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Abstract
Visualization is a powerful way to facilitate data analy-
sis, but it is crucial that visualization systems explicitly
convey the presence, nature, and degree of uncertainty
to users. Otherwise, there is a danger that data will
be falsely interpreted, potentially leading to inaccurate
conclusions. A common method for denoting uncer-
tainty is to use error bars or similar techniques designed
to convey the degree of statistical uncertainty. While
uncertainty can often be modeled statistically, a second
form of uncertainty, bounded uncertainty, can also arise
that has very different properties than statistical uncer-
tainty. Error bars should not be used for bounded uncer-
tainty because they do not convey the correct properties,
so a different technique should be used instead.

In this paper we describe a technique for conveying
bounded uncertainty in visualizations and show how it
can be applied systematically to common displays of
abstract charts and graphs. Interestingly, it is not always
possible to show the exact degree of uncertainty, and in
some cases it can only be displayed approximately. We
specify an algorithm that approximates the degree of
uncertainty to make it displayable while minimizing the
overall loss in accuracy. In addition, we consider new
data delivery paradigms that offer mechanisms for in-
teractive control over uncertainty levels, but whose use
may result in hidden side effects. We propose inter-
faces that offer control of uncertainty levels to the user
in ways that encourage careful use of these facilities.

Keywords: uncertainty visualization, bounded uncer-
tainty, adjustable uncertainty

1 Introduction
In most data-intensive applications, uncertainty is a fact of life.
For example, in scientific applications, error-prone measurements
or incomplete sampling often result in uncertain data. Another ex-
ample is financial analysis, where it is common for some data to
represent uncertain projections about future behavior. Even when
it is possible to gather precise data, there are many real-time appli-
cations, such as network monitoring, mobile object tracking, and
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wireless ecosystem monitoring, in which uncertainty may be in-
troduced intentionally to conserve system resources while data is
being transmitted or processed. When data is uncertain, it is crit-
ically important that analysis tools, including information visual-
ization tools, make users aware of the presence, nature, and de-
gree of uncertainty in the data as these factors can greatly impact
decision-making. If users are misinformed about the uncertainty
associated with their data, they may draw inaccurate conclusions,
potentially leading to costly mistakes.

A report by the US Department of Commerce National Insti-
tute of Standards and Technology (NIST) [TK94] identifies two
predominant forms of uncertainty, which we callstatistical un-
certaintyandbounded uncertainty. Statistical and bounded un-
certainty have dramatically different meanings. Statistical uncer-
tainty is typically captured by a potentially infinite distribution of
possible values with a peak indicating the most likely estimate. In
contrast, with bounded uncertainty no distribution of values can
be assumed, but the exact value is known to lie inside an interval
defined by precise lower and upper bounds.

Pang et al. [PWL97] argue, as we do, that uncertainty should
be presented along with data in visualization applications. Af-
ter discussing traditional techniques for showing statistical uncer-
tainty such as error bars, they propose an extensive suite of tech-
niques for conveying uncertainty in scientific visualization appli-
cations. Many of these techniques can be adapted to information
visualization scenarios. However, techniques for conveying sta-
tistical uncertainty tend to be misleading when used for bounded
uncertainty for two reasons. First, users have been trained to in-
terpret them as probabilistic bounds on an unbounded distribution
of possible values. Second, since error bars are typically used
in conjunction with an estimated exact value, the existence of a
single most likely value is strongly implied.

Visualizations should clearly differentiate between the two
forms of uncertainty, making it obvious whether the uncertainty
is statistical or bounded in addition to conveying the degree of
uncertainty. Therefore, we advocate the use of two distinct tech-
niques for the two forms of uncertainty. To convey statistical un-
certainty, it is appropriate to display the most likely value along
with error bars or other glyphs as in [PWL97]. To convey bounded
uncertainty, we advocate a systematic technique based on widen-
ing the boundaries and positions of graphical elements and ren-
dering the uncertain region in fuzzy ink. We show how to apply
this technique, which we callambiguation, to common displays
of abstract charts and graphs. Interestingly, it is not always pos-
sible to show the exact degree of uncertainty, and in some cases
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it can only be displayed approximately. We specify an algorithm
that approximates the degree of uncertainty to make it displayable
while minimizing the overall loss in accuracy.

