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In most data-intensive applications, uncertainty is a fact of life.
For example, in scientific applications, error-prone measurements
or incomplete sampling often result in uncertain data. Another ex
ample is financial analysis, where it is common for some data t
represent uncertain projections about future behavior. Even when
itis possible to gather precise data, there are many real-time appli;
cations, such as network monitoring, mobile object tracking, an
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Abstract

Visualization is a powerful way to facilitate data analy-
sis, but it is crucial that visualization systems explicitly
convey the presence, nature, and degree of uncertainty
to users. Otherwise, there is a danger that data will
be falsely interpreted, potentially leading to inaccurate
conclusions. A common method for denoting uncer-
tainty is to use error bars or similar techniques designed
to convey the degree of statistical uncertainty. While
uncertainty can often be modeled statistically, a second
form of uncertainty, bounded uncertainty, can also arise
that has very different properties than statistical uncer-
tainty. Error bars should not be used for bounded uncer-
tainty because they do not convey the correct properties,
so a different technique should be used instead.

In this paper we describe a technique for conveying
bounded uncertainty in visualizations and show how it
can be applied systematically to common displays of
abstract charts and graphs. Interestingly, itis not always
possible to show the exact degree of uncertainty, and in
some cases it can only be displayed approximately. We
specify an algorithm that approximates the degree of
uncertainty to make it displayable while minimizing the
overall loss in accuracy. In addition, we consider new
data delivery paradigms that offer mechanisms for in-
teractive control over uncertainty levels, but whose use
may result in hidden side effects. We propose inter-
faces that offer control of uncertainty levels to the user
in ways that encourage careful use of these facilities.
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wireless ecosystem monitoring, in which uncertainty may be in-
troduced intentionally to conserve system resources while data is
being transmitted or processed. When data is uncertain, it is crit-
ically important that analysis tools, including information visual-
ization tools, make users aware of the presence, nature, and de-
gree of uncertainty in the data as these factors can greatly impact
decision-making. If users are misinformed about the uncertainty
associated with their data, they may draw inaccurate conclusions,
potentially leading to costly mistakes.

A report by the US Department of Commerce National Insti-
tute of Standards and Technology (NIST) [TK94] identifies two
predominant forms of uncertainty, which we cathtistical un-
certainty andbounded uncertainty Statistical and bounded un-
certainty have dramatically different meanings. Statistical uncer-
tainty is typically captured by a potentially infinite distribution of
possible values with a peak indicating the most likely estimate. In
contrast, with bounded uncertainty no distribution of values can
be assumed, but the exact value is known to lie inside an interval
defined by precise lower and upper bounds.

Pang et al. [PWL97] argue, as we do, that uncertainty should
be presented along with data in visualization applications. Af-
ter discussing traditional techniques for showing statistical uncer-
tainty such as error bars, they propose an extensive suite of tech-
nigues for conveying uncertainty in scientific visualization appli-
cations. Many of these techniques can be adapted to information
visualization scenarios. However, techniques for conveying sta-
tistical uncertainty tend to be misleading when used for bounded
uncertainty for two reasons. First, users have been trained to in-
terpret them as probabilistic bounds on an unbounded distribution
of possible values. Second, since error bars are typically used
in conjunction with an estimated exact value, the existence of a
single most likely value is strongly implied.

Visualizations should clearly differentiate between the two
forms of uncertainty, making it obvious whether the uncertainty
is statistical or bounded in addition to conveying the degree of
uncertainty. Therefore, we advocate the use of two distinct tech-
niques for the two forms of uncertainty. To convey statistical un-
Certainty, it is appropriate to display the most likely value along
with error bars or other glyphs as in [PWL97]. To convey bounded
uncertainty, we advocate a systematic technique based on widen-
ing the boundaries and positions of graphical elements and ren-
ering the uncertain region in fuzzy ink. We show how to apply
his technique, which we calimbiguation to common displays
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sible to show the exact degree of uncertainty, and in some cases



it can only be displayed approximately. We specify an algorithmpositions of graphical elements in abstract charts and graphs. The

that approximates the degree of uncertainty to make it displayablapproach in [FWR99] for displaying cluster densities gives a vi-

while minimizing the overall loss in accuracy. sual appearance similar to our ambiguated line charts (discussed
We also consider new issues raised by recently proposed inater) but serves a different purpose.

