theoretical batch size for Fi
ti theoretical time to execute one Fi batch
Ti theoretical scheduling period for Fi
fi theoretical processing fraction for Fi
ωi perceived wait time for Fi jobs
Pi scheduling priority of Fi
Bi queue length for Fi
Ti waiting time of oldest enqueued Fi job

Table 1: Notation.

Let Pi denote the scheduling priority of family Fi. If there
is no sharing, SJF sets Pi equal to the time to complete one
job. If there is sharing, then we let Pi equal the average
per-job execution time of a job batch. Suppose Bi is the
number of enqueued jobs in family Fi, in other words, the
current batch size for Fi. Then the total time to execute a
batch is tsi + Bi · tni . The average per-job execution time is
(tsi +Bi · tni )/Bi, which gives us the SJF scheduling priority:

SJF Policy : Pi = −
„
tsi
Bi

+ tni

«
Unfortunately, as we demonstrate empirically in Section 6,

SJF does not work well in the presence of sharing. To under-
stand why, consider a simple example with two job families:

F1 : ts1 = 1, tn1 = 0, λ1 = a

F2 : ts2 = a, tn2 = 0, λ2 = 1

for some constant a > 1.
In this scenario, F2 jobs have long execution time (ts2 = a)

so SJF schedules F2 infrequently: once every a2 time units,
on expectation. The average perceived wait time under this
schedule is O(a) due to holding back F2 jobs a long time
between batches. A policy that is aware of the fact that F2

jobs are relatively rare (λ2 = 1) would elect to schedule F2

more often, and schedule F1 less often but in much larger
batches. In fact, a policy that schedules F2 every a3/2 time
units achieves an average PWT of only O(a1/2). For large
a, SJF performs very poorly in comparison.

Since SJF does not always produce good schedules in the
presence sharing, we begin from first principles. Unfortu-
nately, as discussed in Section 2.2, solving even the non-
shared scheduling problem exactly is NP-hard. Hence, to
make our problem tractable we consider a relaxed version of
the problem, find an optimal solution to the relaxed prob-
lem, and apply this solution to the original problem.

4.1.1 Relaxation 1
In our initial, simple relaxation, each job family (each

queue in Figure 1) has a dedicated executor. The total work
done by all executors, in steady state, is constrained to be
less than or equal to the total work performed by the one
executor in the original problem. Furthermore, rather than
discrete jobs, in our relaxation we treat jobs as continuously
arriving, infinitely divisible units of work.

In steady state, an optimal schedule will exhibit periodic
behavior: For each job family Fi, wait until Bi jobs have
arrived on the queue and execute those Bi jobs as a batch.



Given the arrival rate λi, on expectation a new batch is
executed every Ti = Bi/λi time units. A batch takes time
ti = tsi + Bi · tni to complete. The fraction of time Fi’s
executor is in use (rather than idle), is fi = ti/Ti.

We arrive at the following optimization problem:X
i

fi ≤ 1 min
X
i

λi · ωAA
i

where ωAA
i is the average absolute PWT for jobs in Fi.

There are two factors that contribute to the PWT of a
newly-arrived job: (1) the delay until the next batch is
formed (2) the fact that a batch of size Bi takes longer to
finish than a singleton batch. The expected value of Factor
1 is Ti/2. Factor 2 equals (Bi − 1) · tni . Overall,

ωAA
i =

Ti
2

+ (Bi − 1) · tni

We solve the above optimization problem using the method
of Lagrange Multipliers. In the optimal solution the follow-
ing quantity is constant across all job families Fi:

B2
i

λi · tsi
· (1 + 2 · λi · tni )

Given the λ, ts and tn values, one can select batch sizes (B
values) accordingly.

4.1.2 Relaxation 2
Unfortunately, the optimal solution to Relaxation 1 can

differ substantially from the optimal solution to the origi-
nal problem. Consider the simple two-family example we
presented earlier in Section 4.1. The optimal policy under
Relaxation 1 schedules job families in a round robin fashion,
yielding an average PWT of O(a). Once again this result is

much worse than the achievable O(a1/2) value we discussed
earlier.

Whereas SJF errs by scheduling F2 too infrequently, the
optimal Relaxation 1 policy errs in the other direction: it
schedules F2 too frequently. Doing so causes F1 jobs to wait
behind F2 batches too often, hurting average wait time.