We also consider new issues raised by recently proposed in-
teractive data delivery paradigms in which either statistical or
bounded uncertainty is intentionally introduced to improve per-
formance [BP93, DKP+01, HAC+99, HSW94, OW00, OW02b,
YV00a, YV00b]. In these environments, data and uncertainty lev-
els can change dynamically, and it is easy for users to falsely in-
terpret sudden changes in the uncertainty bounds as changes in
the underlying data. We propose a method for masking sudden
jumps in uncertainty when they do not correspond to significant
data changes to avoid drawing the user’s attention.

The central feature of these new data delivery paradigms is
that applications can control the degree of uncertainty. While it
can be beneficial to offer control over uncertainty levels to users,
naive interfaces may not effectively expose the tradeoffs involved.
Specifically, decreasing the uncertainty for some of the data typ-
ically results in either increased uncertainty for other data or in-
creased system resource utilization. We propose ways to offer
users control over uncertainty levels that encourage judicious use
of the control mechanism.

The remainder of this paper is structured as follows. We begin
by discussing related work in Section 2. We then formally define
the two forms of uncertainty and describe some new interactive
data delivery contexts in which they occur in Section 3. Then, in
Section 4 we describe our systematic approach to conveying the
presence, form, and degree of uncertainty. We address misleading
sudden jumps in Section 5. We then discuss user-controlled un-
certainty tuning for interactive data delivery in Section 6. Finally,
we summarize the paper in Section 7.

2 Related Work
In certain visualization scenarios, data may be unavailable for
display or even purposefully omitted for a variety of possible
reasons, giving rise to uncertainty. The importance of visually
informing the user of the absence of data has been identified
[WO98] and techniques for doing so have been proposed in,e.g.,
Clouds [AHL+98, HAC+99] and Restorer [TCS94]. We focus
on a different type of uncertainty where all the data is present but
precise values are not known.

Numerous ways to convey the degree of uncertainty in data
using overlayed annotations and glyphs have been proposed, as
in, e.g., [PWL97]. Another approach is to make the positions of
grid lines used for positional reference ambiguous [CR00]. Un-
certainty can also be indicated by adjusting the color, hue, trans-
parency, etc. of graphical features as in,e.g., [DK97, Mac92,
vdWvdGG98]. Some techniques for conveying uncertainty by
widening the boundaries of graphical elements have also been
proposed. For example, in [WSF+96], the degree of uncertainty
in the angle of rotation of vectors is encoded in the width of the
vector arrows. Also, [PWL97] proposes varying the thickness of
three-dimensional surfaces to indicate the degree of uncertainty.

To our knowledge, however, none have focused on accurately
and unambiguously conveying not only the presence and degree
but also the form of uncertainty in data, as we do. We also be-
lieve that our work is the first to establish systematic methods for
conveying bounded uncertainty by widening the boundaries and

positions of graphical elements in abstract charts and graphs. The
approach in [FWR99] for displaying cluster densities gives a vi-
sual appearance similar to our ambiguated line charts (discussed
later) but serves a different purpose.

Our work also addresses control over uncertainty levels.
Interfaces for controlling uncertainty levels were proposed in
[HAC+99], but that work does not address ways to make the
user cognizant of tradeoffs between decreased uncertainty and in-
creased resource utilization.

3 Forms and Sources of Uncertainty

In this section we first characterize the two common forms of un-
certainty and then provide a brief overview of some emerging data
delivery paradigms in which uncertainty in one of these two forms
is intentionally introduced for performance reasons.