teractive data delivery paradigms in which either statistical or  our work also addresses control over uncertainty levels.
bounded uncertainty is intentionally introduced to improve per-|nterfaces for controlling uncertainty levels were proposed in
formance [BP93, DKP01, HAC"99, HSW94, OW00, OWO02b, [HAC+99], but that work does not address ways to make the
YV00a, YV0Ob]. In these environments, data and uncertainty levyser cognizant of tradeoffs between decreased uncertainty and in-
els can change dynamically, and it is easy for users to falsely ingreased resource utilization.

terpret sudden changes in the uncertainty bounds as changes in

the underlying data. We propose a method for masking sudden

jumps in uncertainty when they do not correspond to significant .

data changes to avoid drawing the user’s attention. 3 Forms and Sources of Uncertamty

The central feature of these new data delivery paradigms is . i .
that applications can control the degree of uncertainty. While itIn th'_s section we first (?haractgrlze the.two common form_s of un-
can be beneficial to offer control over uncertainty levels to usersf:er_ta'my and t_hen p_rowd_e a brief ovgrwe_w of some emerging data
naive interfaces may not effectively expose the tradeoffs involvedfje_l'Very_par""d'glrns in which uncertainty in one of these two forms
Specifically, decreasing the uncertainty for some of the data typ'—S intentionally introduced for performance reasons.
ically results in either increased uncertainty for other data or in-
creased system resource utilization. We propose ways to offer
users control over uncertainty levels that encourage judicious usd.1 Uncertainty Representations
of the control mechanism.

The remainder of this paper is structured as follows. We begirin this paper we consider two commonplace forms of uncertainty,
by discussing related work in Section 2. We then formally defineas described in [TK94], [PWL97], and elsewhere. Consider a nu-
the two forms of uncertainty and describe some new interactiveneric data objec© whose exact valug” is not known with cer-
data delivery contexts in which they occur in Section 3. Then, intainty. There are two predominant ways in which partial knowl-
Section 4 we describe our systematic approach to conveying thedge about the possible valueslofcan be representedtatis-
presence, form, and degree of uncertainty. We address misleadirigal uncertaintyandbounded uncertaintyUnder statistical un-
sudden jumps in Section 5. We then discuss user-controlled ureertainty, the uncertain value of a data object can be represented
certainty tuning for interactive data delivery in Section 6. Finally, in a number of ways, depending on the statistical model. In one
we summarize the paper in Section 7. common case, when errors follow a normal distribution, the un-

certain value of a data object can be represented by a three-tuple
(E, D, P) of real numbers, wher® > 0 andP € (0, 1]. Here,
2 Related Work E'is an estimate that represents the most likely candidate for the
In certain visualization scenarios, data may be unavailable fornknown value/’, andP is the probability thal” lies in the con-
display or even purposefully omitted for a variety of possible fidence intervalE — D, E + D]. Typically, P is fixed at, say,
reasons, giving rise to uncertainty. The importance of visually?” = 0.95, and D is chosen so that the valug lies inside the
informing the user of the absence of data has been identifiegonfidence intervalE — D, E + D] with probability . Under
[W098] and techniques for doing so have been proposeeldn, bounded uncertainty, there is some numeric Inte[nS/aH] thatis
Clouds [AHLT98, HAC"99] and Restorer [TCS94]. We focus guaranteed to contain the exact valig.e, L <V < H. Under
on a different type of uncertainty where all the data is present bubounded uncertainty, the probability tHatis outside the interval
precise values are not known. is zero, but, unlike with statistical uncertainty, no assumptions can