The problem is that Relaxation 1 reduces the original
scheduling problem to a resource allocation problem. Under
Relaxation 1, the only interaction among job families is fact
that they must share the overall processing time (

P
i fi ≤ 1).

In reality, resource allocation is not the only important con-
sideration. We must also take into account the fact that the
execution batches must be serialized into a single sequen-
tial schedule and executed on a single executor. When a
long-running batch is executed, other batches must wait for
a long time.

Consider a job family Fi, for which a batch of size Bi is
executed once every Ti time units. Whenever an Fi batch
is executed, the following contributions to PWT occur:

• In-batch jobs. The Bi Fi jobs in the current batch
are delayed by (Bi − 1) · tni time units each, for a total
of D1 = Bi · (Bi − 1) · tni time units.

• New jobs. jobs that arrive while the Fi batch is being
executed, are delayed. The expected number of such
jobs is ti ·

P
j λj . The delay incurred to each one is

ti/2 on average, making the overall delay incurred to
other new jobs equal to

D2 =
t2i
2
·
X
j

λj

• Old jobs. jobs that are already in the queue when
the Fi batch is executed, are also delayed. Under
Relaxation 1, the expected number of such jobs isP
j 6=i(Tj · λj)/2. The delay incurred to each one is

ti, making the overall delay incurred to other in-queue
jobs equal to

D3 =
ti
2
·
X
j 6=i

(Tj · λj)

The total delay imposed on other jobs per unit time is
proportional to 1/Ti · (D1 + D2 + D3). If we minimize the
sum of this quantity across all families Fi, again subject
to the resource utilization constraint

P
i fi ≤ 1 using the

Lagrange method, we obtain the following invariant across
job families:

B2
i

λi · tsi
− tsi ·

X
j

λj +
B2
i

λi · tsi
· (λi · tni ) ·

 
tni ·

X
j

λj + 1

!
The scheduling policy resulting from this invariant does

achieve the hoped-for O(a1/2) average PWT in our example
two-family scenario.

4.1.3 Implementation and Intuition
Recall the workload feasibility condition

P
i λi · t

n
i < 1

from Section 3.1. If the executor’s load is spread across a
large number of job families, then for each Fi, λi ·tni is small.
Hence, it is reasonable to drop the terms involving λi · tni
from our above formulae, yielding the following simplified
invariants2:

• Relaxation 1 result: For all job families Fi, the
following quantity is equal:

B2
i

λi · tsi

• Relaxation 2 result: For all job families Fi, the
following quantity is equal:

B2
i

λi · tsi
− tsi ·

X
j

λj

A simple way to translate these statements into imple-
mentable policies is as follows: Assign a numeric priority
Pi to each job family Fi. Every time the executor becomes
idle schedule the family with the highest priority, as a sin-
gle batch of Bi jobs, where Bi denotes the queue length for
family Fi. If we are in steady state, then Bi should roughly
equal Bi. This observation suggests the following priority
values for the scheduling policies implied by Relaxations 1
and 2, respectively:

AA Policy 1 : Pi =
B2
i

λi · tsi

AA Policy 2 : Pi =
B2
i

λi · tsi
− tsi ·

X
j

λj

2There are also practically-motivated reasons to drop terms
involving tn, as we discuss in Section 5. In Section 6 we give
empirical justification for dropping the tn terms.



These formulae have a fairly simple intuitive explanation.
First, if many new jobs with a high degree of sharing are
expected to arrive in the future (λi · tsi in the denomina-
tor, which we refer to as the sharability of family Fi), we
should postpone execution of Fi and allow additional jobs
to accumulate into the same batch, so as to achieve greater
sharing with little extra waiting. On the other hand, as the
number of enqueued jobs becomes large (B2

i in the numer-
ator), the execution priority increases quadratically, which
eventually forces the execution of a batch from family Fi to
avoid imposing excessive delay on the enqueued jobs.

Policy 2 has an extra subtractive term, which penalizes
long batches (i.e., ones with large ts) if the overall rate of
arrival of jobs is high (i.e., high

P
j λj). Doing so allows

short batches to execute ahead of long batches, in the spirit
of shortest-job-first.