3.1 Uncertainty Representations

In this paper we consider two commonplace forms of uncertainty,
as described in [TK94], [PWL97], and elsewhere. Consider a nu-
meric data objectO whose exact valueV is not known with cer-
tainty. There are two predominant ways in which partial knowl-
edge about the possible values ofV can be represented:statis-
tical uncertaintyandbounded uncertainty. Under statistical un-
certainty, the uncertain value of a data object can be represented
in a number of ways, depending on the statistical model. In one
common case, when errors follow a normal distribution, the un-
certain value of a data object can be represented by a three-tuple
〈E, D, P 〉 of real numbers, whereD ≥ 0 andP ∈ (0, 1]. Here,
E is an estimate that represents the most likely candidate for the
unknown valueV , andP is the probability thatV lies in the con-
fidence interval[E − D, E + D]. Typically, P is fixed at, say,
P = 0.95, andD is chosen so that the valueV lies inside the
confidence interval[E − D, E + D] with probabilityP . Under
bounded uncertainty, there is some numeric interval[L, H ] that is
guaranteed to contain the exact valueV , i.e., L ≤ V ≤ H . Under
bounded uncertainty, the probability thatV is outside the interval
is zero, but, unlike with statistical uncertainty, no assumptions can
be made about the probability distribution of possible values in-
side the interval.

Both forms of uncertainty commonly occur in scientific and
other applications [TK94]. For example, bounded uncertainty can
occur when measurements are taken using a device having an
unknown degree of imprecision that lies within known bounds.
Statistical uncertainty can occur, for example, when single or re-
peated measurements are taken in conditions exhibiting experi-
mental variability, often resulting in an unbounded probability
distribution over possible values featuring a central peak. Both
bounded and statistical uncertainty can also occur in emerging
data delivery paradigms that intentionally introduce uncertainty
for performance reasons. In these paradigms there is often the op-
portunity to adjust the uncertainty levels interactively, unlike with
traditional sources of uncertainty. Next, we discuss two interac-
tive data delivery techniques that exhibit these properties:pro-
gressive samplingandapproximate cache synchronization.
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3.2 Sampling

Some data represents aggregate quantities such as an average or a
sum over a large population of source data. Aggregation with
grouping is a common operation performed in the analysis of
large data sets [GCB+97]. For example, consider an academic
database consisting of student grade reports. A query might re-
quest average grades, grouped by major department. Sampling
techniques can be used to reduce the time required to compute
the aggregated quantities, giving results that carry statistical un-
certainty. If there has not been time to sample the data in ad-
vance, estimates can be generated on the fly by scanning the data
in random order to generate a stream of estimates that grow more
accurate over time. As time progresses, the estimateE changes
and the confidence interval[E −D, E + D] gradually shrinks in
size (assumingP is fixed). Eventually, after all the data has been
processed, the width of the confidence interval becomes zero in-
dicating that the exact valueV is known,i.e., D = 0 andE = V .

3.2.1 Progressive Sampling

[HH97] describes an approach in which a large data set is par-
titioned into several groups, andprogressive samplingis per-
formed simultaneously on all the groups to generate one stream
of estimates per group. Since the data for all the groups (e.g.,
grade records across all departments) is often stored in the
same database, computing all the aggregate values (e.g., average
grades) usually requires sharing the resources of the database.
The simultaneous computation of several aggregate quantities
from the same database presents an opportunity to tune the
amount of resources dedicated to refining each group’s estimate.
Dedicating more resources to one group will cause the corre-
sponding confidence interval to shrink more rapidly. However,
since the total amount of resources is fixed, the confidence inter-
vals of other groups will shrink more slowly as a consequence.
By specifying how to allocate resources among groups, the client
application can control the relative rate at which estimates for dif-
ferent groups improve [HH97].