Numerous Ways to Convey ’[he degree of uncertainty in da’[é)e made about the probablllty distribution of pOSSible values in-
using overlayed annotations and glyphs have been proposed, &§le the interval.
in, e.g, [PWL97]. Another approach is to make the positions of  Both forms of uncertainty commonly occur in scientific and
grid lines used for positional reference ambiguous [CRO0]. Un-other applications [TK94]. For example, bounded uncertainty can
certainty can also be indicated by adjusting the color, hue, transeccur when measurements are taken using a device having an
parency, etc. of graphical features as éng, [DK97, Mac92,  unknown degree of imprecision that lies within known bounds.
vdWvdGG98]. Some techniques for conveying uncertainty byStatistical uncertainty can occur, for example, when single or re-
widening the boundaries of graphical elements have also beepeated measurements are taken in conditions exhibiting experi-
proposed. For example, in [WSB6], the degree of uncertainty mental variability, often resulting in an unbounded probability
in the angle of rotation of vectors is encoded in the width of thedistribution over possible values featuring a central peak. Both
vector arrows. Also, [PWL97] proposes varying the thickness ofbounded and statistical uncertainty can also occur in emerging
three-dimensional surfaces to indicate the degree of uncertainty.data delivery paradigms that intentionally introduce uncertainty

To our knowledge, however, none have focused on accuratelfor performance reasons. In these paradigms there is often the op-
and unambiguously conveying not only the presence and degregortunity to adjust the uncertainty levels interactively, unlike with
but also the form of uncertainty in data, as we do. We also betraditional sources of uncertainty. Next, we discuss two interac-
lieve that our work is the first to establish systematic methods fottive data delivery techniques that exhibit these propertfgs:
conveying bounded uncertainty by widening the boundaries andressive samplingndapproximate cache synchronization



3.2 Sampling One simple and flexibl@pproximate cache synchronization
technique for numeric data, initially proposed in [OW00], works

Some data represents aggregate quantities such as an average 85%ollows. For each remote data objérbeing cached at a cen-

sum over a large population of source data. Aggregation wit ral location, the cache stores a numeric intefjalH|] that is

lgrouplc?gt IS atco(an(r:nB(Zr; opFerat|on pelrformed .cljn the analgS'S.oguaranteed to contain the exact source véuee, L <V < H.
;r?eb ata Sisi [tin p ].t dOLteX?n;p ?‘ Corr:S' Zr an ?C?nieml(; The source and cache cooperate to ensure that this containment
atabase consisting ot student grade reports. A query might 16y o o ee always holds, thereby providing bounded uncertainty.

quest average grades, grouped by major department. Sampli e positions of the interval endpoints are determined based on

techniques can be used to reduce the time required to Compug%/stems considerations, so the end application cannot assume any

the aggregated quantities, giving Tesu'ts that carry statlstlc_al un[')robability distribution forV within the interval. The width of
certainty. If there has not been time to sample the data in ad;

timat b ted on the filv b ina the d the intervalj.e., H — L, determines the degree of uncertainty, and
vance, estimates can be generated on the fly by scanning the daig, e oyerhead required to maintain the containment guarantee.
in random order to generate a stream of estimates that grow mo

A i As i th i Wide intervals carry high uncertainty but tend to incur less re-
accurate over ime. AS fime progresses, the esi anges freshing overhead than narrower intervals with lower uncertainty.
and the confidence intervfl — D, E + D] gradually shrinks in

. ind® is fixed). Eventually. after all the data has b There are two different scenarios in which caching intervals
size (assuming is fixed). Eventually, after all the data has been is useful. First, inconstrained uncertaintgcenarios, resources

p'roce'zssed, the width of the gonfldenge interval becomes zero e flexible but usage incurs a cost, so uncertainty should be in-
dicating that the exact valué is known,i.e., D = 0 and& = V.. troduced as much as is tolerable to the end application to min-
imize resource utilization. In a system described in [OW02a],