For singleton job families (families with just one job),
tsi = 0 and the priority value Pi goes to infinity. Hence
nonsharable jobs are to be scheduled ahead of sharable ones.
The intuition is that nonsharable jobs cannot be beneficially
coexecuted with future jobs, so we might as well execute
them right away. If there are multiple nonsharable jobs, ties
can be broken according to shortest-job-first.

4.2 Maximum Absolute PWT
Here, instead of optimizing for average absolute PWT,

we optimize for the maximum. We again adopt a relaxation
of the original problem that assumes parallel executors and
infinitely divisible work. Under the relaxation, the objective
function is:

min max
i
ωMA
i

where ωMA
i is the maximum absolute PWT for Fi jobs.

As stated in Section 4.1.1 there are two factors that con-
tribute to the PWT of a newly-arrived job: (1) the delay
until the next batch is formed (2) the fact that a batch of
size Bi takes longer to finish than a singleton batch. The
maximum values of these factors are Ti and (Bi − 1) · tni ,
respectively. Overall,

ωMA
i = Ti + (Bi − 1) · tni

or, written differently:

ωMA
i = Ti · (1 + λi · tni )− tni

In the optimal solution ωMA
i is constant across all job fam-

ilies Fi. The intuition behind this result is that if one of
the ωMA

i values is larger than the others, we can decrease it
somewhat by increasing the other ωMA

i values, thereby re-
ducing the maximum PWT. Hence in the optimal solution
all ωMA

i values are equal.

4.2.1 Implementation and Intuition
As justified in Section 4.1.3, we drop terms involving λi ·

tni from our ωMA formula and obtain ωMA ≈ Ti − tni . As
stated in Section 3, we assume the tn values to be a small
component of the overall job execution times, so we also drop
the −tni term and arrive at the approximation ωMA ≈ Ti.

Let Ti denote the waiting time of the oldest enqueued Fi
job, which should roughly equal Ti in steady state. We use
Ti as the basis for our priority based scheduling policy:

MA Policy(FIFO) : Pi = Ti

This policy can be thought of as FIFO applied to job family
batches, since it schedules the family of the job that has
been waiting the longest.

5. PRACTICAL CONSIDERATIONS
The scheduling policies we derived in Section 4 rely on

several parameters related to job execution cost and job ar-
rival rates. In this section we explain how these parameters
can be obtained in practice.

Robust cost estimation: The fact that we were able to
drop the nonsharable execution time tn from our scheduling
priority formulae not only keeps them simple, it also means
that the scheduler does not need to estimate this quantity.
In practice, estimating the full execution time of a job accu-
rately can be difficult, especially in the Map-Reduce context
in which processing is specified via opaque user-defined func-
tions. (In Section 6 we verify empirically that the perfor-
mance of our policies is not sensitive to whether the factors
involving tn are included.)

Our formulae do require estimates of the sharable exe-
cution time ts, i.e., the IO cost of scanning the input file.
For large files, this cost is nearly linearly proportional to
the size of the input file, a quantity that is easy to obtain
from system metadata. (The proportionality constant can
be dropped, as linear scaling of the ts values does not affect
our priority-based scheduling policies.)

Dynamic estimation of arrival rates: Some of our pri-
ority formulae contain λ values, which denote job arrival
rates. Under the Poisson model of arrival, one can estimate
the λ values dynamically, by keeping a time-decayed count
of arrivals. In this way the arrival rate estimates (λ values)
automatically adjust as the workload shifts over time. (See
Section 6.1 for details.)

6. BASIC EXPERIMENTS
In this section we present experiments that:

• Justify ignoring the nonsharable execution time compo-
nent tn in our scheduling policies (Section 6.2).

• Compare our scheduling policy variants empirically (Sec-
tion 6.3).

(We compare our policies against baseline policies in Sec-
tion 8.)

6.1 Experimental Setup
We built a simulator and a workload generator. Our work-

load consists of 100 job families. For each job family, the
sharable cost ts is generated from the heavy-tailed distri-
bution 1 + |X |, where X is a Cauchy random variable. For
greater realism, the nonsharable cost tn is on a per-job basis,
rather than a per-family basis as in our model in Section 3.