3.3 Approximate Cache Synchronization

Often, information analysis and visualization tasks are performed
at a distinct location from where data is generated or collected.
For example, in scientific applications, remote sensor readings
taken at different locations might be fed over a network to a cen-
tral monitoring station for real-time visualization. Typically, in
these applications and others, the monitoring station caches the
remotely generated data and uses it for visualization. Ideally, the
cached data could be kept consistent with the remote data as it
changes, but exact consistency would require refreshing the cache
every time the data changes at any of the sources. Doing so could
be prohibitively expensive in terms of the network and computa-
tional resources required if the amount of remote data is large or
frequently updated. Thankfully, in many applications exact con-
sistency is unnecessary because some degree of uncertainty can
be tolerated as long as the user is made aware of it [YV00b]. Re-
cently, alternatives to exact cache consistency have been proposed
in which cached data is only kept approximately consistent with
respect to source data to reduce the overhead of refreshing,e.g.,
[BP93, DKP+01, HSW94, OW00, OW02b, YV00a, YV00b].

One simple and flexibleapproximate cache synchronization
technique for numeric data, initially proposed in [OW00], works
as follows. For each remote data objectO being cached at a cen-
tral location, the cache stores a numeric interval[L, H ] that is
guaranteed to contain the exact source valueV , i.e., L ≤ V ≤ H .
The source and cache cooperate to ensure that this containment
guarantee always holds, thereby providing bounded uncertainty.
The positions of the interval endpoints are determined based on
systems considerations, so the end application cannot assume any
probability distribution forV within the interval. The width of
the interval,i.e., H−L, determines the degree of uncertainty, and
also the overhead required to maintain the containment guarantee.
Wide intervals carry high uncertainty but tend to incur less re-
freshing overhead than narrower intervals with lower uncertainty.

There are two different scenarios in which caching intervals
is useful. First, inconstrained uncertaintyscenarios, resources
are flexible but usage incurs a cost, so uncertainty should be in-
troduced as much as is tolerable to the end application to min-
imize resource utilization. In a system described in [OW02a],
applications can assign and adjust constraints on uncertainty lev-
els by specifying the maximum interval width for individual ob-
jects, or for an aggregate over a set of objects. The system re-
duces resource utilization as much as possible while still meeting
the constraints. By contrast, inconstrained resourcescenarios,
the computational and network resources available for refreshing
data are severely limited. In this scenario, it may not be possible
to meet fixed uncertainty goals, but it is still desirable to minimize
the overall level of uncertainty within the limitations on resource
utilization. In a system described in [OW02b], applications can
assign and adjust priorities for cached objects, and the system re-
freshes higher priority objects more frequently than lower priority
objects. In this way, low uncertainty can be achieved for objects
assigned high priorities by the application, in exchange for in-
creased uncertainty for the other objects.

4 Representing Uncertain Data Visually
Having described the two common forms of uncertainty and some
ways they can occur, we are now ready to discuss ways to repre-
sent uncertain data visually. In most abstract charts and graphs,
data values are graphically encoded either in the positions of
graphical elements, as in a scatterplot, or in the extent (size) of el-
ements along one or more dimensions, as in a bar chart. When the
underlying data is uncertain, we believe it is appropriate to clearly
indicate not only the presence and degree but also the form of un-
certainty. As described in Section 3.1, statistical and bounded
uncertainty encode two dramatically different distributions of po-
tential values. Due to this key difference, using the same display
technique to represent both forms of uncertainty could mislead the
user. Instead, we advocate two alternative methods for conveying
uncertainty in the positions or extents of graphical representations
of data:error bars for statistical uncertainty andambiguationfor
bounded uncertainty. We begin by describing these general tech-
niques and then show how they can be applied to some common
types of charts and graphs.

4.1 Error Bars

Error bars and their variants have been well studied as a suitable
means to convey statistical uncertainty [Cle85, Tuf01, Tuk77].
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Figure 1: Error bars and ambiguation applied to some common chart types.