3.2.1 Progressive Sampling applications can assign and adjust constraints on uncertainty lev-
I,t_als by specifying the maximum interval width for individual ob-
jects, or for an aggregate over a set of objects. The system re-
Muces resource utilization as much as possible while still meeting
the constraints. By contrast, gonstrained resourcecenarios,

g1e computational and network resources available for refreshing
data are severely limited. In this scenario, it may not be possible

grades) usually requires sharing the resources of the databad@ Mmeet fixed uncertainty goals, but it is still desirable to minimize
The simultaneous computation of several aggregate quantitie e overall level of uncertainty within the limitations on resource

from the same database presents an opportunity to tune thlétlhzatlon. In a system described in [OWO02b], applications can

amount of resources dedicated to refining each group’s estimat §sign and adjust priorities for cached objects, and the system re-

Dedicating more resources to one group will cause the corre-re_Shes highe_r priority objects more frequenty thgn lower pric_)rity
sponding confidence interval to shrink more rapidly. However,ObJeCtS' In this way, low uncertainty can be achieved for objects

since the total amount of resources is fixed, the confidence inter"leSIglned high priorities by the application, in exchange for in-

vals of other groups will shrink more slowly as a consequence.creaseci uncertainty for the other objects.

By specifying how to allocate resources among groups, the client . . .
application can control the relative rate at which estimates for dit4 Representing Uncertain Data Visually
ferent groups improve [HH97].

[HH97] describes an approach in which a large data set is pal
titioned into several groups, angrogressive samplings per-
formed simultaneously on all the groups to generate one strea
of estimates per group. Since the data for all the groeps, (
grade records across all departments) is often stored in th
same database, computing all the aggregate vatugs gverage

Having described the two common forms of uncertainty and some
ways they can occur, we are now ready to discuss ways to repre-
3.3 Approximate Cache Synchronization sent uncertain data visually. In most abstract charts and graphs,
. . . . R val re graphically en ither in th itions of
Often, information analysis and visualization tasks are pen‘ormeéjata values are grapnically € coded et_ € the pos_to S0
I . . graphical elements, as in a scatterplot, or in the extent (size) of el-
at a distinct location from where data is generated or collected: . k )
) A - .~ “eéments along one or more dimensions, as in a bar chart. When the
For example, in scientific applications, remote sensor readings

: . ; nderlyin is uncertain, w lieveiti ropri learl
taken at different locations might be fed over a network to a cen-!J derlying data is uncertain, we believe it is appropriate (o clearly

oo : . ) o : -~ indicate not only the presence and degree but also the form of un-
tral monitoring station for real-time visualization. Typically, in

.2 o . rtainty. A ri in ion 3.1 istical an n
these applications and others, the monitoring station caches th%e tainty. As described in Section 3.1, statistical and bounded

. ncertainty en ramatically different distributions of po-
remotely generated data and uses it for visualization. Ideally, thu certainty encode two dramatically different distributions of po

. . ntial values. Due to this key difference, using the same displa:
cached data could be kept consistent with the remote data as | - Y » using : play
. . . technique to represent both forms of uncertainty could mislead the
changes, but exact consistency would require refreshing the cache . -
: . er. Instead, we advocate two alternative methods for conveying
every time the data changes at any of the sources. Doing so cou

o LU uncertainty in the positions or extents of graphical representations
be prohibitively expensive in terms of the network and computa- . s . . -
. S - of data:error barsfor statistical uncertainty arg@mbiguationfor
tional resources required if the amount of remote data is large % ounded uncertainty. We begin by describing these general tech-
frequently updated. Thankfully, in many applications exact con- )

. ? . nigues and then show how they can be applied to some common
sistency is unnecessary because some degree of uncertainty

) ) Ct%es of charts and graphs.
be tolerated as long as the user is made aware of it [YVOOb]. Re-

cently, alternatives to exact cache consistency have been proposg{d1
in which cached data is only kept approximately consistent with ™
respect to source data to reduce the overhead of refreghipg,  Error bars and their variants have been well studied as a suitable
[BP93, DKP"01, HSW94, OW00, OW02b, YV00a, YV00b]. means to convey statistical uncertainty [Cle85, Tuf01, Tuk77].