In our default workload, each time a job arrives, we select
a nonshared cost randomly as follows: with probability 0.6,
tn = 0.1 · ts; with probability 0.2, tn = 0.2 · ts; with prob-
ability 0.2, tn = 0.3 · ts. (The scenario we focus on in this
paper is one in which the shared cost dominates, because it
represents IO and jobs tend to be IO-bound, as discussed in
Section 3.) In some of our experiments we deviate from this
default workload and study what happens when tn tends to
be larger than ts.



 0

 100

 200

 300

 400

 500

 600

 700

10066331051

AA
 P

W
T

Shared cost divisor

tn-ignorant policy for AA PWT
tn-aware policy for AA PWT

Figure 3: tn-awareness versus tn-ignorance for AA
Policy 2.

 0

 500

 1000

 1500

 2000

 2500

10066331051

M
A

 P
W

T

Shared cost divisor

t
n-ignorant policy for MA PWT

t
n-aware policy for MA PWT

Figure 4: tn-awareness versus tn-ignorance for MA
Policy.

Job arrival events are generated using the standard ho-
mogenous Poisson point process [2]. Each job family Fi has
an arrival parameter λi which represents the expected num-
ber of jobs that arrive in one unit of time. There are 500, 000
units of time in each run of the experiments. The λi values
are initially chosen from a Pareto distribution with parame-
ter α = 1.9 and then are rescaled so that

P
i λiE[tni ] = load.

The total asymptotic system load (
P
λi·tni ) is 0.5 by default.

Some of our scheduling policies require estimation of the
job arrival rate λi. To do this, we maintain an estimate Ii
of the difference in the arrival times of the next two jobs
in family Fi. We adjust Ii as new job arrivals occur, by
taking a weighted average of our previous estimate Ii and
Ai, the difference in arrival times of the two most recent jobs
from Fi. Formally, the update step is Ii ← 0.05Ai + 0.95Ii.
Given Ii and the time t since the last arrival of a job in Fi,
we estimate λi as 1/Ii if t < Ii and as 1

0.05+0.95Ii
otherwise.

6.2 Influence of Nonshared Execution Time
In our first set of experiments, we measure how knowl-

edge of tn affects our scheduling policies. Recall that in
Sections 4.1.3 and 4.2.1 we dropped tn from the priority
formulae, on the grounds that the factors involving tn are
small relative to other factors. To validate ignoring tn in our
scheduling policies, we compare tn-aware variants (which
use the full formulae with tn values) against the tn-ignorant
variants presented in Sections 4.1.3 and 4.2.1. (The tn-aware
variants are given knowledge of the precise tn value of each
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s
i = const.

job instance in the queue.)
Figures 3 and 4 plot the performance of the tn-aware and

tn-ignorant variants of our policies (AA Policy 2 and MA
Policy, respectively) as we vary the magnitude of the shared
cost (keeping the tn distribution and λ values fixed). In
both graphs, the y-axis plots the metric the policy is tuned
to optimize (AA PWT and MA PWT, respectively). The
x-axes plot the shared cost divisor, which is the factor by
which we divided all shared costs. When the shared cost
divisor is large (e.g., 100), the ts values become quite small
relative to the tn values, on average.

Even when nonshared costs are large relative to shared
costs (right-hand side of Figures 3 and 4), tn-awareness has
little impact on performance. Hence from this point forward
we only consider the simpler, tn-ignorant variants of our
policies.

6.3 Comparison of Policy Variants

6.3.1 Relaxation 1 versus Relaxation 2
We now turn to a comparison of AA Policy 1 versus AA

Policy 2 (recall that these are based on Relaxation 1 (Sec-
tion 4.1.1) and Relaxation 2 (Section 4.1.2) of the original
AA PWT minimization problem, respectively). Figure 5
shows that the two variants exhibit nearly identical perfor-
mance, even as we vary the skew in the shared cost (ts) dis-
tribution among job families (here there are five job families
Fi with shared cost tsi = iα, where α is the skew parameter).



Figure 7: Relative effectiveness of different priority
formula variants.