For each uncertain data value to be represented visually, the idea
is to use the normal display technique to render the estimateE in
place of the unknown exact valueV . Error bars are then added to
indicate uncertainty in the position or boundary location in pro-
portion to the size of the confidence interval[E − D, E + D].
Some standard uses of error bars are illustrated in the upper left
quadrant of Figure 1. When uncertainty occurs in bounded rather
than statistical form, it is important to avoid the use of error bars
since the accepted interpretation implies a potentially unbounded
distribution extending beyond the error bars. Even worse, render-
ing an exact estimate using the normal display technique strongly
implies the existence of a most likely valueE, but in bounded
uncertainty no most likely value can be assumed.

4.2 Ambiguation

To convey the presence and degree of bounded uncertainty, we
propose the use of a technique we call ambiguation. The main
idea behind ambiguation when uncertain data is encoded in the
extent of a graphical element is to widen the boundary to suggest a
range of possible boundary locations and therefore a range of pos-
sible extents. The ambiguous region between possible boundaries
can be drawn as graphical fuzz, giving an effect that resembles
ink smearing. A straightforward application of this technique is
illustrated in the ambiguated bar chart in the upper right quadrant
of Figure 1. To indicate positional uncertainty, rather than draw-
ing a crisp representation of the graphical element at a particular
position, the representation is elongated in one or more directions
and drawn using fuzz. A simple application of this technique is il-
lustrated in the ambiguated scatterplot in the upper right quadrant

of Figure 1.
Other variations of boundary or position ambiguation may be

possible, but the necessary feature is that no particular estimate
or most likely value should be indicated. Rather, the entire range
of possible values for the boundary or position of the graphical
element should be presented with equal weight. This key charac-
teristic is in contrast with error bars and other approaches such as
fuzzygrams and gradient range symbols [Har99] that emphasize a
known probability distribution over data values.

4.3 Discussion

The complementary use of error bars and ambiguation makes the
presence, degree, and form of uncertainty clear. First, these tech-
niques make it easy to identify the specific data values that are
uncertain by suggesting imprecision in the graphical property (po-
sition or boundary location) in which the values are encoded. For
bounded uncertainty, the position or boundary is made ambigu-
ous using fuzzy ink, and for statistical uncertainty, error bars are
added to visually suggest the possibility of a shift in position or
boundary location. Second, these techniques allow the degree of
uncertainty to be read in a straightforward manner using the same
scale used to interpret the data itself. Finally, the use of two visu-
ally distinct techniques makes it clear which of the two forms of
uncertainty is present, and each technique conveys the properties
of the form of uncertainty it represents.

Ambiguation and error bars work well when data is encoded
as the position or extent of graphical elements. Coping with dis-
plays that use other graphical attributes such as color and texture
to encode data is left as a topic for future work. In the absence of
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analogous techniques for other graphical attributes, when uncer-
tainty is present it is desirable to only use charts and graphs that
encode data using position and extent alone so the presence, de-
gree, and form of uncertainty can be clearly and unambiguously
depicted.

4.4 Application to Common Chart Types

Figure 1 illustrates how error bars and ambiguation can be applied
to some common chart types (exhaustive illustration on all known
chart types is omitted for brevity). While these techniques are
general and can be applied to a broad range of displays that use
position and extent to encode data, we focus on abstract charts and
graphs, which can be classified into two categories:absolute dis-
playsand100% displays. In absolute displays, each data value is
given a graphical representation whose extent or position is plot-
ted on an absolute scale. Examples of absolute displays include
simple bar charts (which encode data in the upper boundaries of
bars), scatterplots (which encode data in the positions of points),
and line graphs (which encode data in the positions of points and
lines). It is generally straightforward to add error bars or apply
ambiguation to boundaries and positions in absolute displays such
as those displayed in the top half of Figure 1.1

In 100% displays, the scale ranges from 0% to 100%, and
n valuesV1, V2, . . . , Vn are plotted on this relative scale. Each
valueVi is plotted as a graphical element whose size is propor-
tional to the fraction Vi∑

1≤j≤n
Vj

of the total over alln values.