Error Bars
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Figure 1: Error bars and ambiguation applied to some common chart types.

For each uncertain data value to be represented visually, the ides Figure 1.

is to use the normal display technique to render the estifiare Other variations of boundary or position ambiguation may be
place of the unknown exact valiie. Error bars are then added to possible, but the necessary feature is that no particular estimate
indicate uncertainty in the position or boundary location in pro-or most likely value should be indicated. Rather, the entire range
portion to the size of the confidence intery&l — D, E + D]. of possible values for the boundary or position of the graphical
Some standard uses of error bars are illustrated in the upper lelement should be presented with equal weight. This key charac-
quadrant of Figure 1. When uncertainty occurs in bounded ratheferistic is in contrast with error bars and other approaches such as
than statistical form, it is important to avoid the use of error barsfuzzygrams and gradient range symbols [Har99] that emphasize a
since the accepted interpretation implies a potentially unbounde#nown probability distribution over data values.

distribution extending beyond the error bars. Even worse, render-

ing an exact es_tlmate using the no_rmal display tec_hnlque strongl}is Discussion

implies the existence of a most likely value, but in bounded

uncertainty no most likely value can be assumed. The complementary use of error bars and ambiguation makes the
presence, degree, and form of uncertainty clear. First, these tech-
nigues make it easy to identify the specific data values that are
uncertain by suggesting imprecision in the graphical property (po-
To convey the presence and degree of bounded uncertainty, wsition or boundary location) in which the values are encoded. For
propose the use of a technique we call ambiguation. The maitounded uncertainty, the position or boundary is made ambigu-
idea behind ambiguation when uncertain data is encoded in theus using fuzzy ink, and for statistical uncertainty, error bars are
extent of a graphical element is to widen the boundary to suggestadded to visually suggest the possibility of a shift in position or
range of possible boundary locations and therefore a range of pooundary location. Second, these techniques allow the degree of
sible extents. The ambiguous region between possible boundariegcertainty to be read in a straightforward manner using the same
can be drawn as graphical fuzz, giving an effect that resemblescale used to interpret the data itself. Finally, the use of two visu-
ink smearing. A straightforward application of this technique is ally distinct techniques makes it clear which of the two forms of
illustrated in the ambiguated bar chart in the upper right quadrantincertainty is present, and each technique conveys the properties
of Figure 1. To indicate positional uncertainty, rather than draw-of the form of uncertainty it represents.

ing a crisp representation of the graphical element at a particular Ambiguation and error bars work well when data is encoded
position, the representation is elongated in one or more directionas the position or extent of graphical elements. Coping with dis-
and drawn using fuzz. A simple application of this technique is il- plays that use other graphical attributes such as color and texture
lustrated in the ambiguated scatterplot in the upper right quadrartb encode data is left as a topic for future work. In the absence of

4.2 Ambiguation



analogous techniques for other graphical attributes, when unce©y, O, ...,O,—1 whose values are known to lie inside the in-
tainty is present it is desirable to only use charts and graphs thaervals|Lo, Ho|, [L1, H1], . .., [Ln—1, Hn—1], respectively. As a
encode data using position and extent alone so the presence, dest step, the absolute uncertainty intervals need to be converted
gree, and form of uncertainty can be clearly and unambiguouslynto relative ones that indicate the smallest and largest possible

depicted. fraction of the chart covered by each data object:
LT = 2m - Ly H = 27 - H;
. . i = n—1 i n—1
4.4 Application to Common Chart Types ZFO H;j —H; + L; Ej:o Lj— L + H;