However, if we introduce the invariant that λi · tsi (which
represents the “sharability” of jobs in family Fi; see Sec-
tion 4.1.3) remain constant across all job families Fi, a dif-
ferent picture emerges. Figure 6 shows the result of varying
the shared cost skew, as we hold λi · tsi constant across job
families. (Here there are two job families: ts2 = λ1 = 1 and
ts1 = λ2 = skew parameter (x-axis).) In this case, we see a
clear difference in performance between the policies based
on the two relaxations, with the one based on Relaxation 2
(AA Policy 2) performing much better.

Overall, it appears that AA Policy 2 dominates AA Policy
1, as expected. As to whether the case in which AA Policy
2 performs significantly better than AA Policy 1 is likely
to occur in practice, we do not know. Clearly, using AA
Policy 2 is the safest option, and besides it is not much
more complex to implement than AA Policy 1.

6.3.2 Use of Different Estimators
Recall that our AA Policies 1 and 2 (Section 4.1.3) have a

B2
i /λi term. In the model assumed by Relaxation 1, using

the equivalence Bi = Ti · λi, we can rewrite this term in
four different ways: B2

i /λi (using batch size), T 2
i λi (using

waiting time), Bi·Ti (the geometric mean of the two previous
options), and max

ˆ
B2
i /λi, T

2
i · λi

˜
.

In Figure 7 we compare these variants, and also compare
using the true λ values versus using an online estimator for
λ as described in Section 6.1. We used a more skewed non-
shared cost (tn) distribution than in our other experiments,
to get a clear separation of the variants. In particular we
used: with probability 0.6, tn = 0.1 ·ts; with probability 0.2,
tn = 0.2 ·ts; with probability 0.1, tn = 0.5 ·ts; with probabil-
ity 0.1, tn = 1.0 ·ts. We generated 20 sample workloads, and
for each workload we computed the best AA PWT among
the policy variants. For each policy variant, Figure 7 plots
the fraction of times the policy variant had an AA PWT that
was more than 3% worse than the best AA PWT for each
workload. The result is that the variant that uses B2

i /λi
(the form given in Section 4.1.3) clearly outperforms the
rest. Furthermore, estimating the arrival rates (λ values)
works fine, compared to knowing them in advance via an
oracle.

6.4 Summary of Findings
The findings from our basic experiments are:

• Estimating the arrival rates (λ values) online, as op-
posed to knowing them from an oracle, does not hurt
performance.

• It is not necessary to incorporate tn estimates into the
priority functions.

• AA Policy 2 (which is based on Relaxation 2) domi-
nates AA Policy 1 (based on Relaxation 1).

From this point forward, we use tn-ignorant AA Policy 2
with online λ estimation.

7. HYBRID SCHEDULING POLICIES
The quality of a scheduling policy is generally evaluated

using several criteria [9] and so optimizing for either the av-
erage or maximum perceived wait time, as in Section 4, may
be too extreme. If we optimize solely for the average, there
may be certain jobs with very high PWT. Conversely if we
optimize solely for the maximum, we end up punishing the
majority of jobs in order to help a few outlier jobs. In prac-
tice it may make more sense to optimize for a combination
of average and maximum PWT. A simple approach is to
optimize for a linear combination of the two:

min
X
i

α · ωAAi + (1− α) · ωMA
i

where ωAA denotes average absolute PWT and ωMA denotes
maximum absolute PWT. The parameter α ∈ [0, 1] denotes
the relative importance of having low average PWT versus
low maximum PWT.

We apply the methods used in Section 4 to the hybrid
optimization objective, resulting in the following policy:

Hybrid Policy : Pi = α · 1

2 ·
P
j λj
·

"
B2
i

λi · tsi
− tsi ·

X
j

λj

#

+ xi · (1− α) · T
2
i

tsi

where xi = 1 if Ti = maxj Tj , and xi = 0 otherwise.

The hybrid policy degenerates to the nonhybrid policies
of Section 4 if we set α = 0 or α = 1. For intermediate
values of α, job families receive the same relative priority
as they would under the average PWT regime, except the
family that has been waiting the longest (i.e., the one with
xi = 1), which gets an extra boost in priority. This “extra
boost” reduces the maximum wait time, while raising the
average wait time a bit.

8. FURTHER EXPERIMENTS
We are now ready for further experiments. In particular

we study:

• The behavior of our hybrid policy (Section 8.1).

• The performance of our policies compared to baseline
policies (Section 8.2.1).