Examples of 100% displays include stacked bar charts and pie
charts. Indicating uncertainty in 100% displays is more chal-
lenging than doing so in absolute displays. In 100% displays,
the graphical elements usually contact each other directly, so the
boundary between two elements indicates the difference between
them in terms of relative contribution to the total. To inform the
user of statistical uncertainty in the locations of these boundaries,
error bars can be drawn adjacent to the boundaries. Alternatively,
for pie charts the wedges can be separated, leaving space for er-
ror bars extending directly from the boundaries between wedges.
The lower left quadrant of Figure 1 illustrates these techniques.
Bounded uncertainty can be indicated by inserting an ambiguous
region of fuzzy ink between each pair of elements whose shared
boundary is uncertain, as illustrated in the lower right quadrant
of Figure 1. It turns out that determining the sizes to use for the
fuzzy and solid regions in an ambiguated 100% display is not triv-
ial because each region of fuzz shares a border with two solid data
regions. We address this challenge next.

4.4.1 Ambiguation in 100% Displays

Here we consider how to draw an ambiguated pie chart (the
formulation for a stacked bar chart is similar). Suppose the
data for the pie chart consists of an ordered list ofn objects

1Displays such as stacked bar charts that are not normalized to sum
to 100% are problematic when used in conjunction with these uncertainty
indicators because the interpretation can be ambiguous. For example, in
an absolute stacked bar chart, an error bar or a fuzzy region appearing at
the top of the stack can be interpreted either as uncertainty in the topmost
element or as uncertainty in the overall height of the stack (the sum over
all elements).

O0, O1, . . . , On−1 whose values are known to lie inside the in-
tervals[L0, H0], [L1, H1], . . . , [Ln−1, Hn−1], respectively. As a
first step, the absolute uncertainty intervals need to be converted
into relative ones that indicate the smallest and largest possible
fraction of the chart covered by each data object:

Lr
i =

2π · Li
∑n−1

j=0
Hj −Hi + Li

Hr
i =

2π · Hi
∑n−1

j=0
Lj − Li + Hi

The smallest possible fractionLr
i occurs when the value ofOi is

as low as possible,i.e., equal toLi, and the values of all other
objectsOj 6= Oi are as high as possible,i.e., equal toHj . The
rationale forHr

i is symmetric.
Ideally, an allocation of fuzzy and solid ink that conveys the

uncertainty exactly could be found, so that each data objectOi

has a corresponding solid pie wedge of arc lengthLr
i (in radi-

ans) and two adjacent fuzzy wedges of total arc lengthHr
i − Lr

i .
For example, suppose we wish to draw a pie chart for two data
objects, each with values in the interval[1, 2], and thus relative
contributions of between1

3
and 2

3
each. A simple chart with two

solid wedges of arc length2π
3

each plus a fuzzy wedge also of arc
length 2π

3
achieves the ideal of conveying exactly the uncertainty

intervals present in the data.
Unfortunately, due to the nature of 100% displays, this ideal is

not always achievable. In some cases it is not possible to convey
the exact uncertainty intervals. For example, suppose we wish
to draw a pie chart for three data objects with identical intervals
of [1, 2], or relative contributions of between1

5
and 1

2
each. To

indicate the smallest possible relative contribution of each data
object, we need three solid wedges of arc length2π

5
each. The

three gaps between the wedges will be filled with fuzz. We denote
the arc lengths of the three fuzzy regions asF0, F1, andF2. No
matter how we arrange the solid wedges, the combined arc length
of the fuzzy regions isF0 + F1 + F2 = 2π − 3 · 2π

5
= 4π

5
. To

convey that the maximum possible relative contribution of each
data object is1

2
, we need to arrange the three solid wedges, with

fuzz in between, such that each solid wedge taken together with
the two adjacent fuzzy regions spans a total arc length ofπ (half
circle). Therefore, we require thatF0+

2π
5

+F1 = F1+
2π
5

+F2 =
F2 + 2π

5
+ F0 = π. We have defined a system of four equations

with three unknowns (F0, F1, andF2) that is overconstrained and
has no solution. Therefore, an arrangement of solid wedges that
conveys the exact uncertainty intervals that occur in the data does
not exist in this case.