Figure 1 illustrates how error bars and ambiguation can be appliedhe smallest possible fractidi; occurs when the value @; is
to some common chart types (exhaustive illustration on all knowrS 10w as possiblé,e., equal toL;, and the values of all other
chart types is omitted for brevity). While these techniques arePbjectsO; # O; are as high as possiblee., equal toH;. The
general and can be applied to a broad range of displays that udationale forH;" is symmetric.
position and extent to encode data, we focus on abstract charts and !deally, an allocation of fuzzy and solid ink that conveys the
graphs, which can be classified into two categorasolute dis-  Uncertainty exactly could be found, so that each data olgject
playsand100% displaysIn absolute displays, each data value is has a corresponding solid pie wedge of arc lenbfh(in radi-
given a graphical representation whose extent or position is plotans) and two adjacent fuzzy wedges of total arc ledgth— L; .
ted on an absolute scale. Examples of absolute displays include0r €xample, suppose we wish to draw a pie chart for two data
simple bar charts (which encode data in the upper boundaries @jects, each with values in the interyal 2], and thus relative
bars), scatterplots (which encode data in the positions of pointsgontributions of betwees and 3 each. A simple chart with two
and line graphs (which encode data in the positions of points ang0lid wedges of arc length" each plus a fuzzy wedge also of arc
lines). It is generally straightforward to add error bars or applylength % achieves the ideal of conveying exactly the uncertainty
ambiguation to boundaries and positions in absolute displays suchtervals present in the data.
as those displayed in the top half of Figuré 1. Unfortunately, due to the nature of 100% displays, this ideal is
In 100% displays, the scale ranges from 0% to 100%, and't always achievfable._ In some cases it is not possible to convey
n valuesVi, Va, ..., Vi, are plotted on this relative scale. Each the exact uncertainty intervals. For example, suppose we wish
value V; is plotted as a graphical element whose size is propor{0 draw a pie chart for three data objects with identical intervals

tional to the fractione—Y—— of the total over alln values.  Of [1, 2], or relative contributions of betweeh and 3 each. To
Zl<j<" Vi indicate the smallest possible relative contribution of each data

Examples of 100% displays include stacked bar charts and pigbject, we need three solid wedges of arc lengtheach. The
charts. Indicating uncertainty in 100% displays is more chal-three gaps between the wedges will be filled with fuzz. We denote
lenging than doing so in absolute displays. In 100% displaysihe arc lengths of the three fuzzy regionsfas F1, and F>. No

the graphical elements usually contact each other directly, so thgatter how we arrange the solid wedges, the combined arc length
boundary between two elements indicates the difference betweegy the fuzzy regions ish + Fi + F» = 27 — 3 - T =1 To
them in terms of relative contribution to the total. To inform the convey that the maximum possible relative contribution of each
user of statistical uncertainty in the locations of these boundariesgata object is}, we need to arrange the three solid wedges, with
error bars can be drawn adjacent to the boundaries. Alternativelfuzz in between, such that each solid wedge taken together with
for pie charts the wedges can be separated, leaving space for efe two adjacent fuzzy regions spans a total arc length @falf

ror bars extending directly from the boundaries between wedgessircle). Therefore, we require thﬁb+2?w+pl — FH—%”—&-FQ —

The lower left quadrant of Figure 1 illustrates these techniquesy, + 2= + Fy, = 7. We have defined a system of four equations
Bounded uncertainty can be indicated by inserting an ambiguougiith three unknownsKp, F1, andFb) that is overconstrained and
region of fuzzy ink between each pair of elements whose shareflas no solution. Therefore, an arrangement of solid wedges that
boundary is uncertain, as illustrated in the lower right quadraniconveys the exact uncertainty intervals that occur in the data does
of Figure 1. It turns out that determining the sizes to use for thenot exist in this case.