• The ability to cope with large bursts of job arrivals (Sec-
tion 8.2.2).
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Figure 8: Hybrid Policy performance on average and
maximum absolute PWT, as we vary the hybrid pa-
rameter α.
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Figure 9: Hybrid Policy performance on average and
maximum relative PWT, as we vary α.

8.1 Hybrid Policy
Figure 8 shows the performance of our Hybrid Policy (Sec-

tion 7), in terms of both average and maximum absolute
PWT. Figure 9 shows the same thing, but for relative PWT.
In both graphs the x-axis plots the hybrid parameter α (this
axis is not on a linear scale, for the purpose of presentation).
The decreasing curve plots average PWT, whose scale is on
the left-hand y-axis; the increasing curve plots maximum
PWT, whose scale is on the right-hand y-axis.

With α = 0, the hybrid policy behaves like the MA Pol-
icy (FIFO), which achieves low maximum PWT at the ex-
pense of very high average PWT. On the other extreme,
with α = 1 it behaves like the AA Policy, which achieves
low average PWT but very high maximum PWT. Using in-
termediate values of α trades off the two objectives. In both
the absolute and relative cases, a good balance is achieved
at approximately α = 0.99: maximum PWT is only slightly
higher than with α = 0, and average PWT is only slightly
higher than with α = 1.

Basically, when configured with α = 0.99, the Hybrid Pol-
icy mimics the AA Policy most of the time, but makes an
exception if it notices that one job has been waiting for a
very long time.

8.2 Comparison Against Baselines
In the following experiments, we compare the policies AA

Policy 2, MA Policy (FIFO), and the Hybrid Policy with
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shown).

α = 0.99 against two generalizations of shortest-job-first
(SJF): The policy “Aware SJF” is the one given in Sec-
tion 4.1, which knows the nonshared cost of jobs in its queue,
and chooses the job family for which it can execute the most
number of jobs per unit of time (i.e., the family that min-
imizes (batch execution cost)/B). By a simple interchange
argument it can be shown that this policy is optimal for the
case when jobs have stopped arriving. The policy “Oblivi-
ous SJF” does not know the nonshared cost of jobs and so it
chooses the family for which ts/B is minimized. This policy
is optimal for the case when jobs have stopped arriving and
the nonshared costs are small.

In these experiments we tested how these policies are af-
fected by the total load placed on the system. (Recall from
Section 3.1 that asymptotic load =

P
λi · tni .) To vary load,

we started with workloads with asymptotic load = 0.1, and
then caused load to increase by various increments, in one
of two ways: (1) increase the nonshared costs (tn values), or
(2) increase the job arrival rates (λ values). In both cases,
all other workload parameters are held constant.

In Section 8.2.1 we report results for the case where job
arrivals are generated by a homogeneous Poisson point pro-
cess. In Section 8.2.2 we report results under bursty arrivals.

8.2.1 Stationary Workloads
In Figure 10 we plot AA PWT as the job arrival rate,

and thus total system load, increases. It is clear that Aware
SJF has terrible performance. The reason is as follows: In
our workload generator, expected nonshared costs are pro-
portional to shared costs (e.g., the cost of a CPU scan of
the file is roughly proportional to its size on disk). Hence,
Aware SJF has a very strong preference for job families with
small shared cost (essentially ignoring the batch size), which
leads to starvation of ones with large shared cost.

In the rest of our experiments we drop Aware SJF, so we
can focus on the performance differences among the other
policies. Figure 11 is the same as Figure 10, with Aware
SJF removed and the y-axis re-scaled. Here we see that AA
Policy 2 and the Hybrid Policy outperform both FIFO and
SJF, especially at higher loads.

In Figure 12 we show the corresponding graph with MA
PWT on the y-axis. Here, as expected, FIFO and the Hy-
brid Policy perform very well.

Figures 13 and 14 show the corresponding plots for the
case where load increases due to a rise in nonshared cost.
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Figure 12: Policy performance on MA PWT metric,
as job arrival rates increase.

These graphs are qualitatively similar to Figures 11 and 12,
but the differences among the scheduling policies are less
pronounced.