The only way to draw an ambiguated pie chart in such cases
is to approximate the level of uncertainty that occurs in the data,
which is undesirable but necessary. In general, consider the task
of creating a pie chart with ambiguation for a data set consist-
ing of n objectsO0, O1, . . . , On−1. Let Si ≥ 0 be the new arc
length of the solid portion of the display forOi, and letFi ≥ 0
be the arc length of the fuzzy region between the solid region
for the two objectsOi andO(i+1) mod n. An optimization prob-
lem arises with the goal of minimizing the total amount of fuzz
without giving false information,i.e., without drawing a chart in-
dicating uncertainty intervals that do not contain the actual un-
certainty intervals intrinsic in the data: Minimize

∑n−1

i=0
Fi such

that
∑n−1

i=0
Si +

∑n−1

i=0
Fi = 2π and for all i: Si ≤ Lr

i and
F(i−1) mod n + Si + Fi ≥ Hr

i .
The objective function minimizes the total amount of fuzz,

which in turn minimizes the overall loss in accuracy due to the use
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of approximation. The first constraint requires that all of the solid
and fuzzy wedges placed together create a full circle. The sec-
ond constraint ensures that, for each object, the arc length of the
solid region is no larger than the minimum relative contribution
Lr

i of the object’s value to the total. The third constraint ensures
that, for each object, the combined arc length of the solid region
taken together with the two adjacent fuzzy regions is no smaller
than the maximum relative contributionHr

i of the object’s value
to the total. The second and third constraints together ensure that
the uncertainty intervals implied by the chart contain the actual
uncertainty intervals they approximate.

We have implemented an ambiguated pie chart renderer that
invokes a publicly available linear program solver to solve this
optimization problem and determine the best possible pie chart
layout to minimize the loss in accuracy due to displaying approx-
imate uncertainty intervals. It runs in under10 milliseconds on a
modest workstation for data sets of25 objects, which is large for
a 100% chart. It is therefore suitable for execution as a part of
an interactive rendering cycle. In certain extreme cases where a
data set exhibits a great deal of uncertainty, the linear program has
no solution, and it is impossible to generate an ambiguated 100%
chart, even by approximating the uncertainty intervals. This prob-
lem can sometimes be resolved by reordering the wedges, but this
method may cause a disconcerting effect in dynamic displays of
changing data. Instead, we advocate using a special icon when no
pie chart can be drawn to indicate extreme uncertainty. The user
can react by requesting a decrease in uncertainty to make the chart
displayable, using the interface proposed below in Section 6.

5 Avoiding Misleading Sudden Jumps

When the graphical display is refreshed due to a change in the
underlying data, sudden jumps in the displayed data will tend to
draw the user’s attention. This characteristic is usually appropri-
ate when the jump corresponds to a drastic change in the data.
However, consider the case where the source of uncertainty is ap-
proximate caching, as discussed in Section 3.3. In approximate
caching, systems considerations, rather than semantic events, trig-
ger the source to refresh the cached interval, so sudden jumps in
the graphical display of data and uncertainty level may not cor-
respond to significant changes in the underlying data. Moreover,
the absence of jumps may not rule out changes. Therefore, in vi-
sualization applications that receive data feeds from approximate
caching protocols, it is desirable to mask sudden jumps in the data
or uncertainty level that would inappropriately draw the user’s at-
tention. Sudden jumps can be masked by smoothly animating the
transitions between old and new data and uncertainty values at a
slow enough rate to not be overly distracting.