fuzzy and solid regions in an ambiguated 100% display is nottriv-  The only way to draw an ambiguated pie chart in such cases
ial because each region of fuzz shares a border with two solid da@ to approximate the level of uncertainty that occurs in the data,

regions. We address this challenge next. which is undesirable but necessary. In general, consider the task
of creating a pie chart with ambiguation for a data set consist-
4.4.1 Ambiguation in 100% Displays ing of n objectsOy, O1,...,0,_1. LetS; > 0 be the new arc

length of the solid portion of the display fa?;, and letF; > 0
Here we consider how to draw an ambiguated pie chart (thée the arc length of the fuzzy region between the solid region
formulation for a stacked bar chart is similar). Suppose thefor the two objectsD; andO(;11) mod »- AN Optimization prob-
data for the pie chart consists of an ordered listnobbjects  lem arises with the goal of minimizing the total amount of fuzz
without giving false informationi,e., without drawing a chart in-
1Displays such as stacked bar charts that are not normalized to surdicating uncertainty intervals that do not contain the actual un-
to 100% are problematic when used in conjunction with these uncertainticertainty intervals intrinsic in the data: MinimizEZ:ol F; such

indicators because the interpretation can be ambiguous. For example, | n—1 n—1 .. r
. B ) ; : ;= S < L
an absolute stacked bar chart, an error bar or a fuzzy region appearing that Zz=0 Si + Zz=0 Fi 2m and for alli: 5 < L; and

T
the top of the stack can be interpreted either as uncertainty in the topmost(¢—1) mod n +_ Si+ Fi _2 Hi o
element or as uncertainty in the overall height of the stack (the sum over The objective function minimizes the total amount of fuzz,
all elements). which in turn minimizes the overall loss in accuracy due to the use