Figures 15, 16, 17 and 18 are the same as Figures 11,
12, 13 and 14, respectively, but with the y-axis measuring
relative PWT. If we are interested in minimizing relative
PWT, our policies, which aim to minimize absolute PWT,
do not necessarily do as well as SJF. Devising policies that
specifically optimize for relative PWT is an important topic
of future work.

8.2.2 Bursty Workloads
To model bursty job arrival behavior we use two different

Poisson processes for each job family. One Poisson process
corresponds to a low arrival rate and the other corresponds
to an arrival rate that is ten times as fast. We switch be-
tween these processes using a Markov process: after a job
arrives, we switch states (from high arrival rate to low ar-
rival rate or vice versa) with probability 0.05, and stay in
the same state with probability 0.95. The initial probability
of either state is the stationary distribution of this process
(i.e. with probaility 0.5 we start with a high arrival rate).
The expected number of jobs coming from bursts is the same
as the expected number of jobs not coming from bursts. If
λi is the arrival rate for the non-burst process, then the ex-
pected λi (number of jobs per second) asymptotically equals
20λi/11. Thus the load is

P
iE[λi]E[tni ].

In Figures 19 and 20 we show the average and maximum
absolute PWT, respectively, for bursty job arrivals as load
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Figure 13: Policy performance on AA PWT metric,
as nonshared costs increase.
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Figure 14: Policy performance on MA PWT metric,
as nonshared costs increase.

increases via increasing non-shared costs. Here, SJF slightly
outperforms our policies on AA PWT, but our Hybrid Policy
performs well on both average and maximum PWT.

Figure 21 shows average absolute PWT as the job arrival
rate increases, while keeping the nonshared cost distribution
constant. Here AA Policy 2 and Hybrid slightly outperform
SJF.

To visualize the temporal behavior in the presence of bursts,
Figure 22 shows a moving average of absolute PWT on the
y-axis, with time plotted on the x-axis. This time series is a
sample realization of the experiment that produced Figure
19, with load = 0.7.

Since our policies focus on exploiting job arrival rate (λ)
estimates, it is not surprising that under extremely bursty
workloads where there is no semblance of a steady-state λ,
they do not perform as well relative to the baselines as un-
der stationary workloads (Section 8.2.1). However, it is re-
assuring that our Hybrid Policy does not perform noticeably
worse than shortest-job-first, even under these extreme con-
ditions.

8.3 Summary of Findings
The findings from our experiments on the absolute PWT

metric which our policies are designed to optimize, are:

• Our MA Policy (a generalization of FIFO to shared
workloads) is the best policy on maximum PWT, but
performs poorly on average PWT, as expected.
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Figure 15: Policy performance on AR PWT metric,
as job arrival rates increase.
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Figure 16: Policy performance on MR PWT metric,
as job arrival rates increase.

• Our Hybrid Policy, if properly tuned, achieves a “sweet
spot” in balancing average and maximum PWT, and
is able to perform quite well on both.

• With stationary workloads, our Hybrid Policy substan-
tially outperforms the better of two generalizations of
shortest-job-first to shared workloads.

• With extremely bursty workloads, our Hybrid Policy
performs on par with shortest-job-first.

9. SUMMARY
In this paper we studied how to schedule jobs that can

share scans over a common set of input files. The goal is to
amortize expensive file scans across many jobs, but without
unduly hurting individual job response times.

Our approach builds a simple stochastic model of job
arrivals for each input file, and takes into account antici-
pated future jobs while scheduling jobs that are currently
enqueued. The main idea is as follows: If an enqueued job
J requires scanning a large file F , and we anticipate the
near-term arrival of additional jobs that also scan F , then it
may make sense to delay J if it has not already waited too
long and other, less sharable, jobs are available to run.

We formalized the problem and derived a simple and ef-
fective scheduling policy, under the objective of minimizing
perceived wait time (PWT) for completion of user jobs. Our
policy can be tuned for average PWT, maximum PWT, or
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Figure 17: Policy performance on AR PWT metric,
as nonshared costs increase.
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Figure 18: Policy performance on MR PWT metric,
as nonshared costs increase.

a combination of the two objectives. Compared with the
baseline shortest-job-first and FIFO policies, which do not
account for future sharing opportunities, our policies achieve
significantly lower perceived wait time. This means that
users’ jobs will generally complete earlier under our schedul-
ing policies.
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