6 Controlling the Degree of Uncertainty

In environments where the data being visualized is obtained from
an approximate caching or progressive sampling source, there is
often an opportunity to exert control over the uncertainty levels or
the rate at which the uncertainty improves at a per-object granu-
larity, as discussed in Section 3. In these paradigms, a decrease
in the uncertainty of some data objects is offset by either a cor-
responding increase in the uncertainty of other data objects or an
increase in system resource utilization. Therefore, it may be de-

sirable for the visualization system to mediate control over the
uncertainty levels. One way to perform this mediation is for the
visualization system to maintain default uncertainty levels2 that
are either uniform, lower for graphical elements near the center of
the screen, or lower for elements that have remained on the screen
for a long time. In some situations where bounded uncertainty is
displayed, it may also be appropriate to require that uncertain re-
gions do not overlap in the dimension(s) of interest, making the
relative order of data values always discernible. At any point,
the user can override the default uncertainty levels by clicking
on an area of interest, causing that area to “come into focus” via
a decrease in uncertainty. Then, the visualization system should
gradually return the uncertainty levels to their default state.

In progressive sampling or constrained resource approximate
caching scenarios (see Sections 3.2.1 and 3.3, respectively), the
result of bringing one region of data “into focus” will be in-
creased uncertainty (or slower rates of uncertainty improvement)
for the rest of the display. However, under constrained uncertainty
caching (see Section 3.3), there is no limit to how much the overall
uncertainty can be reduced, but lower uncertainty incurs a higher
communication cost. It may be important to convey the cost to
the user via a network traffic status indicator, for example, so that
the increase in traffic resulting from requesting lower uncertainty
levels is indicated visually. Noticing the increase in traffic, the
user could click on the network indicator to reduce traffic again
by affecting a mild increase in uncertainty across the board. If the
network traffic indicator does not provide adequate incentive for
the user to be sparing when lowering uncertainty levels, it may be
appropriate to have uncertainty levels continually increase by de-
fault. This property would force the user to click periodically to
maintain data in sharp focus, requiring effort commensurate with
the amount of work required of the network infrastructure thereby
communicating the cost to the user. Furthermore, if the user aban-
dons the visualization for, say, a coffee break without closing the
application, the display would eventually become entirely out of
focus, incurring no network costs while the visualization is not
being used.

7 Summary

We have identified and treated three issues that arise in visualizing
data with uncertainty. The first issue stems from the fact that un-
certainty comes in two predominant forms: statistical uncertainty
and bounded uncertainty. Since the two forms of uncertainty have
quite different meanings, it is important to avoid the use of visual
indicators that can be misinterpreted as representing the wrong
form of uncertainty. To address this issue, we advocated the use
of two distinct techniques for indicating the degree of uncertainty
associated with each graphical data element: error bars and am-
biguation. Each technique is well suited to the form of uncer-
tainty it is intended to represent. We showed how to apply these
techniques systematically to common charts and graphs, which in
some cases requires displaying approximations to the uncertainty

2Users of approximate caching systems might wish to modify the de-
fault uncertainty level of a particular data object by specifying the lower
and upper endpoints of the uncertainty interval, causing the display of that
object to remain static until the data value moves beyond one of the end-
points. This feature can serve to alert users when a data value exceeds a
critical threshold.
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levels. To handle those cases, we specified an algorithm that finds
displayable approximations while minimizing the overall loss in
accuracy.

The second issue we addressed is that sudden jumps in the
graphical display of data and uncertainty level can be misleading
in some cases. We proposed a remedy that involves smoothly an-
imating data transitions to mask sudden jumps. Finally, the third
issue arises in the context of emerging interactive data delivery
paradigms that exhibit the convenient property that uncertainty
can be controlled at a fine granularity by the visualization appli-
cation. Although uncertainty can be controlled, decreasing the
uncertainty is not free, and results in either increased uncertainty
elsewhere or increased computational and communication costs.
This property motivated us to propose interfaces that offer control
of uncertainty levels to the user in ways that encourage careful use
of these facilities.
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