of approximation. The first constraint requires that all of the solidsirable for the visualization system to mediate control over the
and fuzzy wedges placed together create a full circle. The seaincertainty levels. One way to perform this mediation is for the
ond constraint ensures that, for each object, the arc length of theisualization system to maintain default uncertainty |eéet
solid region is no larger than the minimum relative contribution are either uniform, lower for graphical elements near the center of
Lj of the object’s value to the total. The third constraint ensuresthe screen, or lower for elements that have remained on the screen
that, for each object, the combined arc length of the solid regiorfor a long time. In some situations where bounded uncertainty is
taken together with the two adjacent fuzzy regions is no smalledisplayed, it may also be appropriate to require that uncertain re-
than the maximum relative contributidi;” of the object’s value  gions do not overlap in the dimension(s) of interest, making the
to the total. The second and third constraints together ensure thaglative order of data values always discernible. At any point,
the uncertainty intervals implied by the chart contain the actuathe user can override the default uncertainty levels by clicking
uncertainty intervals they approximate. on an area of interest, causing that area to “come into focus” via
We have implemented an ambiguated pie chart renderer that decrease in uncertainty. Then, the visualization system should
invokes a publicly available linear program solver to solve thisgradually return the uncertainty levels to their default state.
optimization problem and determine the best possible pie chart In progressive sampling or constrained resource approximate
layout to minimize the loss in accuracy due to displaying approx-caching scenarios (see Sections 3.2.1 and 3.3, respectively), the
imate uncertainty intervals. It runs in undgr milliseconds on a  result of bringing one region of data “into focus” will be in-
modest workstation for data sets2if objects, which is large for  creased uncertainty (or slower rates of uncertainty improvement)
a 100% chart. It is therefore suitable for execution as a part ofor the rest of the display. However, under constrained uncertainty
an interactive rendering cycle. In certain extreme cases where eaching (see Section 3.3), there is no limit to how much the overall
data set exhibits a great deal of uncertainty, the linear program hascertainty can be reduced, but lower uncertainty incurs a higher
no solution, and it is impossible to generate an ambiguated 100%0ommunication cost. It may be important to convey the cost to
chart, even by approximating the uncertainty intervals. This probthe user via a network traffic status indicator, for example, so that
lem can sometimes be resolved by reordering the wedges, but thike increase in traffic resulting from requesting lower uncertainty
method may cause a disconcerting effect in dynamic displays ofevels is indicated visually. Noticing the increase in traffic, the
changing data. Instead, we advocate using a special icon when ngser could click on the network indicator to reduce traffic again
pie chart can be drawn to indicate extreme uncertainty. The usdpy affecting a mild increase in uncertainty across the board. If the
can react by requesting a decrease in uncertainty to make the charétwork traffic indicator does not provide adequate incentive for
displayable, using the interface proposed below in Section 6.  the user to be sparing when lowering uncertainty levels, it may be
appropriate to have uncertainty levels continually increase by de-
5 Avoiding Misleading Sudden Jumps fau!t. This property would force th_e_user to click periodically tc_)
maintain data in sharp focus, requiring effort commensurate with
When the graphical display is refreshed due to a change in théhe amount of work required of the network infrastructure thereby
underlying data, sudden jumps in the displayed data will tend tocommunicating the cost to the user. Furthermore, if the user aban-
draw the user’s attention. This characteristic is usually appropridons the visualization for, say, a coffee break without closing the
ate when the jump corresponds to a drastic change in the datapplication, the display would eventually become entirely out of
However, consider the case where the source of uncertainty is ajfecus, incurring no network costs while the visualization is not
proximate caching, as discussed in Section 3.3. In approximatbeing used.
caching, systems considerations, rather than semantic events, trig-
ger the source to refresh the cached interval, so sudden jumps 17\ Summary
the graphical display of data and uncertainty level may not cor-
respond to significant changes in the underlying data. MoreoveWe have identified and treated three issues that arise in visualizing
the absence of jumps may not rule out changes. Therefore, in vidata with uncertainty. The first issue stems from the fact that un-
sualization applications that receive data feeds from approximateertainty comes in two predominant forms: statistical uncertainty
caching protocols, it is desirable to mask sudden jumps in the datand bounded uncertainty. Since the two forms of uncertainty have
or uncertainty level that would inappropriately draw the user’s at-quite different meanings, it is important to avoid the use of visual
tention. Sudden jumps can be masked by smoothly animating thiadicators that can be misinterpreted as representing the wrong
transitions between old and new data and uncertainty values atfarm of uncertainty. To address this issue, we advocated the use
slow enough rate to not be overly distracting. of two distinct techniques for indicating the degree of uncertainty
associated with each graphical data element: error bars and am-
: ; biguation. Each technique is well suited to the form of uncer-
6 Contm”mg the Degree of Uncertamty tainty it is intended to represent. We showed how to apply these
In environments where the data being visualized is obtained frontechniques systematically to common charts and graphs, which in
an approximate caching or progressive sampling source, there 80me cases requires displaying approximations to the uncertainty
often an opportunity to exert control over the uncertainty levels or—; - ] ) ] ]
the rate at which the uncertainty improves at a per-object granu- . USers of approximate caching systems might wish to modify the de-
larity, as discussed in Section 3. In these paradigms, a decreafa%u“ uncertainty level of a particular data object by specifying the lower

. . . . ; 3 d upper endpoints of the uncertainty interval, causing the display of that
in the uncer_ta'nty of _Some data ObJects is offset by e'ther a Cor'object to remain static until the data value moves beyond one of the end-
responding increase in the uncertainty of other data objects or agoints. This feature can serve to alert users when a data value exceeds a

increase in system resource utilization. Therefore, it may be deeritical threshold.




levels. To handle those cases, we specified an algorithm that findélar99]

displayable approximations while minimizing the overall loss in

accuracy. [HHO7]
The second issue we addressed is that sudden jumps in the

graphical display of data and uncertainty level can be misleading

in some cases. We proposed a remedy that involves smoothly an-

imating data transitions to mask sudden jumps. Finally, the third

issue arises in the context of emerging interactive data deliver)LHSWQ"']

paradigms that exhibit the convenient property that uncertainty

can be controlled at a fine granularity by the visualization appli-

cation. Although uncertainty can be controlled, decreasing the

uncertainty is not free, and results in either increased uncertainty

elsewhere or increased computational and communication costfMac92]

This property motivated us to propose interfaces that offer control

of uncertainty levels to the user in ways that encourage careful use

of these facilities. [OWOO0]
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